[Contract Verification] Enable either via-ir
or system-contracts
on the verifier
#567
-
EnvironmentMainnet Block ExplorerIssue Type
Contract Address0x1Ec2090975a6a497935891c25E7535893D9FEF7e Compiler TypeSingle file zkSolc Versionv1.4.1 Solc Version0.8.24 Contract NameZkMinimalAccount Contract Code// SPDX-License-Identifier: MIT
pragma solidity =0.8.24 ^0.8.0 ^0.8.20;
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IAccountCodeStorage.sol
interface IAccountCodeStorage {
function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external;
function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external;
function markAccountCodeHashAsConstructed(address _address) external;
function getRawCodeHash(address _address) external view returns (bytes32 codeHash);
function getCodeHash(uint256 _input) external view returns (bytes32 codeHash);
function getCodeSize(uint256 _input) external view returns (uint256 codeSize);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IComplexUpgrader.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice The interface for the ComplexUpgrader contract.
*/
interface IComplexUpgrader {
function upgrade(address _delegateTo, bytes calldata _calldata) external payable;
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/ICompressor.sol
// The bitmask by applying which to the compressed state diff metadata we retrieve its operation.
uint8 constant OPERATION_BITMASK = 7;
// The number of bits shifting the compressed state diff metadata by which we retrieve its length.
uint8 constant LENGTH_BITS_OFFSET = 3;
// The maximal length in bytes that an enumeration index can have.
uint8 constant MAX_ENUMERATION_INDEX_SIZE = 8;
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice The interface for the Compressor contract, responsible for verifying the correctness of
* the compression of the state diffs and bytecodes.
*/
interface ICompressor {
function publishCompressedBytecode(
bytes calldata _bytecode,
bytes calldata _rawCompressedData
) external payable returns (bytes32 bytecodeHash);
function verifyCompressedStateDiffs(
uint256 _numberOfStateDiffs,
uint256 _enumerationIndexSize,
bytes calldata _stateDiffs,
bytes calldata _compressedStateDiffs
) external payable returns (bytes32 stateDiffHash);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IContractDeployer.sol
interface IContractDeployer {
/// @notice Defines the version of the account abstraction protocol
/// that a contract claims to follow.
/// - `None` means that the account is just a contract and it should never be interacted
/// with as a custom account
/// - `Version1` means that the account follows the first version of the account abstraction protocol
enum AccountAbstractionVersion {
None,
Version1
}
/// @notice Defines the nonce ordering used by the account
/// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1
/// at a time (the same as EOAs).
/// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator
/// should serve the transactions from such an account on a first-come-first-serve basis.
/// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions
/// to be processed and is not considered as a system invariant.
enum AccountNonceOrdering {
Sequential,
Arbitrary
}
struct AccountInfo {
AccountAbstractionVersion supportedAAVersion;
AccountNonceOrdering nonceOrdering;
}
event ContractDeployed(
address indexed deployerAddress,
bytes32 indexed bytecodeHash,
address indexed contractAddress
);
event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering);
event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion);
function getNewAddressCreate2(
address _sender,
bytes32 _bytecodeHash,
bytes32 _salt,
bytes calldata _input
) external view returns (address newAddress);
function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress);
function create2(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input
) external payable returns (address newAddress);
function create2Account(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input,
AccountAbstractionVersion _aaVersion
) external payable returns (address newAddress);
/// @dev While the `_salt` parameter is not used anywhere here,
/// it is still needed for consistency between `create` and
/// `create2` functions (required by the compiler).
function create(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input
) external payable returns (address newAddress);
/// @dev While `_salt` is never used here, we leave it here as a parameter
/// for the consistency with the `create` function.
function createAccount(
bytes32 _salt,
bytes32 _bytecodeHash,
bytes calldata _input,
AccountAbstractionVersion _aaVersion
) external payable returns (address newAddress);
/// @notice Returns the information about a certain AA.
function getAccountInfo(address _address) external view returns (AccountInfo memory info);
/// @notice Can be called by an account to update its account version
function updateAccountVersion(AccountAbstractionVersion _version) external;
/// @notice Can be called by an account to update its nonce ordering
function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external;
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IEthToken.sol
interface IEthToken {
function balanceOf(uint256) external view returns (uint256);
function transferFromTo(address _from, address _to, uint256 _amount) external;
function totalSupply() external view returns (uint256);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function mint(address _account, uint256 _amount) external;
function withdraw(address _l1Receiver) external payable;
function withdrawWithMessage(address _l1Receiver, bytes calldata _additionalData) external payable;
event Mint(address indexed account, uint256 amount);
event Transfer(address indexed from, address indexed to, uint256 value);
event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount);
event WithdrawalWithMessage(
address indexed _l2Sender,
address indexed _l1Receiver,
uint256 _amount,
bytes _additionalData
);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IImmutableSimulator.sol
struct ImmutableData {
uint256 index;
bytes32 value;
}
interface IImmutableSimulator {
function getImmutable(address _dest, uint256 _index) external view returns (bytes32);
function setImmutables(address _dest, ImmutableData[] calldata _immutables) external;
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IKnownCodesStorage.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice The interface for the KnownCodesStorage contract, which is responsible
* for storing the hashes of the bytecodes that have been published to the network.
*/
interface IKnownCodesStorage {
event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1);
function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external;
function markBytecodeAsPublished(bytes32 _bytecodeHash) external;
function getMarker(bytes32 _hash) external view returns (uint256);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IL1Messenger.sol
/// @dev The log passed from L2
/// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter. All other values are not used but are reserved for the future
/// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address.
/// This field is required formally but does not have any special meaning.
/// @param txNumberInBlock The L2 transaction number in a block, in which the log was sent
/// @param sender The L2 address which sent the log
/// @param key The 32 bytes of information that was sent in the log
/// @param value The 32 bytes of information that was sent in the log
// Both `key` and `value` are arbitrary 32-bytes selected by the log sender
struct L2ToL1Log {
uint8 l2ShardId;
bool isService;
uint16 txNumberInBlock;
address sender;
bytes32 key;
bytes32 value;
}
/// @dev Bytes in raw L2 to L1 log
/// @dev Equal to the bytes size of the tuple - (uint8 ShardId, bool isService, uint16 txNumberInBlock, address sender, bytes32 key, bytes32 value)
uint256 constant L2_TO_L1_LOG_SERIALIZE_SIZE = 88;
/// @dev The value of default leaf hash for L2 to L1 logs Merkle tree
/// @dev An incomplete fixed-size tree is filled with this value to be a full binary tree
/// @dev Actually equal to the `keccak256(new bytes(L2_TO_L1_LOG_SERIALIZE_SIZE))`
bytes32 constant L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH = 0x72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba;
/// @dev The current version of state diff compression being used.
uint256 constant STATE_DIFF_COMPRESSION_VERSION_NUMBER = 1;
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice The interface of the L1 Messenger contract, responsible for sending messages to L1.
*/
interface IL1Messenger {
// Possibly in the future we will be able to track the messages sent to L1 with
// some hooks in the VM. For now, it is much easier to track them with L2 events.
event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message);
event L2ToL1LogSent(L2ToL1Log _l2log);
event BytecodeL1PublicationRequested(bytes32 _bytecodeHash);
function sendToL1(bytes memory _message) external returns (bytes32);
function sendL2ToL1Log(bool _isService, bytes32 _key, bytes32 _value) external returns (uint256 logIdInMerkleTree);
// This function is expected to be called only by the KnownCodesStorage system contract
function requestBytecodeL1Publication(bytes32 _bytecodeHash) external;
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/INonceHolder.sol
/**
* @author Matter Labs
* @dev Interface of the nonce holder contract -- a contract used by the system to ensure
* that there is always a unique identifier for a transaction with a particular account (we call it nonce).
* In other words, the pair of (address, nonce) should always be unique.
* @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers
* for the transaction.
*/
interface INonceHolder {
event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value);
/// @dev Returns the current minimal nonce for account.
function getMinNonce(address _address) external view returns (uint256);
/// @dev Returns the raw version of the current minimal nonce
/// (equal to minNonce + 2^128 * deployment nonce).
function getRawNonce(address _address) external view returns (uint256);
/// @dev Increases the minimal nonce for the msg.sender.
function increaseMinNonce(uint256 _value) external returns (uint256);
/// @dev Sets the nonce value `key` as used.
function setValueUnderNonce(uint256 _key, uint256 _value) external;
/// @dev Gets the value stored inside a custom nonce.
function getValueUnderNonce(uint256 _key) external view returns (uint256);
/// @dev A convenience method to increment the minimal nonce if it is equal
/// to the `_expectedNonce`.
function incrementMinNonceIfEquals(uint256 _expectedNonce) external;
/// @dev Returns the deployment nonce for the accounts used for CREATE opcode.
function getDeploymentNonce(address _address) external view returns (uint256);
/// @dev Increments the deployment nonce for the account and returns the previous one.
function incrementDeploymentNonce(address _address) external returns (uint256);
/// @dev Determines whether a certain nonce has been already used for an account.
function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view;
/// @dev Returns whether a nonce has been used for an account.
function isNonceUsed(address _address, uint256 _nonce) external view returns (bool);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IPaymasterFlow.sol
/**
* @author Matter Labs
* @dev The interface that is used for encoding/decoding of
* different types of paymaster flows.
* @notice This is NOT an interface to be implementated
* by contracts. It is just used for encoding.
*/
interface IPaymasterFlow {
function general(bytes calldata input) external;
function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external;
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IPubdataChunkPublisher.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice Interface for contract responsible chunking pubdata into the appropriate size for EIP-4844 blobs.
*/
interface IPubdataChunkPublisher {
/// @notice Chunks pubdata into pieces that can fit into blobs.
/// @param _pubdata The total l2 to l1 pubdata that will be sent via L1 blobs.
function chunkAndPublishPubdata(bytes calldata _pubdata) external;
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/ISystemContext.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice Contract that stores some of the context variables, that may be either
* block-scoped, tx-scoped or system-wide.
*/
interface ISystemContext {
struct BlockInfo {
uint128 timestamp;
uint128 number;
}
/// @notice A structure representing the timeline for the upgrade from the batch numbers to the L2 block numbers.
/// @dev It will used for the L1 batch -> L2 block migration in Q3 2023 only.
struct VirtualBlockUpgradeInfo {
/// @notice In order to maintain consistent results for `blockhash` requests, we'll
/// have to remember the number of the batch when the upgrade to the virtual blocks has been done.
/// The hashes for virtual blocks before the upgrade are identical to the hashes of the corresponding batches.
uint128 virtualBlockStartBatch;
/// @notice L2 block when the virtual blocks have caught up with the L2 blocks. Starting from this block,
/// all the information returned to users for block.timestamp/number, etc should be the information about the L2 blocks and
/// not virtual blocks.
uint128 virtualBlockFinishL2Block;
}
function chainId() external view returns (uint256);
function origin() external view returns (address);
function gasPrice() external view returns (uint256);
function blockGasLimit() external view returns (uint256);
function coinbase() external view returns (address);
function difficulty() external view returns (uint256);
function baseFee() external view returns (uint256);
function txNumberInBlock() external view returns (uint16);
function getBlockHashEVM(uint256 _block) external view returns (bytes32);
function getBatchHash(uint256 _batchNumber) external view returns (bytes32 hash);
function getBlockNumber() external view returns (uint128);
function getBlockTimestamp() external view returns (uint128);
function getBatchNumberAndTimestamp() external view returns (uint128 blockNumber, uint128 blockTimestamp);
function getL2BlockNumberAndTimestamp() external view returns (uint128 blockNumber, uint128 blockTimestamp);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/libraries/RLPEncoder.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice This library provides RLP encoding functionality.
*/
library RLPEncoder {
function encodeAddress(address _val) internal pure returns (bytes memory encoded) {
// The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP.
encoded = new bytes(0x15);
bytes20 shiftedVal = bytes20(_val);
assembly {
// In the first byte we write the encoded length as 0x80 + 0x14 == 0x94.
mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000)
// Write address data without stripping zeros.
mstore(add(encoded, 0x21), shiftedVal)
}
}
function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) {
unchecked {
if (_val < 128) {
encoded = new bytes(1);
// Handle zero as a non-value, since stripping zeroes results in an empty byte array
encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val));
} else {
uint256 hbs = _highestByteSet(_val);
encoded = new bytes(hbs + 2);
encoded[0] = bytes1(uint8(hbs + 0x81));
uint256 lbs = 31 - hbs;
uint256 shiftedVal = _val << (lbs * 8);
assembly {
mstore(add(encoded, 0x21), shiftedVal)
}
}
}
}
/// @notice Encodes the size of bytes in RLP format.
/// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
/// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case.
function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) {
assert(_len != 1);
return _encodeLength(_len, 0x80);
}
/// @notice Encodes the size of list items in RLP format.
/// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
function encodeListLen(uint64 _len) internal pure returns (bytes memory) {
return _encodeLength(_len, 0xc0);
}
function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) {
unchecked {
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = bytes1(uint8(_len + _offset));
} else {
uint256 hbs = _highestByteSet(uint256(_len));
encoded = new bytes(hbs + 2);
encoded[0] = bytes1(uint8(_offset + hbs + 56));
uint256 lbs = 31 - hbs;
uint256 shiftedVal = uint256(_len) << (lbs * 8);
assembly {
mstore(add(encoded, 0x21), shiftedVal)
}
}
}
}
/// @notice Computes the index of the highest byte set in number.
/// @notice Uses little endian ordering (The least significant byte has index `0`).
/// NOTE: returns `0` for `0`
function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) {
unchecked {
if (_number > type(uint128).max) {
_number >>= 128;
hbs += 16;
}
if (_number > type(uint64).max) {
_number >>= 64;
hbs += 8;
}
if (_number > type(uint32).max) {
_number >>= 32;
hbs += 4;
}
if (_number > type(uint16).max) {
_number >>= 16;
hbs += 2;
}
if (_number > type(uint8).max) {
hbs += 1;
}
}
}
}
// lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// lib/openzeppelin-contracts/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// lib/openzeppelin-contracts/contracts/utils/Context.sol
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// lib/openzeppelin-contracts/contracts/utils/math/Math.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// lib/openzeppelin-contracts/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// lib/openzeppelin-contracts/contracts/utils/Strings.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// lib/openzeppelin-contracts/contracts/utils/cryptography/MessageHashUtils.sol
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// lib/foundry-era-contracts/src/system-contracts/contracts/Constants.sol
/// @dev All the system contracts introduced by zkSync have their addresses
/// started from 2^15 in order to avoid collision with Ethereum precompiles.
// uint160 constant SYSTEM_CONTRACTS_OFFSET = {{SYSTEM_CONTRACTS_OFFSET}}; // 2^15
uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15
/// @dev All the system contracts must be located in the kernel space,
/// i.e. their addresses must be below 2^16.
uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1
address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01);
address constant SHA256_SYSTEM_CONTRACT = address(0x02);
address constant ECADD_SYSTEM_CONTRACT = address(0x06);
address constant ECMUL_SYSTEM_CONTRACT = address(0x07);
/// @dev The maximal possible address of an L1-like precompie. These precompiles maintain the following properties:
/// - Their extcodehash is EMPTY_STRING_KECCAK
/// - Their extcodesize is 0 despite having a bytecode formally deployed there.
uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = 0xff;
address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01));
IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT =
IAccountCodeStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x02));
INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03));
IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04));
IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT =
IImmutableSimulator(address(SYSTEM_CONTRACTS_OFFSET + 0x05));
IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06));
// A contract that is allowed to deploy any codehash
// on any address. To be used only during an upgrade.
address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07);
IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08));
address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09);
IEthToken constant ETH_TOKEN_SYSTEM_CONTRACT = IEthToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a));
// Hardcoded because even for tests we should keep the address. (Instead `SYSTEM_CONTRACTS_OFFSET + 0x10`)
// Precompile call depends on it.
// And we don't want to mock this contract.
address constant KECCAK256_SYSTEM_CONTRACT = address(0x8010);
ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b)));
IBootloaderUtilities constant BOOTLOADER_UTILITIES = IBootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c));
// It will be a different value for tests, while shouldn't. But for now, this constant is not used by other contracts, so that's fine.
address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d);
ICompressor constant COMPRESSOR_CONTRACT = ICompressor(address(SYSTEM_CONTRACTS_OFFSET + 0x0e));
IComplexUpgrader constant COMPLEX_UPGRADER_CONTRACT = IComplexUpgrader(address(SYSTEM_CONTRACTS_OFFSET + 0x0f));
IPubdataChunkPublisher constant PUBDATA_CHUNK_PUBLISHER =
IPubdataChunkPublisher(address(SYSTEM_CONTRACTS_OFFSET + 0x11));
/// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR
/// is non-zero, the call will be assumed to be a system one.
uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1;
/// @dev The maximal msg.value that context can have
uint256 constant MAX_MSG_VALUE = 2 ** 128 - 1;
/// @dev Prefix used during derivation of account addresses using CREATE2
/// @dev keccak256("zksyncCreate2")
bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494;
/// @dev Prefix used during derivation of account addresses using CREATE
/// @dev keccak256("zksyncCreate")
bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;
/// @dev Each state diff consists of 156 bytes of actual data and 116 bytes of unused padding, needed for circuit efficiency.
uint256 constant STATE_DIFF_ENTRY_SIZE = 272;
/// @dev While the "real" amount of pubdata that can be sent rarely exceeds the BLOB_SIZE_BYTES * MAX_NUMBER_OF_BLOBS, it is better to
/// allow the operator to provide any reasonably large value in order to avoid unneeded constraints on the operator.
uint256 constant MAX_ALLOWED_PUBDATA_PER_BATCH = 520000;
enum SystemLogKey {
L2_TO_L1_LOGS_TREE_ROOT_KEY,
TOTAL_L2_TO_L1_PUBDATA_KEY,
STATE_DIFF_HASH_KEY,
PACKED_BATCH_AND_L2_BLOCK_TIMESTAMP_KEY,
PREV_BATCH_HASH_KEY,
CHAINED_PRIORITY_TXN_HASH_KEY,
NUMBER_OF_LAYER_1_TXS_KEY,
BLOB_ONE_HASH_KEY,
BLOB_TWO_HASH_KEY,
EXPECTED_SYSTEM_CONTRACT_UPGRADE_TX_HASH_KEY
}
/// @dev The number of leaves in the L2->L1 log Merkle tree.
/// While formally a tree of any length is acceptable, the node supports only a constant length of 4096 leaves.
uint256 constant L2_TO_L1_LOGS_MERKLE_TREE_LEAVES = 4096;
/// @dev The length of the derived key in bytes inside compressed state diffs.
uint256 constant DERIVED_KEY_LENGTH = 32;
/// @dev The length of the enum index in bytes inside compressed state diffs.
uint256 constant ENUM_INDEX_LENGTH = 8;
/// @dev The length of value in bytes inside compressed state diffs.
uint256 constant VALUE_LENGTH = 32;
/// @dev The length of the compressed initial storage write in bytes.
uint256 constant COMPRESSED_INITIAL_WRITE_SIZE = DERIVED_KEY_LENGTH + VALUE_LENGTH;
/// @dev The length of the compressed repeated storage write in bytes.
uint256 constant COMPRESSED_REPEATED_WRITE_SIZE = ENUM_INDEX_LENGTH + VALUE_LENGTH;
/// @dev The position from which the initial writes start in the compressed state diffs.
uint256 constant INITIAL_WRITE_STARTING_POSITION = 4;
/// @dev Each storage diffs consists of the following elements:
/// [20bytes address][32bytes key][32bytes derived key][8bytes enum index][32bytes initial value][32bytes final value]
/// @dev The offset of the deriived key in a storage diff.
uint256 constant STATE_DIFF_DERIVED_KEY_OFFSET = 52;
/// @dev The offset of the enum index in a storage diff.
uint256 constant STATE_DIFF_ENUM_INDEX_OFFSET = 84;
/// @dev The offset of the final value in a storage diff.
uint256 constant STATE_DIFF_FINAL_VALUE_OFFSET = 124;
/// @dev Total number of bytes in a blob. Blob = 4096 field elements * 31 bytes per field element
/// @dev EIP-4844 defines it as 131_072 but we use 4096 * 31 within our circuits to always fit within a field element
/// @dev Our circuits will prove that a EIP-4844 blob and our internal blob are the same.
uint256 constant BLOB_SIZE_BYTES = 126_976;
/// @dev Max number of blobs currently supported
uint256 constant MAX_NUMBER_OF_BLOBS = 2;
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IBootloaderUtilities.sol
interface IBootloaderUtilities {
function getTransactionHashes(Transaction calldata _transaction)
external
view
returns (bytes32 txHash, bytes32 signedTxHash);
}
// lib/foundry-era-contracts/src/system-contracts/contracts/libraries/EfficientCall.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice This library is used to perform ultra-efficient calls using zkEVM-specific features.
* @dev EVM calls always accept a memory slice as input and return a memory slice as output.
* Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory
* before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.).
* In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata.
* This allows forwarding the calldata slice as is, without copying it to memory.
* @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level.
* zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later
* the contract may manipulate the already created fat pointers to forward a slice of the data, but not
* to create new fat pointers!
* @dev The allowed operation on fat pointers are:
* 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics.
* 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics.
* 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls.
* 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics.
* @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call
* 1. `ptr.start` is transformed into `ptr.offset + ptr.start`
* 2. `ptr.length` is transformed into `ptr.length - ptr.offset`
* 3. `ptr.offset` is transformed into `0`
*/
library EfficientCall {
/// @notice Call the `keccak256` without copying calldata to memory.
/// @param _data The preimage data.
/// @return The `keccak256` hash.
function keccak(bytes calldata _data) internal view returns (bytes32) {
bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data);
require(returnData.length == 32, "keccak256 returned invalid data");
return bytes32(returnData);
}
/// @notice Call the `sha256` precompile without copying calldata to memory.
/// @param _data The preimage data.
/// @return The `sha256` hash.
function sha(bytes calldata _data) internal view returns (bytes32) {
bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data);
require(returnData.length == 32, "sha returned invalid data");
return bytes32(returnData);
}
/// @notice Perform a `call` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _value The `msg.value` to send.
/// @param _data The calldata to use for the call.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return returnData The copied to memory return data.
function call(
uint256 _gas,
address _address,
uint256 _value,
bytes calldata _data,
bool _isSystem
) internal returns (bytes memory returnData) {
bool success = rawCall(_gas, _address, _value, _data, _isSystem);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `staticCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return returnData The copied to memory return data.
function staticCall(
uint256 _gas,
address _address,
bytes calldata _data
) internal view returns (bytes memory returnData) {
bool success = rawStaticCall(_gas, _address, _data);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `delegateCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return returnData The copied to memory return data.
function delegateCall(
uint256 _gas,
address _address,
bytes calldata _data
) internal returns (bytes memory returnData) {
bool success = rawDelegateCall(_gas, _address, _data);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @param _whoToMimic The `msg.sender` for the next call.
/// @param _isConstructor Whether the call should contain the `isConstructor` flag.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return returnData The copied to memory return data.
function mimicCall(
uint256 _gas,
address _address,
bytes calldata _data,
address _whoToMimic,
bool _isConstructor,
bool _isSystem
) internal returns (bytes memory returnData) {
bool success = rawMimicCall(_gas, _address, _data, _whoToMimic, _isConstructor, _isSystem);
returnData = _verifyCallResult(success);
}
/// @notice Perform a `call` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _value The `msg.value` to send.
/// @param _data The calldata to use for the call.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return success whether the call was successful.
function rawCall(
uint256 _gas,
address _address,
uint256 _value,
bytes calldata _data,
bool _isSystem
) internal returns (bool success) {
if (_value == 0) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0)
}
} else {
_loadFarCallABIIntoActivePtr(_gas, _data, false, true);
// If there is provided `msg.value` call the `MsgValueSimulator` to forward ether.
address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS;
// We need to supply the mask to the MsgValueSimulator to denote
// that the call should be a system one.
uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0;
assembly {
success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0)
}
}
}
/// @notice Perform a `staticCall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return success whether the call was successful.
function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, false);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Perform a `delegatecall` without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @return success whether the call was successful.
function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, false, false);
address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
assembly {
success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory.
/// @param _gas The gas to use for the call.
/// @param _address The address to call.
/// @param _data The calldata to use for the call.
/// @param _whoToMimic The `msg.sender` for the next call.
/// @param _isConstructor Whether the call should contain the `isConstructor` flag.
/// @param _isSystem Whether the call should contain the `isSystem` flag.
/// @return success whether the call was successful.
/// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
function rawMimicCall(
uint256 _gas,
address _address,
bytes calldata _data,
address _whoToMimic,
bool _isConstructor,
bool _isSystem
) internal returns (bool success) {
_loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem);
address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS;
uint256 cleanupMask = ADDRESS_MASK;
assembly {
// Clearing values before usage in assembly, since Solidity
// doesn't do it by default
_whoToMimic := and(_whoToMimic, cleanupMask)
success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0)
}
}
/// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason.
/// @param _success Whether the call was successful.
/// @return returnData The copied to memory return data.
function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) {
if (_success) {
uint256 size;
assembly {
size := returndatasize()
}
returnData = new bytes(size);
assembly {
returndatacopy(add(returnData, 0x20), 0, size)
}
} else {
propagateRevert();
}
}
/// @dev Propagate the revert reason from the current call to the caller.
function propagateRevert() internal pure {
assembly {
let size := returndatasize()
returndatacopy(0, 0, size)
revert(0, size)
}
}
/// @dev Load the far call ABI into active ptr, that will be used for the next call by reference.
/// @param _gas The gas to be passed to the call.
/// @param _data The calldata to be passed to the call.
/// @param _isConstructor Whether the call is a constructor call.
/// @param _isSystem Whether the call is a system call.
function _loadFarCallABIIntoActivePtr(
uint256 _gas,
bytes calldata _data,
bool _isConstructor,
bool _isSystem
) private view {
SystemContractHelper.loadCalldataIntoActivePtr();
uint256 dataOffset;
assembly {
dataOffset := _data.offset
}
// Safe to cast, offset is never bigger than `type(uint32).max`
SystemContractHelper.ptrAddIntoActive(uint32(dataOffset));
// Safe to cast, `data.length` is never bigger than `type(uint32).max`
uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset));
SystemContractHelper.ptrShrinkIntoActive(shrinkTo);
uint32 gas = Utils.safeCastToU32(_gas);
uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer(
gas,
// Only rollup is supported for now
0,
CalldataForwardingMode.ForwardFatPointer,
_isConstructor,
_isSystem
);
SystemContractHelper.ptrPackIntoActivePtr(farCallAbi);
}
}
// lib/foundry-era-contracts/src/system-contracts/contracts/libraries/MemoryTransactionHelper.sol
/// @dev The type id of zkSync's EIP-712-signed transaction.
uint8 constant EIP_712_TX_TYPE = 0x71;
/// @dev The type id of legacy transactions.
uint8 constant LEGACY_TX_TYPE = 0x0;
/// @dev The type id of legacy transactions.
uint8 constant EIP_2930_TX_TYPE = 0x01;
/// @dev The type id of EIP1559 transactions.
uint8 constant EIP_1559_TX_TYPE = 0x02;
/// @notice Structure used to represent a zkSync transaction.
struct Transaction {
// The type of the transaction.
uint256 txType;
// The caller.
uint256 from;
// The callee.
uint256 to;
// The gasLimit to pass with the transaction.
// It has the same meaning as Ethereum's gasLimit.
uint256 gasLimit;
// The maximum amount of gas the user is willing to pay for a byte of pubdata.
uint256 gasPerPubdataByteLimit;
// The maximum fee per gas that the user is willing to pay.
// It is akin to EIP1559's maxFeePerGas.
uint256 maxFeePerGas;
// The maximum priority fee per gas that the user is willing to pay.
// It is akin to EIP1559's maxPriorityFeePerGas.
uint256 maxPriorityFeePerGas;
// The transaction's paymaster. If there is no paymaster, it is equal to 0.
uint256 paymaster;
// The nonce of the transaction.
uint256 nonce;
// The value to pass with the transaction.
uint256 value;
// In the future, we might want to add some
// new fields to the struct. The `txData` struct
// is to be passed to account and any changes to its structure
// would mean a breaking change to these accounts. In order to prevent this,
// we should keep some fields as "reserved".
// It is also recommended that their length is fixed, since
// it would allow easier proof integration (in case we will need
// some special circuit for preprocessing transactions).
uint256[4] reserved;
// The transaction's calldata.
bytes data;
// The signature of the transaction.
bytes signature;
// The properly formatted hashes of bytecodes that must be published on L1
// with the inclusion of this transaction. Note, that a bytecode has been published
// before, the user won't pay fees for its republishing.
bytes32[] factoryDeps;
// The input to the paymaster.
bytes paymasterInput;
// Reserved dynamic type for the future use-case. Using it should be avoided,
// But it is still here, just in case we want to enable some additional functionality.
bytes reservedDynamic;
}
struct BytesSliceDataTen {
bytes1 slice1;
bytes1 slice2;
bytes1 slice3;
bytes1 slice4;
bytes1 slice5;
bytes1 slice6;
bytes1 slice7;
bytes1 slice8;
bytes1 slice9;
bytes1 slice10;
}
struct BytesSliceDataFour {
bytes1 slice1;
bytes1 slice2;
bytes1 slice3;
bytes1 slice4;
}
library MemoryTransactionHelper {
using SafeERC20 for IERC20;
/// @notice The EIP-712 typehash for the contract's domain
bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)");
bytes32 constant EIP712_TRANSACTION_TYPE_HASH = keccak256(
"Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)"
);
/// @notice Whether the token is Ethereum.
/// @param _addr The address of the token
/// @return `true` or `false` based on whether the token is Ether.
/// @dev This method assumes that address is Ether either if the address is 0 (for convenience)
/// or if the address is the address of the L2EthToken system contract.
function isEthToken(uint256 _addr) internal pure returns (bool) {
return _addr == uint256(uint160(address(ETH_TOKEN_SYSTEM_CONTRACT))) || _addr == 0;
}
/// @notice Calculate the suggested signed hash of the transaction,
/// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts.
function encodeHash(Transaction memory _transaction) internal view returns (bytes32 resultHash) {
if (_transaction.txType == LEGACY_TX_TYPE) {
resultHash = _encodeHashLegacyTransaction(_transaction);
} else if (_transaction.txType == EIP_712_TX_TYPE) {
resultHash = _encodeHashEIP712Transaction(_transaction);
} else if (_transaction.txType == EIP_1559_TX_TYPE) {
resultHash = _encodeHashEIP1559Transaction(_transaction);
} else if (_transaction.txType == EIP_2930_TX_TYPE) {
resultHash = _encodeHashEIP2930Transaction(_transaction);
} else {
// Currently no other transaction types are supported.
// Any new transaction types will be processed in a similar manner.
revert("Encoding unsupported tx");
}
}
/// @notice Encode hash of the zkSync native transaction type.
/// @return keccak256 hash of the EIP-712 encoded representation of transaction
function _encodeHashEIP712Transaction(Transaction memory _transaction) private view returns (bytes32) {
bytes32 structHash = keccak256(
abi.encode(
EIP712_TRANSACTION_TYPE_HASH,
_transaction.txType,
_transaction.from,
_transaction.to,
_transaction.gasLimit,
_transaction.gasPerPubdataByteLimit,
_transaction.maxFeePerGas,
_transaction.maxPriorityFeePerGas,
_transaction.paymaster,
_transaction.nonce,
_transaction.value,
// boo, less efficient cuz not calldata
// EfficientCall.keccak(_transaction.data),
keccak256(_transaction.data),
keccak256(abi.encodePacked(_transaction.factoryDeps)),
// EfficientCall.keccak(_transaction.paymasterInput)
keccak256(_transaction.paymasterInput)
)
);
bytes32 domainSeparator =
keccak256(abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid));
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
/// @notice Encode hash of the legacy transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashLegacyTransaction(Transaction memory _transaction) private view returns (bytes32) {
// Hash of legacy transactions are encoded as one of the:
// - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
// - RLP(nonce, gasPrice, gasLimit, to, value, data)
//
// In this RLP encoding, only the first one above list appears, so we encode each element
// inside list and then concatenate the length of all elements with them.
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
// Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
bytes memory encodedGasParam;
{
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
}
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction.
bytes memory encodedChainId;
if (_transaction.reserved[0] != 0) {
encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"8080");
}
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedNonce.length + encodedGasParam.length + encodedTo.length + encodedValue.length
+ encodedDataLength.length + _transaction.data.length + encodedChainId.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return keccak256(
bytes.concat(
encodedListLength,
encodedNonce,
encodedGasParam,
encodedTo,
encodedValue,
encodedDataLength,
_transaction.data,
encodedChainId
)
);
}
/// @notice Encode hash of the EIP2930 transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashEIP2930Transaction(Transaction memory _transaction) private view returns (bytes32) {
// Hash of EIP2930 transactions is encoded the following way:
// H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list))
//
// Note, that on zkSync access lists are not supported and should always be empty.
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams =
bytes.concat(encodedChainId, encodedNonce, encodedGasPrice, encodedGasLimit, encodedTo, encodedValue);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length
+ encodedAccessListLength.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return keccak256(
bytes.concat(
"\x01",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength
)
);
}
/// @notice Encode hash of the EIP1559 transaction type.
/// @return keccak256 of the serialized RLP encoded representation of transaction
function _encodeHashEIP1559Transaction(Transaction memory _transaction) private view returns (bytes32) {
// Hash of EIP1559 transactions is encoded the following way:
// H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount,
// data, access_list))
//
// Note, that on zkSync access lists are not supported and should always be empty.
// Encode all fixed-length params to avoid "stack too deep error"
bytes memory encodedFixedLengthParams;
{
bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
encodedFixedLengthParams = bytes.concat(
encodedChainId,
encodedNonce,
encodedMaxPriorityFeePerGas,
encodedMaxFeePerGas,
encodedGasLimit,
encodedTo,
encodedValue
);
}
// Encode only the length of the transaction data, and not the data itself,
// so as not to copy to memory a potentially huge transaction data twice.
bytes memory encodedDataLength;
{
// Safe cast, because the length of the transaction data can't be so large.
uint64 txDataLen = uint64(_transaction.data.length);
if (txDataLen != 1) {
// If the length is not equal to one, then only using the length can it be encoded definitely.
encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
} else if (_transaction.data[0] >= 0x80) {
// If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
encodedDataLength = hex"81";
}
// Otherwise the length is not encoded at all.
}
// On zkSync, access lists are always zero length (at least for now).
bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);
bytes memory encodedListLength;
unchecked {
uint256 listLength = encodedFixedLengthParams.length + encodedDataLength.length + _transaction.data.length
+ encodedAccessListLength.length;
// Safe cast, because the length of the list can't be so large.
encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
}
return keccak256(
bytes.concat(
"\x02",
encodedListLength,
encodedFixedLengthParams,
encodedDataLength,
_transaction.data,
encodedAccessListLength
)
);
}
/// @notice Processes the common paymaster flows, e.g. setting proper allowance
/// for tokens, etc. For more information on the expected behavior, check out
/// the "Paymaster flows" section in the documentation.
function processPaymasterInput(Transaction memory _transaction) internal {
require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long");
// bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]);
bytes4 paymasterInputSelector = bytes4(
abi.encodePacked(
_transaction.paymasterInput[0],
_transaction.paymasterInput[1],
_transaction.paymasterInput[2],
_transaction.paymasterInput[3]
)
);
if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) {
require(
_transaction.paymasterInput.length >= 68,
"The approvalBased paymaster input must be at least 68 bytes long"
);
// While the actual data consists of address, uint256 and bytes data,
// the data is needed only for the paymaster, so we ignore it here for the sake of optimization
bytes memory sliceData = abi.encodePacked(_transaction.paymasterInput[4]);
for (uint256 i; i < 63; i++) {
sliceData = abi.encodePacked(sliceData, _transaction.paymasterInput[i + 5]);
}
// // Let's load everything into memory, cuz stack too deep
// BytesSliceDataTen memory memorySliceDataOne = BytesSliceDataTen(
// _transaction.paymasterInput[4],
// _transaction.paymasterInput[5],
// _transaction.paymasterInput[6],
// _transaction.paymasterInput[7],
// _transaction.paymasterInput[8],
// _transaction.paymasterInput[9],
// _transaction.paymasterInput[10],
// _transaction.paymasterInput[11],
// _transaction.paymasterInput[12],
// _transaction.paymasterInput[13]
// );
// BytesSliceDataTen memory memorySliceDataTwo = BytesSliceDataTen(
// _transaction.paymasterInput[14],
// _transaction.paymasterInput[15],
// _transaction.paymasterInput[16],
// _transaction.paymasterInput[17],
// _transaction.paymasterInput[18],
// _transaction.paymasterInput[19],
// _transaction.paymasterInput[20],
// _transaction.paymasterInput[21],
// _transaction.paymasterInput[22],
// _transaction.paymasterInput[23]
// );
// BytesSliceDataTen memory memorySliceDataThree = BytesSliceDataTen(
// _transaction.paymasterInput[24],
// _transaction.paymasterInput[25],
// _transaction.paymasterInput[26],
// _transaction.paymasterInput[27],
// _transaction.paymasterInput[28],
// _transaction.paymasterInput[29],
// _transaction.paymasterInput[30],
// _transaction.paymasterInput[31],
// _transaction.paymasterInput[32],
// _transaction.paymasterInput[33]
// );
// BytesSliceDataTen memory memorySliceDataFour = BytesSliceDataTen(
// _transaction.paymasterInput[34],
// _transaction.paymasterInput[35],
// _transaction.paymasterInput[36],
// _transaction.paymasterInput[37],
// _transaction.paymasterInput[38],
// _transaction.paymasterInput[39],
// _transaction.paymasterInput[40],
// _transaction.paymasterInput[41],
// _transaction.paymasterInput[42],
// _transaction.paymasterInput[43]
// );
// BytesSliceDataTen memory memorySliceDataFive = BytesSliceDataTen(
// _transaction.paymasterInput[44],
// _transaction.paymasterInput[45],
// _transaction.paymasterInput[46],
// _transaction.paymasterInput[47],
// _transaction.paymasterInput[48],
// _transaction.paymasterInput[49],
// _transaction.paymasterInput[50],
// _transaction.paymasterInput[51],
// _transaction.paymasterInput[52],
// _transaction.paymasterInput[53]
// );
// BytesSliceDataTen memory memorySliceDataSix = BytesSliceDataTen(
// _transaction.paymasterInput[54],
// _transaction.paymasterInput[55],
// _transaction.paymasterInput[56],
// _transaction.paymasterInput[57],
// _transaction.paymasterInput[58],
// _transaction.paymasterInput[59],
// _transaction.paymasterInput[60],
// _transaction.paymasterInput[61],
// _transaction.paymasterInput[62],
// _transaction.paymasterInput[63]
// );
// BytesSliceDataFour memory memorySliceDataFourSlots = BytesSliceDataFour(
// _transaction.paymasterInput[64],
// _transaction.paymasterInput[65],
// _transaction.paymasterInput[66],
// _transaction.paymasterInput[67]
// );
// // damn, this isn't supported in solidity yet
// // https://github.com/ethereum/solidity/issues/14996
// // ready for this nonesense I'm about to do?
// bytes memory sliceData = abi.encodePacked(
// memorySliceDataOne.slice1,
// memorySliceDataOne.slice2,
// memorySliceDataOne.slice3,
// memorySliceDataOne.slice4,
// memorySliceDataOne.slice5,
// memorySliceDataOne.slice6,
// memorySliceDataOne.slice7,
// memorySliceDataOne.slice8,
// memorySliceDataOne.slice9,
// memorySliceDataOne.slice10,
// memorySliceDataTwo.slice1,
// memorySliceDataTwo.slice2,
// memorySliceDataTwo.slice3,
// memorySliceDataTwo.slice4,
// memorySliceDataTwo.slice5,
// memorySliceDataTwo.slice6,
// memorySliceDataTwo.slice7,
// memorySliceDataTwo.slice8,
// memorySliceDataTwo.slice9,
// memorySliceDataTwo.slice10,
// memorySliceDataThree.slice1,
// memorySliceDataThree.slice2,
// memorySliceDataThree.slice3,
// memorySliceDataThree.slice4,
// memorySliceDataThree.slice5,
// memorySliceDataThree.slice6,
// memorySliceDataThree.slice7,
// memorySliceDataThree.slice8,
// memorySliceDataThree.slice9,
// memorySliceDataThree.slice10,
// memorySliceDataFour.slice1,
// memorySliceDataFour.slice2,
// memorySliceDataFour.slice3,
// memorySliceDataFour.slice4,
// memorySliceDataFour.slice5,
// memorySliceDataFour.slice6,
// memorySliceDataFour.slice7,
// memorySliceDataFour.slice8,
// memorySliceDataFour.slice9,
// memorySliceDataFour.slice10,
// memorySliceDataFive.slice1,
// memorySliceDataFive.slice2,
// memorySliceDataFive.slice3,
// memorySliceDataFive.slice4,
// memorySliceDataFive.slice5,
// memorySliceDataFive.slice6,
// memorySliceDataFive.slice7,
// memorySliceDataFive.slice8,
// memorySliceDataFive.slice9,
// memorySliceDataFive.slice10,
// memorySliceDataSix.slice1,
// memorySliceDataSix.slice2,
// memorySliceDataSix.slice3,
// memorySliceDataSix.slice4,
// memorySliceDataSix.slice5,
// memorySliceDataSix.slice6,
// memorySliceDataSix.slice7,
// memorySliceDataSix.slice8,
// memorySliceDataSix.slice9,
// memorySliceDataSix.slice10,
// memorySliceDataFourSlots.slice1,
// memorySliceDataFourSlots.slice2,
// memorySliceDataFourSlots.slice3,
// memorySliceDataFourSlots.slice4
// );
(address token, uint256 minAllowance) = abi.decode(sliceData, (address, uint256));
address paymaster = address(uint160(_transaction.paymaster));
uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster);
if (currentAllowance < minAllowance) {
// Some tokens, e.g. USDT require that the allowance is firsty set to zero
// and only then updated to the new value.
IERC20(token).safeIncreaseAllowance(paymaster, minAllowance);
}
} else if (paymasterInputSelector == IPaymasterFlow.general.selector) {
// Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own.
} else {
revert("Unsupported paymaster flow");
}
}
/// @notice Pays the required fee for the transaction to the bootloader.
/// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit",
/// it will change in the future.
function payToTheBootloader(Transaction memory _transaction) internal returns (bool success) {
address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS;
uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit;
assembly {
success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0)
}
}
// Returns the balance required to process the transaction.
function totalRequiredBalance(Transaction memory _transaction) internal pure returns (uint256 requiredBalance) {
if (address(uint160(_transaction.paymaster)) != address(0)) {
// Paymaster pays for the fee
requiredBalance = _transaction.value;
} else {
// The user should have enough balance for both the fee and the value of the transaction
requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value;
}
}
}
// lib/foundry-era-contracts/src/system-contracts/contracts/libraries/SystemContractHelper.sol
uint256 constant UINT32_MASK = 0xffffffff;
uint256 constant UINT128_MASK = 0xffffffffffffffffffffffffffffffff;
/// @dev The mask that is used to convert any uint256 to a proper address.
/// It needs to be padded with `00` to be treated as uint256 by Solidity
uint256 constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff;
struct ZkSyncMeta {
uint32 gasPerPubdataByte;
uint32 heapSize;
uint32 auxHeapSize;
uint8 shardId;
uint8 callerShardId;
uint8 codeShardId;
}
enum Global {
CalldataPtr,
CallFlags,
ExtraABIData1,
ExtraABIData2,
ReturndataPtr
}
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice Library used for accessing zkEVM-specific opcodes, needed for the development
* of system contracts.
* @dev While this library will be eventually available to public, some of the provided
* methods won't work for non-system contracts. We will not recommend this library
* for external use.
*/
library SystemContractHelper {
/// @notice Send an L2Log to L1.
/// @param _isService The `isService` flag.
/// @param _key The `key` part of the L2Log.
/// @param _value The `value` part of the L2Log.
/// @dev The meaning of all these parameters is context-dependent, but they
/// have no intrinsic meaning per se.
function toL1(bool _isService, bytes32 _key, bytes32 _value) internal {
address callAddr = TO_L1_CALL_ADDRESS;
assembly {
// Ensuring that the type is bool
_isService := and(_isService, 1)
// This `success` is always 0, but the method always succeeds
// (except for the cases when there is not enough gas)
let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0)
}
}
/// @notice Get address of the currently executed code.
/// @dev This allows differentiating between `call` and `delegatecall`.
/// During the former `this` and `codeAddress` are the same, while
/// during the latter they are not.
function getCodeAddress() internal view returns (address addr) {
address callAddr = CODE_ADDRESS_CALL_ADDRESS;
assembly {
addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`,
/// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later.
/// @dev This allows making a call by forwarding calldata pointer to the child call.
/// It is a much more efficient way to forward calldata, than standard EVM bytes copying.
function loadCalldataIntoActivePtr() internal view {
address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS;
assembly {
pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi`
/// forming packed fat pointer for a far call or ret ABI when necessary.
/// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes.
function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view {
address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS;
assembly {
pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics.
function ptrAddIntoActive(uint32 _value) internal view {
address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_value := and(_value, cleanupMask)
pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer.
/// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics.
function ptrShrinkIntoActive(uint32 _shrink) internal view {
address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_shrink := and(_shrink, cleanupMask)
pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0))
}
}
/// @notice packs precompile parameters into one word
/// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile.
/// @param _inputMemoryLength The length of the input data in words.
/// @param _outputMemoryOffset The memory offset in 32-byte words for the output data.
/// @param _outputMemoryLength The length of the output data in words.
/// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for
/// each precompile. For information, please read the documentation of the precompilecall log in
/// the VM.
function packPrecompileParams(
uint32 _inputMemoryOffset,
uint32 _inputMemoryLength,
uint32 _outputMemoryOffset,
uint32 _outputMemoryLength,
uint64 _perPrecompileInterpreted
) internal pure returns (uint256 rawParams) {
rawParams = _inputMemoryOffset;
rawParams |= uint256(_inputMemoryLength) << 32;
rawParams |= uint256(_outputMemoryOffset) << 64;
rawParams |= uint256(_outputMemoryLength) << 96;
rawParams |= uint256(_perPrecompileInterpreted) << 192;
}
/// @notice Call precompile with given parameters.
/// @param _rawParams The packed precompile params. They can be retrieved by
/// the `packPrecompileParams` method.
/// @param _gasToBurn The number of gas to burn during this call.
/// @return success Whether the call was successful.
/// @dev The list of currently available precompiles sha256, keccak256, ecrecover.
/// NOTE: The precompile type depends on `this` which calls precompile, which means that only
/// system contracts corresponding to the list of precompiles above can do `precompileCall`.
/// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided.
/// @dev This method is `unsafe` because it does not check whether there is enough gas to burn.
function unsafePrecompileCall(uint256 _rawParams, uint32 _gasToBurn) internal view returns (bool success) {
address callAddr = PRECOMPILE_CALL_ADDRESS;
uint256 cleanupMask = UINT32_MASK;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_gasToBurn := and(_gasToBurn, cleanupMask)
success := staticcall(_rawParams, callAddr, _gasToBurn, 0xFFFF, 0, 0)
}
}
/// @notice Set `msg.value` to next far call.
/// @param _value The msg.value that will be used for the *next* call.
/// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
function setValueForNextFarCall(uint128 _value) internal returns (bool success) {
uint256 cleanupMask = UINT128_MASK;
address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS;
assembly {
// Clearing input params as they are not cleaned by Solidity by default
_value := and(_value, cleanupMask)
success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0)
}
}
/// @notice Initialize a new event.
/// @param initializer The event initializing value.
/// @param value1 The first topic or data chunk.
function eventInitialize(uint256 initializer, uint256 value1) internal {
address callAddr = EVENT_INITIALIZE_ADDRESS;
assembly {
pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0))
}
}
/// @notice Continue writing the previously initialized event.
/// @param value1 The first topic or data chunk.
/// @param value2 The second topic or data chunk.
function eventWrite(uint256 value1, uint256 value2) internal {
address callAddr = EVENT_WRITE_ADDRESS;
assembly {
pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0))
}
}
/// @notice Get the packed representation of the `ZkSyncMeta` from the current context.
/// @return meta The packed representation of the ZkSyncMeta.
/// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how
/// they are packed. For more information, please read the documentation on ZkSyncMeta.
function getZkSyncMetaBytes() internal view returns (uint256 meta) {
address callAddr = META_CALL_ADDRESS;
assembly {
meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the bits [offset..offset+size-1] of the meta.
/// @param meta Packed representation of the ZkSyncMeta.
/// @param offset The offset of the bits.
/// @param size The size of the extracted number in bits.
/// @return result The extracted number.
function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) {
// Firstly, we delete all the bits after the field
uint256 shifted = (meta << (256 - size - offset));
// Then we shift everything back
result = (shifted >> (256 - size));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of gas
/// that a single byte sent to L1 as pubdata costs.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return gasPerPubdataByte The current price in gas per pubdata byte.
function getGasPerPubdataByteFromMeta(uint256 meta) internal pure returns (uint32 gasPerPubdataByte) {
gasPerPubdataByte = uint32(extractNumberFromMeta(meta, META_GAS_PER_PUBDATA_BYTE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
/// of the heap in bytes.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return heapSize The size of the memory in bytes byte.
/// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is
/// equivalent to the MSIZE in Solidity.
function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) {
heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
/// of the auxilary heap in bytes.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return auxHeapSize The size of the auxilary memory in bytes byte.
/// @dev You can read more on auxilary memory in the VM1.2 documentation.
function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) {
auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return shardId The shardId of `this`.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) {
shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
/// the msg.sender.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return callerShardId The shardId of the msg.sender.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) {
callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8));
}
/// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
/// the currently executed code.
/// @param meta Packed representation of the ZkSyncMeta.
/// @return codeShardId The shardId of the currently executed code.
/// @dev Currently only shard 0 (zkRollup) is supported.
function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) {
codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8));
}
/// @notice Retrieves the ZkSyncMeta structure.
/// @return meta The ZkSyncMeta execution context parameters.
function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) {
uint256 metaPacked = getZkSyncMetaBytes();
meta.gasPerPubdataByte = getGasPerPubdataByteFromMeta(metaPacked);
meta.heapSize = getHeapSizeFromMeta(metaPacked);
meta.auxHeapSize = getAuxHeapSizeFromMeta(metaPacked);
meta.shardId = getShardIdFromMeta(metaPacked);
meta.callerShardId = getCallerShardIdFromMeta(metaPacked);
meta.codeShardId = getCodeShardIdFromMeta(metaPacked);
}
/// @notice Returns the call flags for the current call.
/// @return callFlags The bitmask of the callflags.
/// @dev Call flags is the value of the first register
/// at the start of the call.
/// @dev The zero bit of the callFlags indicates whether the call is
/// a constructor call. The first bit of the callFlags indicates whether
/// the call is a system one.
function getCallFlags() internal view returns (uint256 callFlags) {
address callAddr = CALLFLAGS_CALL_ADDRESS;
assembly {
callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the current calldata pointer.
/// @return ptr The current calldata pointer.
/// @dev NOTE: This file is just an integer and it cannot be used
/// to forward the calldata to the next calls in any way.
function getCalldataPtr() internal view returns (uint256 ptr) {
address callAddr = PTR_CALLDATA_CALL_ADDRESS;
assembly {
ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Returns the N-th extraAbiParam for the current call.
/// @return extraAbiData The value of the N-th extraAbiParam for this call.
/// @dev It is equal to the value of the (N+2)-th register
/// at the start of the call.
function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) {
require(index < 10, "There are only 10 accessible registers");
address callAddr = GET_EXTRA_ABI_DATA_ADDRESS;
assembly {
extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0)
}
}
/// @notice Retuns whether the current call is a system call.
/// @return `true` or `false` based on whether the current call is a system call.
function isSystemCall() internal view returns (bool) {
uint256 callFlags = getCallFlags();
// When the system call is passed, the 2-bit it set to 1
return (callFlags & 2) != 0;
}
/// @notice Returns whether the address is a system contract.
/// @param _address The address to test
/// @return `true` or `false` based on whether the `_address` is a system contract.
function isSystemContract(address _address) internal pure returns (bool) {
return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS);
}
/// @notice Method used for burning a certain amount of gas.
/// @param _gasToPay The number of gas to burn.
function burnGas(uint32 _gasToPay) internal view {
bool precompileCallSuccess = unsafePrecompileCall(
0, // The precompile parameters are formal ones. We only need the precompile call to burn gas.
_gasToPay
);
require(precompileCallSuccess, "Failed to charge gas");
}
}
// lib/foundry-era-contracts/src/system-contracts/contracts/libraries/SystemContractsCaller.sol
// Addresses used for the compiler to be replaced with the
// zkSync-specific opcodes during the compilation.
// IMPORTANT: these are just compile-time constants and are used
// only if used in-place by Yul optimizer.
address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1);
address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2);
address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3);
address constant META_CALL_ADDRESS = address((1 << 16) - 4);
address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5);
address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6);
address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7);
address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8);
address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9);
address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10);
address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11);
address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12);
address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13);
address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14);
address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15);
address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16);
address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17);
address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18);
address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19);
address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20);
address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21);
address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22);
address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23);
address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24);
address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25);
address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26);
address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27);
// All the offsets are in bits
uint256 constant META_GAS_PER_PUBDATA_BYTE_OFFSET = 0 * 8;
uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8;
uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8;
uint256 constant META_SHARD_ID_OFFSET = 28 * 8;
uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8;
uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8;
/// @notice The way to forward the calldata:
/// - Use the current heap (i.e. the same as on EVM).
/// - Use the auxiliary heap.
/// - Forward via a pointer
/// @dev Note, that currently, users do not have access to the auxiliary
/// heap and so the only type of forwarding that will be used by the users
/// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata
/// to the next call.
enum CalldataForwardingMode {
UseHeap,
ForwardFatPointer,
UseAuxHeap
}
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @notice A library that allows calling contracts with the `isSystem` flag.
* @dev It is needed to call ContractDeployer and NonceHolder.
*/
library SystemContractsCaller {
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return success Whether the transaction has been successful.
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) {
address callAddr = SYSTEM_CALL_CALL_ADDRESS;
uint32 dataStart;
assembly {
dataStart := add(data, 0x20)
}
uint32 dataLength = uint32(Utils.safeCastToU32(data.length));
uint256 farCallAbi = SystemContractsCaller.getFarCallABI(
0,
0,
dataStart,
dataLength,
gasLimit,
// Only rollup is supported for now
0,
CalldataForwardingMode.UseHeap,
false,
true
);
if (value == 0) {
// Doing the system call directly
assembly {
success := call(to, callAddr, 0, 0, farCallAbi, 0, 0)
}
} else {
address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
// We need to supply the mask to the MsgValueSimulator to denote
// that the call should be a system one.
uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT;
assembly {
success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0)
}
}
}
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return success Whether the transaction has been successful.
/// @return returnData The returndata of the transaction (revert reason in case the transaction has failed).
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCallWithReturndata(
uint32 gasLimit,
address to,
uint128 value,
bytes memory data
) internal returns (bool success, bytes memory returnData) {
success = systemCall(gasLimit, to, value, data);
uint256 size;
assembly {
size := returndatasize()
}
returnData = new bytes(size);
assembly {
returndatacopy(add(returnData, 0x20), 0, size)
}
}
/// @notice Makes a call with the `isSystem` flag.
/// @param gasLimit The gas limit for the call.
/// @param to The address to call.
/// @param value The value to pass with the transaction.
/// @param data The calldata.
/// @return returnData The returndata of the transaction. In case the transaction reverts, the error
/// bubbles up to the parent frame.
/// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
function systemCallWithPropagatedRevert(
uint32 gasLimit,
address to,
uint128 value,
bytes memory data
) internal returns (bytes memory returnData) {
bool success;
(success, returnData) = systemCallWithReturndata(gasLimit, to, value, data);
if (!success) {
assembly {
let size := mload(returnData)
revert(add(returnData, 0x20), size)
}
}
}
/// @notice Calculates the packed representation of the FarCallABI.
/// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer.
/// @param memoryPage Memory page to use. Provide 0 unless using custom pointer.
/// @param dataStart The start of the calldata slice. Provide the offset in memory
/// if not using custom pointer.
/// @param dataLength The calldata length. Provide the length of the calldata in bytes
/// unless using custom pointer.
/// @param gasPassed The gas to pass with the call.
/// @param shardId Of the account to call. Currently only 0 is supported.
/// @param forwardingMode The forwarding mode to use:
/// - provide CalldataForwardingMode.UseHeap when using your current memory
/// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
/// @param isConstructorCall Whether the call will be a call to the constructor
/// (ignored when the caller is not a system contract).
/// @param isSystemCall Whether the call will have the `isSystem` flag.
/// @return farCallAbi The far call ABI.
/// @dev The `FarCallABI` has the following structure:
/// pub struct FarCallABI {
/// pub memory_quasi_fat_pointer: FatPointer,
/// pub gas_passed: u32,
/// pub shard_id: u8,
/// pub forwarding_mode: FarCallForwardPageType,
/// pub constructor_call: bool,
/// pub to_system: bool,
/// }
///
/// The FatPointer struct:
///
/// pub struct FatPointer {
/// pub offset: u32, // offset relative to `start`
/// pub memory_page: u32, // memory page where slice is located
/// pub start: u32, // absolute start of the slice
/// pub length: u32, // length of the slice
/// }
///
/// @dev Note, that the actual layout is the following:
///
/// [0..32) bits -- the calldata offset
/// [32..64) bits -- the memory page to use. Can be left blank in most of the cases.
/// [64..96) bits -- the absolute start of the slice
/// [96..128) bits -- the length of the slice.
/// [128..192) bits -- empty bits.
/// [192..224) bits -- gasPassed.
/// [224..232) bits -- forwarding_mode
/// [232..240) bits -- shard id.
/// [240..248) bits -- constructor call flag
/// [248..256] bits -- system call flag
function getFarCallABI(
uint32 dataOffset,
uint32 memoryPage,
uint32 dataStart,
uint32 dataLength,
uint32 gasPassed,
uint8 shardId,
CalldataForwardingMode forwardingMode,
bool isConstructorCall,
bool isSystemCall
) internal pure returns (uint256 farCallAbi) {
// Fill in the call parameter fields
farCallAbi = getFarCallABIWithEmptyFatPointer(
gasPassed,
shardId,
forwardingMode,
isConstructorCall,
isSystemCall
);
// Fill in the fat pointer fields
farCallAbi |= dataOffset;
farCallAbi |= (uint256(memoryPage) << 32);
farCallAbi |= (uint256(dataStart) << 64);
farCallAbi |= (uint256(dataLength) << 96);
}
/// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields.
/// @param gasPassed The gas to pass with the call.
/// @param shardId Of the account to call. Currently only 0 is supported.
/// @param forwardingMode The forwarding mode to use:
/// - provide CalldataForwardingMode.UseHeap when using your current memory
/// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
/// @param isConstructorCall Whether the call will be a call to the constructor
/// (ignored when the caller is not a system contract).
/// @param isSystemCall Whether the call will have the `isSystem` flag.
/// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields.
function getFarCallABIWithEmptyFatPointer(
uint32 gasPassed,
uint8 shardId,
CalldataForwardingMode forwardingMode,
bool isConstructorCall,
bool isSystemCall
) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) {
farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192);
farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224);
farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232);
if (isConstructorCall) {
farCallAbiWithEmptyFatPtr |= (1 << 240);
}
if (isSystemCall) {
farCallAbiWithEmptyFatPtr |= (1 << 248);
}
}
}
// lib/foundry-era-contracts/src/system-contracts/contracts/libraries/Utils.sol
/**
* @author Matter Labs
* @custom:security-contact security@matterlabs.dev
* @dev Common utilities used in zkSync system contracts
*/
library Utils {
/// @dev Bit mask of bytecode hash "isConstructor" marker
bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK =
0x00ff000000000000000000000000000000000000000000000000000000000000;
/// @dev Bit mask to set the "isConstructor" marker in the bytecode hash
bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK =
0x0001000000000000000000000000000000000000000000000000000000000000;
function safeCastToU128(uint256 _x) internal pure returns (uint128) {
require(_x <= type(uint128).max, "Overflow");
return uint128(_x);
}
function safeCastToU32(uint256 _x) internal pure returns (uint32) {
require(_x <= type(uint32).max, "Overflow");
return uint32(_x);
}
function safeCastToU24(uint256 _x) internal pure returns (uint24) {
require(_x <= type(uint24).max, "Overflow");
return uint24(_x);
}
/// @return codeLength The bytecode length in bytes
function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) {
codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32
}
/// @return codeLengthInWords The bytecode length in machine words
function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) {
unchecked {
codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3]));
}
}
/// @notice Denotes whether bytecode hash corresponds to a contract that already constructed
function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) {
return _bytecodeHash[1] == 0x00;
}
/// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed
function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) {
return _bytecodeHash[1] == 0x01;
}
/// @notice Sets "isConstructor" flag to TRUE for the bytecode hash
/// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
/// @return The bytecode hash with "isConstructor" flag set to TRUE
function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
// Clear the "isConstructor" marker and set it to 0x01.
return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK;
}
/// @notice Sets "isConstructor" flag to FALSE for the bytecode hash
/// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
/// @return The bytecode hash with "isConstructor" flag set to FALSE
function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK;
}
/// @notice Validate the bytecode format and calculate its hash.
/// @param _bytecode The bytecode to hash.
/// @return hashedBytecode The 32-byte hash of the bytecode.
/// Note: The function reverts the execution if the bytecode has non expected format:
/// - Bytecode bytes length is not a multiple of 32
/// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
/// - Bytecode words length is not odd
function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) {
// Note that the length of the bytecode must be provided in 32-byte words.
require(_bytecode.length % 32 == 0, "po");
uint256 lengthInWords = _bytecode.length / 32;
require(lengthInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words
require(lengthInWords % 2 == 1, "pr"); // bytecode length in words must be odd
hashedBytecode =
EfficientCall.sha(_bytecode) &
0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
// Setting the version of the hash
hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
// Setting the length
hashedBytecode = hashedBytecode | bytes32(lengthInWords << 224);
}
}
// lib/foundry-era-contracts/src/system-contracts/contracts/interfaces/IAccount.sol
bytes4 constant ACCOUNT_VALIDATION_SUCCESS_MAGIC = IAccount.validateTransaction.selector;
interface IAccount {
/// @notice Called by the bootloader to validate that an account agrees to process the transaction
/// (and potentially pay for it).
/// @param _txHash The hash of the transaction to be used in the explorer
/// @param _suggestedSignedHash The hash of the transaction is signed by EOAs
/// @param _transaction The transaction itself
/// @return magic The magic value that should be equal to the signature of this function
/// if the user agrees to proceed with the transaction.
/// @dev The developer should strive to preserve as many steps as possible both for valid
/// and invalid transactions as this very method is also used during the gas fee estimation
/// (without some of the necessary data, e.g. signature).
function validateTransaction(bytes32 _txHash, bytes32 _suggestedSignedHash, Transaction calldata _transaction)
external
payable
returns (bytes4 magic);
function executeTransaction(bytes32 _txHash, bytes32 _suggestedSignedHash, Transaction calldata _transaction)
external
payable;
// There is no point in providing possible signed hash in the `executeTransactionFromOutside` method,
// since it typically should not be trusted.
function executeTransactionFromOutside(Transaction calldata _transaction) external payable;
function payForTransaction(bytes32 _txHash, bytes32 _suggestedSignedHash, Transaction calldata _transaction)
external
payable;
function prepareForPaymaster(bytes32 _txHash, bytes32 _possibleSignedHash, Transaction calldata _transaction)
external
payable;
}
// src/zkSync/ZkMinimalAccount.sol
// zkSync imports
// OZ Imports
/**
* @title ZkMinimalAccount
* @author Patrick Collins
* @notice This code is for demo purposes only
* @dev The lifecycle of a type 113 (account abstraction aka 0x71) transaction is as follows:
*
* Phase 1: Validation
* 1. The user sends the transaction to the "zkSync API client" (sort of a "light node")
* Note: For phase 1 and phase 2, the msg.sender is the bootloader
* 2. The zkSync API client checks to see the the nonce is unique by querying the NonceHolder system contract
* 3. The zkSync API client calls validateTransaction, which MUST update the nonce
* 4. The zkSync API client checks the nonce is updated
* 5. The zkSync API client calls payForTransaction, or prepareForPaymaster & validateAndPayForPaymasterTransaction
* to see if the account can pay
* 6. The zkSync API client verifies that the bootloader gets paid
*
* Phase 2: Execution
* 7. The zkSync API client passes the validated transaction to the main node / sequencer (as of today, they are the
* same node)
* 8. The main node calls executeTransaction
* 9. If a paymaster was used, the postTransaction is called
*/
contract ZkMinimalAccount is Ownable, IAccount {
// Ideally we use the calldata edition in a future version
using MemoryTransactionHelper for Transaction;
/*//////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////*/
error ZkMinimalAccount__OnlyBootloader();
error ZkMinimalAccount__FailedToPay();
error ZkMinimalAccount__NotEnoughMoneyInMinimalAccount();
error ZkMinimalAccount__InvalidSignature();
error ZkMinimalAccount__ExecutionFailed();
error ZkMinimalAccount__NotFromBootloaderOrOwner();
error ZkMinimalAccount__NotFromBootloader();
/*//////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////*/
modifier onlyBootloader() {
if (msg.sender != BOOTLOADER_FORMAL_ADDRESS) {
revert ZkMinimalAccount__OnlyBootloader();
}
_;
}
modifier requireFromBootloaderOrOwner() {
if (msg.sender != BOOTLOADER_FORMAL_ADDRESS && msg.sender != owner()) {
revert ZkMinimalAccount__NotFromBootloaderOrOwner();
}
_;
}
/*//////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////*/
constructor() Ownable(msg.sender) { }
function validateTransaction(
bytes32, /*txHash*/
bytes32, /*suggestedSignedHash*/
Transaction memory transaction
)
external
payable
onlyBootloader
returns (bytes4 magic)
{
magic = _validateTransaction(bytes32(0), transaction);
return ACCOUNT_VALIDATION_SUCCESS_MAGIC; // return bytes(0) and Dustin thinks this will revert
}
function executeTransaction(
bytes32, /*txHash*/
// This is the hash that is signed by the EoA by default?
bytes32, /*suggestedSignedHash*/
Transaction calldata transaction
)
external
payable
requireFromBootloaderOrOwner
{
_executeTransaction(transaction);
}
// There is no point in providing possible signed hash in the `executeTransactionFromOutside` method,
// since it typically should not be trusted.
function executeTransactionFromOutside(Transaction calldata transaction) external payable {
_validateTransaction(bytes32(0), transaction);
_executeTransaction(transaction);
}
function payForTransaction(
bytes32, /*_txHash*/
bytes32, /*_suggestedSignedHash*/
Transaction calldata _transaction
)
external
payable
onlyBootloader
{
bool success = _transaction.payToTheBootloader();
if (!success) {
revert ZkMinimalAccount__FailedToPay();
}
}
function prepareForPaymaster(
bytes32, /*_txHash*/
bytes32, /*_possibleSignedHash*/
Transaction calldata _transaction
)
external
payable
{
_transaction.processPaymasterInput();
}
/*//////////////////////////////////////////////////////////////
FUNCTIONS - INTERNAL
//////////////////////////////////////////////////////////////*/
/**
* @param - in the future, they may not support sending the signed hash. This is a parameter for convience
* only.
* @param transaction - the transaction to validate
*/
function _validateTransaction(
bytes32, /*suggestedSignedHash*/
Transaction memory transaction
)
internal
returns (bytes4 magic)
{
// Increment nonce, ignore return data
_incrementNonce(transaction.nonce);
// Check for fee to pay
uint256 totalRequiredBalance = transaction.totalRequiredBalance();
if (totalRequiredBalance > address(this).balance) {
revert ZkMinimalAccount__NotEnoughMoneyInMinimalAccount();
}
// Check signature
bytes32 txHash = transaction.encodeHash(); // This removes the signature from the struct, then hashes it
bool validSignature = _isValidSignature(transaction.signature, txHash);
if (validSignature) {
magic = ACCOUNT_VALIDATION_SUCCESS_MAGIC;
} else {
magic = bytes4(0);
}
return magic;
}
function _executeTransaction(Transaction calldata transaction) internal {
address to = address(uint160(transaction.to));
uint128 value = Utils.safeCastToU128(transaction.value);
bytes memory data = transaction.data;
if (to == address(DEPLOYER_SYSTEM_CONTRACT)) {
uint32 gas = Utils.safeCastToU32(gasleft());
SystemContractsCaller.systemCallWithPropagatedRevert(gas, to, value, data);
} else {
bool success;
assembly {
success := call(gas(), to, value, add(data, 0x20), mload(data), 0, 0)
}
if (!success) {
revert ZkMinimalAccount__ExecutionFailed();
}
}
}
function _incrementNonce(uint256 nonce) internal returns (bytes memory) {
return SystemContractsCaller.systemCallWithPropagatedRevert(
uint32(gasleft()),
address(NONCE_HOLDER_SYSTEM_CONTRACT),
0,
abi.encodeCall(INonceHolder.incrementMinNonceIfEquals, (nonce))
);
}
fallback() external {
// fallback of default account shouldn't be called by bootloader under no circumstances
if (msg.sender == BOOTLOADER_FORMAL_ADDRESS) {
revert ZkMinimalAccount__NotFromBootloader();
}
}
receive() external payable {
// If the contract is called directly, behave like an EOA.
// Note, that is okay if the bootloader sends funds with no calldata as it may be used for refunds/operator
// payments
}
/*//////////////////////////////////////////////////////////////
VIEW AND PURE
//////////////////////////////////////////////////////////////*/
function _isValidSignature(bytes memory signature, bytes32 transactionHash) internal view returns (bool) {
bytes32 hash = MessageHashUtils.toEthSignedMessageHash(transactionHash);
if (owner() != ECDSA.recover(hash, signature)) {
return false;
}
return true;
}
} Constructor ArgumentsN/A (no constructor args) Hardhat Verify Plugin VersionNo response Repo Link (Optional)No response Additional DetailsI think this would be fixable if we added either My deploy script: forge create ./ZkMinimalFlat.sol:ZkMinimalAccount --rpc-url $ZKSYNC_SEPOLIA_RPC_URL --account default --legacy --zksync Here is my [profile.default]
src = "src"
out = "out"
libs = ["lib"]
solc = "0.8.24"
remappings = [
'@openzeppelin/contracts=lib/openzeppelin-contracts/contracts',
'@matterlabs/zksync-contracts/=lib/zksync-contracts/zksync-contracts/',
]
fs_permissions = [
{ access = "read", path = "./broadcast" },
{ access = "read", path = "./reports" },
]
via-ir = true
is-system = true
[profile.zksync]
src = 'src'
libs = ['lib']
fallback_oz = true
mode = "3"
[fmt]
bracket_spacing = true
int_types = "long"
line_length = 120
multiline_func_header = "all"
number_underscore = "thousands"
quote_style = "double"
tab_width = 4
wrap_comments = true |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment
-
hey @PatrickAlphaC Currently the explorer does not have an option to pass the |
Beta Was this translation helpful? Give feedback.
hey @PatrickAlphaC
Currently the explorer does not have an option to pass the
isSystem
flag to the verification backend, which is most likely the reason you're not able to verify the contract. We're adding a checkbox for this in the explorer soon.