|
| 1 | +# |
| 2 | +# Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | +# contributor license agreements. See the NOTICE file distributed with |
| 4 | +# this work for additional information regarding copyright ownership. |
| 5 | +# The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | +# (the "License"); you may not use this file except in compliance with |
| 7 | +# the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +# |
| 17 | + |
| 18 | +import sys |
| 19 | +import os |
| 20 | + |
| 21 | +# Required to run the script easily on PySpark's root directory on the Spark repo. |
| 22 | +sys.path.append(os.getcwd()) |
| 23 | + |
| 24 | +import uuid |
| 25 | +import time |
| 26 | +import random |
| 27 | +from typing import List |
| 28 | + |
| 29 | +from pyspark.sql.types import ( |
| 30 | + StringType, |
| 31 | + StructType, |
| 32 | + StructField, |
| 33 | +) |
| 34 | +from pyspark.sql.streaming.stateful_processor_api_client import ( |
| 35 | + ListTimerIterator, |
| 36 | + StatefulProcessorApiClient, |
| 37 | +) |
| 38 | + |
| 39 | +from pyspark.sql.streaming.benchmark.utils import print_percentiles |
| 40 | +from pyspark.sql.streaming.benchmark.tws_utils import get_list_state, get_map_state, get_value_state |
| 41 | + |
| 42 | + |
| 43 | +def benchmark_value_state(api_client: StatefulProcessorApiClient, params: List[str]) -> None: |
| 44 | + data_size = int(params[0]) |
| 45 | + |
| 46 | + value_state = get_value_state( |
| 47 | + api_client, "example_value_state", StructType([StructField("value", StringType(), True)]) |
| 48 | + ) |
| 49 | + |
| 50 | + measured_times_implicit_key = [] |
| 51 | + measured_times_get = [] |
| 52 | + measured_times_update = [] |
| 53 | + |
| 54 | + uuid_long = [] |
| 55 | + for i in range(int(data_size / 32) + 1): |
| 56 | + uuid_long.append(str(uuid.uuid4())) |
| 57 | + |
| 58 | + # TODO: Use streaming quantiles in Apache DataSketch if we want to run this longer |
| 59 | + for i in range(1000000): |
| 60 | + # Generate a random value |
| 61 | + random.shuffle(uuid_long) |
| 62 | + value = ("".join(uuid_long))[0:data_size] |
| 63 | + |
| 64 | + start_time_implicit_key_ns = time.perf_counter_ns() |
| 65 | + api_client.set_implicit_key(("example_grouping_key",)) |
| 66 | + end_time_implicit_key_ns = time.perf_counter_ns() |
| 67 | + |
| 68 | + measured_times_implicit_key.append( |
| 69 | + (end_time_implicit_key_ns - start_time_implicit_key_ns) / 1000 |
| 70 | + ) |
| 71 | + |
| 72 | + # Measure the time taken for the get operation |
| 73 | + start_time_get_ns = time.perf_counter_ns() |
| 74 | + value_state.get() |
| 75 | + end_time_get_ns = time.perf_counter_ns() |
| 76 | + |
| 77 | + measured_times_get.append((end_time_get_ns - start_time_get_ns) / 1000) |
| 78 | + |
| 79 | + start_time_update_ns = time.perf_counter_ns() |
| 80 | + value_state.update((value,)) |
| 81 | + end_time_update_ns = time.perf_counter_ns() |
| 82 | + |
| 83 | + measured_times_update.append((end_time_update_ns - start_time_update_ns) / 1000) |
| 84 | + |
| 85 | + print(" ==================== SET IMPLICIT KEY latency (micros) ======================") |
| 86 | + print_percentiles(measured_times_implicit_key, [50, 95, 99, 99.9, 100]) |
| 87 | + |
| 88 | + print(" ==================== GET latency (micros) ======================") |
| 89 | + print_percentiles(measured_times_get, [50, 95, 99, 99.9, 100]) |
| 90 | + |
| 91 | + print(" ==================== UPDATE latency (micros) ======================") |
| 92 | + print_percentiles(measured_times_update, [50, 95, 99, 99.9, 100]) |
| 93 | + |
| 94 | + |
| 95 | +def benchmark_list_state(api_client: StatefulProcessorApiClient, params: List[str]) -> None: |
| 96 | + data_size = int(params[0]) |
| 97 | + list_length = int(params[1]) |
| 98 | + |
| 99 | + # get and rewrite the list - the actual behavior depends on the server side implementation |
| 100 | + list_state = get_list_state( |
| 101 | + api_client, "example_list_state", StructType([StructField("value", StringType(), True)]) |
| 102 | + ) |
| 103 | + |
| 104 | + measured_times_implicit_key = [] |
| 105 | + measured_times_get = [] |
| 106 | + measured_times_put = [] |
| 107 | + measured_times_clear = [] |
| 108 | + measured_times_append_value = [] |
| 109 | + |
| 110 | + uuid_long = [] |
| 111 | + for i in range(int(data_size / 32) + 1): |
| 112 | + uuid_long.append(str(uuid.uuid4())) |
| 113 | + |
| 114 | + # TODO: Use streaming quantiles in Apache DataSketch if we want to run this longer |
| 115 | + for i in range(1000000): |
| 116 | + # Generate a random value |
| 117 | + random.shuffle(uuid_long) |
| 118 | + value = ("".join(uuid_long))[0:data_size] |
| 119 | + |
| 120 | + start_time_implicit_key_ns = time.perf_counter_ns() |
| 121 | + api_client.set_implicit_key(("example_grouping_key",)) |
| 122 | + end_time_implicit_key_ns = time.perf_counter_ns() |
| 123 | + |
| 124 | + measured_times_implicit_key.append( |
| 125 | + (end_time_implicit_key_ns - start_time_implicit_key_ns) / 1000 |
| 126 | + ) |
| 127 | + |
| 128 | + # Measure the time taken for the get operation |
| 129 | + start_time_get_ns = time.perf_counter_ns() |
| 130 | + old_list_elements = list(list_state.get()) |
| 131 | + end_time_get_ns = time.perf_counter_ns() |
| 132 | + |
| 133 | + measured_times_get.append((end_time_get_ns - start_time_get_ns) / 1000) |
| 134 | + |
| 135 | + if len(old_list_elements) > list_length: |
| 136 | + start_time_clear_ns = time.perf_counter_ns() |
| 137 | + list_state.clear() |
| 138 | + end_time_clear_ns = time.perf_counter_ns() |
| 139 | + measured_times_clear.append((end_time_clear_ns - start_time_clear_ns) / 1000) |
| 140 | + elif len(old_list_elements) % 2 == 0: |
| 141 | + start_time_put_ns = time.perf_counter_ns() |
| 142 | + old_list_elements.append((value,)) |
| 143 | + list_state.put(old_list_elements) |
| 144 | + end_time_put_ns = time.perf_counter_ns() |
| 145 | + measured_times_put.append((end_time_put_ns - start_time_put_ns) / 1000) |
| 146 | + else: |
| 147 | + start_time_append_value_ns = time.perf_counter_ns() |
| 148 | + list_state.appendValue((value,)) |
| 149 | + end_time_append_value_ns = time.perf_counter_ns() |
| 150 | + measured_times_append_value.append( |
| 151 | + (end_time_append_value_ns - start_time_append_value_ns) / 1000 |
| 152 | + ) |
| 153 | + |
| 154 | + print(" ==================== SET IMPLICIT KEY latency (micros) ======================") |
| 155 | + print_percentiles(measured_times_implicit_key, [50, 95, 99, 99.9, 100]) |
| 156 | + |
| 157 | + print(" ==================== GET latency (micros) ======================") |
| 158 | + print_percentiles(measured_times_get, [50, 95, 99, 99.9, 100]) |
| 159 | + |
| 160 | + print(" ==================== PUT latency (micros) ======================") |
| 161 | + print_percentiles(measured_times_put, [50, 95, 99, 99.9, 100]) |
| 162 | + |
| 163 | + print(" ==================== CLEAR latency (micros) ======================") |
| 164 | + print_percentiles(measured_times_clear, [50, 95, 99, 99.9, 100]) |
| 165 | + |
| 166 | + print(" ==================== APPEND VALUE latency (micros) ======================") |
| 167 | + print_percentiles(measured_times_append_value, [50, 95, 99, 99.9, 100]) |
| 168 | + |
| 169 | + |
| 170 | +def benchmark_map_state(api_client: StatefulProcessorApiClient, params: List[str]) -> None: |
| 171 | + data_size = int(params[0]) |
| 172 | + map_length = int(params[1]) |
| 173 | + |
| 174 | + map_state = get_map_state( |
| 175 | + api_client, |
| 176 | + "example_map_state", |
| 177 | + StructType( |
| 178 | + [ |
| 179 | + StructField("key", StringType(), True), |
| 180 | + ] |
| 181 | + ), |
| 182 | + StructType([StructField("value", StringType(), True)]), |
| 183 | + ) |
| 184 | + |
| 185 | + measured_times_implicit_key = [] |
| 186 | + measured_times_keys = [] |
| 187 | + measured_times_iterator = [] |
| 188 | + measured_times_clear = [] |
| 189 | + measured_times_contains_key = [] |
| 190 | + measured_times_update_value = [] |
| 191 | + measured_times_remove_key = [] |
| 192 | + |
| 193 | + uuid_long = [] |
| 194 | + for i in range(int(data_size / 32) + 1): |
| 195 | + uuid_long.append(str(uuid.uuid4())) |
| 196 | + |
| 197 | + # TODO: Use streaming quantiles in Apache DataSketch if we want to run this longer |
| 198 | + run_clear = False |
| 199 | + for i in range(1000000): |
| 200 | + # Generate a random value |
| 201 | + random.shuffle(uuid_long) |
| 202 | + value = ("".join(uuid_long))[0:data_size] |
| 203 | + |
| 204 | + start_time_implicit_key_ns = time.perf_counter_ns() |
| 205 | + api_client.set_implicit_key(("example_grouping_key",)) |
| 206 | + end_time_implicit_key_ns = time.perf_counter_ns() |
| 207 | + |
| 208 | + measured_times_implicit_key.append( |
| 209 | + (end_time_implicit_key_ns - start_time_implicit_key_ns) / 1000 |
| 210 | + ) |
| 211 | + |
| 212 | + if i % 2 == 0: |
| 213 | + start_time_keys_ns = time.perf_counter_ns() |
| 214 | + keys = list(map_state.keys()) |
| 215 | + end_time_keys_ns = time.perf_counter_ns() |
| 216 | + measured_times_keys.append((end_time_keys_ns - start_time_keys_ns) / 1000) |
| 217 | + else: |
| 218 | + start_time_iterator_ns = time.perf_counter_ns() |
| 219 | + kv_pairs = list(map_state.iterator()) |
| 220 | + end_time_iterator_ns = time.perf_counter_ns() |
| 221 | + measured_times_iterator.append((end_time_iterator_ns - start_time_iterator_ns) / 1000) |
| 222 | + keys = [kv[0] for kv in kv_pairs] |
| 223 | + |
| 224 | + if len(keys) > map_length and run_clear: |
| 225 | + start_time_clear_ns = time.perf_counter_ns() |
| 226 | + map_state.clear() |
| 227 | + end_time_clear_ns = time.perf_counter_ns() |
| 228 | + measured_times_clear.append((end_time_clear_ns - start_time_clear_ns) / 1000) |
| 229 | + |
| 230 | + run_clear = False |
| 231 | + elif len(keys) > map_length: |
| 232 | + for key in keys: |
| 233 | + start_time_contains_key_ns = time.perf_counter_ns() |
| 234 | + map_state.containsKey(key) |
| 235 | + end_time_contains_key_ns = time.perf_counter_ns() |
| 236 | + measured_times_contains_key.append( |
| 237 | + (end_time_contains_key_ns - start_time_contains_key_ns) / 1000 |
| 238 | + ) |
| 239 | + |
| 240 | + start_time_remove_key_ns = time.perf_counter_ns() |
| 241 | + map_state.removeKey(key) |
| 242 | + end_time_remove_key_ns = time.perf_counter_ns() |
| 243 | + measured_times_remove_key.append( |
| 244 | + (end_time_remove_key_ns - start_time_remove_key_ns) / 1000 |
| 245 | + ) |
| 246 | + |
| 247 | + run_clear = True |
| 248 | + else: |
| 249 | + start_time_update_value_ns = time.perf_counter_ns() |
| 250 | + map_state.updateValue((str(uuid.uuid4()),), (value,)) |
| 251 | + end_time_update_value_ns = time.perf_counter_ns() |
| 252 | + measured_times_update_value.append( |
| 253 | + (end_time_update_value_ns - start_time_update_value_ns) / 1000 |
| 254 | + ) |
| 255 | + |
| 256 | + print(" ==================== SET IMPLICIT KEY latency (micros) ======================") |
| 257 | + print_percentiles(measured_times_implicit_key, [50, 95, 99, 99.9, 100]) |
| 258 | + |
| 259 | + print(" ==================== KEYS latency (micros) ======================") |
| 260 | + print_percentiles(measured_times_keys, [50, 95, 99, 99.9, 100]) |
| 261 | + |
| 262 | + print(" ==================== ITERATOR latency (micros) ======================") |
| 263 | + print_percentiles(measured_times_iterator, [50, 95, 99, 99.9, 100]) |
| 264 | + |
| 265 | + print(" ==================== CLEAR latency (micros) ======================") |
| 266 | + print_percentiles(measured_times_clear, [50, 95, 99, 99.9, 100]) |
| 267 | + |
| 268 | + print(" ==================== CONTAINS KEY latency (micros) ======================") |
| 269 | + print_percentiles(measured_times_contains_key, [50, 95, 99, 99.9, 100]) |
| 270 | + |
| 271 | + print(" ==================== UPDATE VALUE latency (micros) ======================") |
| 272 | + print_percentiles(measured_times_update_value, [50, 95, 99, 99.9, 100]) |
| 273 | + |
| 274 | + print(" ==================== REMOVE KEY latency (micros) ======================") |
| 275 | + print_percentiles(measured_times_remove_key, [50, 95, 99, 99.9, 100]) |
| 276 | + |
| 277 | + |
| 278 | +def benchmark_timer(api_client: StatefulProcessorApiClient, params: List[str]) -> None: |
| 279 | + num_timers = int(params[0]) |
| 280 | + |
| 281 | + measured_times_implicit_key = [] |
| 282 | + measured_times_register = [] |
| 283 | + measured_times_delete = [] |
| 284 | + measured_times_list = [] |
| 285 | + |
| 286 | + # TODO: Use streaming quantiles in Apache DataSketch if we want to run this longer |
| 287 | + for i in range(1000000): |
| 288 | + expiry_ts_ms = random.randint(0, 10000000) |
| 289 | + |
| 290 | + start_time_implicit_key_ns = time.perf_counter_ns() |
| 291 | + api_client.set_implicit_key(("example_grouping_key",)) |
| 292 | + end_time_implicit_key_ns = time.perf_counter_ns() |
| 293 | + |
| 294 | + measured_times_implicit_key.append( |
| 295 | + (end_time_implicit_key_ns - start_time_implicit_key_ns) / 1000 |
| 296 | + ) |
| 297 | + |
| 298 | + start_time_list_ns = time.perf_counter_ns() |
| 299 | + timer_iter = ListTimerIterator(api_client) |
| 300 | + timers = list(timer_iter) |
| 301 | + end_time_list_ns = time.perf_counter_ns() |
| 302 | + measured_times_list.append((end_time_list_ns - start_time_list_ns) / 1000) |
| 303 | + |
| 304 | + if len(timers) > num_timers: |
| 305 | + start_time_delete_ns = time.perf_counter_ns() |
| 306 | + api_client.delete_timer(timers[0]) |
| 307 | + end_time_delete_ns = time.perf_counter_ns() |
| 308 | + |
| 309 | + measured_times_delete.append((end_time_delete_ns - start_time_delete_ns) / 1000) |
| 310 | + |
| 311 | + start_time_register_ns = time.perf_counter_ns() |
| 312 | + api_client.register_timer(expiry_ts_ms) |
| 313 | + end_time_register_ns = time.perf_counter_ns() |
| 314 | + measured_times_register.append((end_time_register_ns - start_time_register_ns) / 1000) |
| 315 | + |
| 316 | + print(" ==================== SET IMPLICIT KEY latency (micros) ======================") |
| 317 | + print_percentiles(measured_times_implicit_key, [50, 95, 99, 99.9, 100]) |
| 318 | + |
| 319 | + print(" ==================== REGISTER latency (micros) ======================") |
| 320 | + print_percentiles(measured_times_register, [50, 95, 99, 99.9, 100]) |
| 321 | + |
| 322 | + print(" ==================== DELETE latency (micros) ======================") |
| 323 | + print_percentiles(measured_times_delete, [50, 95, 99, 99.9, 100]) |
| 324 | + |
| 325 | + print(" ==================== LIST latency (micros) ======================") |
| 326 | + print_percentiles(measured_times_list, [50, 95, 99, 99.9, 100]) |
| 327 | + |
| 328 | + |
| 329 | +def main(state_server_port: str, benchmark_type: str) -> None: |
| 330 | + key_schema = StructType( |
| 331 | + [ |
| 332 | + StructField("key", StringType(), True), |
| 333 | + ] |
| 334 | + ) |
| 335 | + |
| 336 | + try: |
| 337 | + state_server_id = int(state_server_port) |
| 338 | + except ValueError: |
| 339 | + state_server_id = state_server_port # type: ignore[assignment] |
| 340 | + |
| 341 | + api_client = StatefulProcessorApiClient( |
| 342 | + state_server_port=state_server_id, |
| 343 | + key_schema=key_schema, |
| 344 | + ) |
| 345 | + |
| 346 | + benchmarks = { |
| 347 | + "value": benchmark_value_state, |
| 348 | + "list": benchmark_list_state, |
| 349 | + "map": benchmark_map_state, |
| 350 | + "timer": benchmark_timer, |
| 351 | + } |
| 352 | + |
| 353 | + benchmarks[benchmark_type](api_client, sys.argv[3:]) |
| 354 | + |
| 355 | + |
| 356 | +if __name__ == "__main__": |
| 357 | + """ |
| 358 | + Instructions to run the benchmark: |
| 359 | + (assuming you installed required dependencies for PySpark) |
| 360 | +
|
| 361 | + 1. `cd python` |
| 362 | + 2. `python3 pyspark/sql/streaming/benchmark/benchmark_tws_state_server.py |
| 363 | + <port/uds file of state server> <state type> <params if required>` |
| 364 | +
|
| 365 | + Currently, state type can be one of the following: |
| 366 | + - value |
| 367 | + - list |
| 368 | + - map |
| 369 | + - timer |
| 370 | +
|
| 371 | + Please take a look at the benchmark functions to see the parameters required for each state |
| 372 | + type. |
| 373 | + """ |
| 374 | + print("Starting the benchmark code... state server port: " + sys.argv[1]) |
| 375 | + main(sys.argv[1], sys.argv[2]) |
0 commit comments