|
| 1 | +#include "kmeans_clusters.h" |
| 2 | + |
| 3 | +#include <library/cpp/dot_product/dot_product.h> |
| 4 | +#include <library/cpp/l1_distance/l1_distance.h> |
| 5 | +#include <library/cpp/l2_distance/l2_distance.h> |
| 6 | + |
| 7 | +#include <span> |
| 8 | + |
| 9 | +namespace NKikimr::NKMeans { |
| 10 | + |
| 11 | +template <typename TRes> |
| 12 | +Y_PURE_FUNCTION TTriWayDotProduct<TRes> CosineImpl(const float* lhs, const float* rhs, size_t length) |
| 13 | +{ |
| 14 | + auto r = TriWayDotProduct(lhs, rhs, length); |
| 15 | + return {static_cast<TRes>(r.LL), static_cast<TRes>(r.LR), static_cast<TRes>(r.RR)}; |
| 16 | +} |
| 17 | + |
| 18 | +template <typename TRes> |
| 19 | +Y_PURE_FUNCTION TTriWayDotProduct<TRes> CosineImpl(const i8* lhs, const i8* rhs, size_t length) |
| 20 | +{ |
| 21 | + const auto ll = DotProduct(lhs, lhs, length); |
| 22 | + const auto lr = DotProduct(lhs, rhs, length); |
| 23 | + const auto rr = DotProduct(rhs, rhs, length); |
| 24 | + return {static_cast<TRes>(ll), static_cast<TRes>(lr), static_cast<TRes>(rr)}; |
| 25 | +} |
| 26 | + |
| 27 | +template <typename TRes> |
| 28 | +Y_PURE_FUNCTION TTriWayDotProduct<TRes> CosineImpl(const ui8* lhs, const ui8* rhs, size_t length) |
| 29 | +{ |
| 30 | + const auto ll = DotProduct(lhs, lhs, length); |
| 31 | + const auto lr = DotProduct(lhs, rhs, length); |
| 32 | + const auto rr = DotProduct(rhs, rhs, length); |
| 33 | + return {static_cast<TRes>(ll), static_cast<TRes>(lr), static_cast<TRes>(rr)}; |
| 34 | +} |
| 35 | + |
| 36 | +// TODO(mbkkt) maybe compute floating sum in double? Needs benchmark |
| 37 | +template <typename TCoord> |
| 38 | +struct TMetric { |
| 39 | + using TCoord_ = TCoord; |
| 40 | + using TSum = std::conditional_t<std::is_floating_point_v<TCoord>, TCoord, i64>; |
| 41 | +}; |
| 42 | + |
| 43 | +template <typename TCoord> |
| 44 | +struct TCosineSimilarity : TMetric<TCoord> { |
| 45 | + using TSum = typename TMetric<TCoord>::TSum; |
| 46 | + // double used to avoid precision issues |
| 47 | + using TRes = double; |
| 48 | + |
| 49 | + static TRes Init() |
| 50 | + { |
| 51 | + return std::numeric_limits<TRes>::max(); |
| 52 | + } |
| 53 | + |
| 54 | + static auto Distance(const char* cluster, const char* embedding, ui32 dimensions) |
| 55 | + { |
| 56 | + const auto r = CosineImpl<TRes>(reinterpret_cast<const TCoord*>(cluster), |
| 57 | + reinterpret_cast<const TCoord*>(embedding), dimensions); |
| 58 | + // sqrt(ll) * sqrt(rr) computed instead of sqrt(ll * rr) to avoid precision issues |
| 59 | + const auto norm = std::sqrt(r.LL) * std::sqrt(r.RR); |
| 60 | + const TRes similarity = norm != 0 ? static_cast<TRes>(r.LR) / static_cast<TRes>(norm) : 0; |
| 61 | + return -similarity; |
| 62 | + } |
| 63 | +}; |
| 64 | + |
| 65 | +template <typename TCoord> |
| 66 | +struct TL1Distance : TMetric<TCoord> { |
| 67 | + using TSum = typename TMetric<TCoord>::TSum; |
| 68 | + using TRes = std::conditional_t<std::is_floating_point_v<TCoord>, TCoord, ui64>; |
| 69 | + |
| 70 | + static TRes Init() |
| 71 | + { |
| 72 | + return std::numeric_limits<TRes>::max(); |
| 73 | + } |
| 74 | + |
| 75 | + static auto Distance(const char* cluster, const char* embedding, ui32 dimensions) |
| 76 | + { |
| 77 | + const auto distance = L1Distance(reinterpret_cast<const TCoord*>(cluster), |
| 78 | + reinterpret_cast<const TCoord*>(embedding), dimensions); |
| 79 | + return distance; |
| 80 | + } |
| 81 | +}; |
| 82 | + |
| 83 | +template <typename TCoord> |
| 84 | +struct TL2Distance : TMetric<TCoord> { |
| 85 | + using TSum = typename TMetric<TCoord>::TSum; |
| 86 | + using TRes = std::conditional_t<std::is_floating_point_v<TCoord>, TCoord, ui64>; |
| 87 | + |
| 88 | + static TRes Init() |
| 89 | + { |
| 90 | + return std::numeric_limits<TRes>::max(); |
| 91 | + } |
| 92 | + |
| 93 | + static auto Distance(const char* cluster, const char* embedding, ui32 dimensions) |
| 94 | + { |
| 95 | + const auto distance = L2SqrDistance(reinterpret_cast<const TCoord*>(cluster), |
| 96 | + reinterpret_cast<const TCoord*>(embedding), dimensions); |
| 97 | + return distance; |
| 98 | + } |
| 99 | +}; |
| 100 | + |
| 101 | +template <typename TCoord> |
| 102 | +struct TMaxInnerProductSimilarity : TMetric<TCoord> { |
| 103 | + using TSum = typename TMetric<TCoord>::TSum; |
| 104 | + using TRes = std::conditional_t<std::is_floating_point_v<TCoord>, TCoord, i64>; |
| 105 | + |
| 106 | + static TRes Init() |
| 107 | + { |
| 108 | + return std::numeric_limits<TRes>::max(); |
| 109 | + } |
| 110 | + |
| 111 | + static auto Distance(const char* cluster, const char* embedding, ui32 dimensions) |
| 112 | + { |
| 113 | + const TRes similarity = DotProduct(reinterpret_cast<const TCoord*>(cluster), |
| 114 | + reinterpret_cast<const TCoord*>(embedding), dimensions); |
| 115 | + return -similarity; |
| 116 | + } |
| 117 | +}; |
| 118 | + |
| 119 | +template <typename TMetric> |
| 120 | +class TClusters: public IClusters { |
| 121 | + // If less than 1% of vectors are reassigned to new clusters we want to stop |
| 122 | + static constexpr double MinVectorsNeedsReassigned = 0.01; |
| 123 | + |
| 124 | + using TCoord = TMetric::TCoord_; |
| 125 | + using TSum = TMetric::TSum; |
| 126 | + using TEmbedding = TVector<TSum>; |
| 127 | + |
| 128 | + const ui32 Dimensions = 0; |
| 129 | + const ui32 MaxRounds = 0; |
| 130 | + const ui8 TypeByte = 0; |
| 131 | + |
| 132 | + TVector<TString> Clusters; |
| 133 | + TVector<ui64> ClusterSizes; |
| 134 | + TVector<TEmbedding> NextClusters; |
| 135 | + TVector<ui64> NextClusterSizes; |
| 136 | + |
| 137 | + ui32 Round = 0; |
| 138 | + |
| 139 | +public: |
| 140 | + TClusters(ui32 dimensions, ui32 maxRounds, ui8 typeByte) |
| 141 | + : Dimensions(dimensions) |
| 142 | + , MaxRounds(maxRounds) |
| 143 | + , TypeByte(typeByte) |
| 144 | + { |
| 145 | + } |
| 146 | + |
| 147 | + void SetRound(ui32 round) override { |
| 148 | + Round = round; |
| 149 | + } |
| 150 | + |
| 151 | + TString Debug() const override { |
| 152 | + auto sb = TStringBuilder() << "K: " << Clusters.size(); |
| 153 | + if (MaxRounds) { |
| 154 | + sb << " Round: " << Round << " / " << MaxRounds; |
| 155 | + } |
| 156 | + return sb; |
| 157 | + } |
| 158 | + |
| 159 | + const TVector<TString>& GetClusters() const override { |
| 160 | + return Clusters; |
| 161 | + } |
| 162 | + |
| 163 | + const TVector<ui64>& GetClusterSizes() const override { |
| 164 | + return ClusterSizes; |
| 165 | + } |
| 166 | + |
| 167 | + const TVector<ui64>& GetNextClusterSizes() const override { |
| 168 | + return NextClusterSizes; |
| 169 | + } |
| 170 | + |
| 171 | + virtual void SetClusterSize(ui32 num, ui64 size) override { |
| 172 | + ClusterSizes.at(num) = size; |
| 173 | + } |
| 174 | + |
| 175 | + void Clear() override { |
| 176 | + Clusters.clear(); |
| 177 | + ClusterSizes.clear(); |
| 178 | + NextClusterSizes.clear(); |
| 179 | + NextClusters.clear(); |
| 180 | + Round = 0; |
| 181 | + } |
| 182 | + |
| 183 | + bool SetClusters(TVector<TString> && newClusters) override { |
| 184 | + if (newClusters.size() == 0) { |
| 185 | + return false; |
| 186 | + } |
| 187 | + for (const auto& cluster: newClusters) { |
| 188 | + if (!IsExpectedSize(cluster)) { |
| 189 | + return false; |
| 190 | + } |
| 191 | + } |
| 192 | + Clusters = std::move(newClusters); |
| 193 | + ClusterSizes.clear(); |
| 194 | + ClusterSizes.resize(Clusters.size()); |
| 195 | + NextClusterSizes.clear(); |
| 196 | + NextClusterSizes.resize(Clusters.size()); |
| 197 | + NextClusters.clear(); |
| 198 | + NextClusters.resize(Clusters.size()); |
| 199 | + for (auto& aggregate : NextClusters) { |
| 200 | + aggregate.resize(Dimensions, 0); |
| 201 | + } |
| 202 | + return true; |
| 203 | + } |
| 204 | + |
| 205 | + bool RecomputeClusters() override { |
| 206 | + ui64 vectorCount = 0; |
| 207 | + ui64 reassignedCount = 0; |
| 208 | + for (size_t i = 0; auto& aggregate : NextClusters) { |
| 209 | + auto newSize = NextClusterSizes[i]; |
| 210 | + vectorCount += newSize; |
| 211 | + |
| 212 | + auto clusterSize = ClusterSizes[i]; |
| 213 | + reassignedCount += clusterSize < newSize ? newSize - clusterSize : 0; |
| 214 | + |
| 215 | + if (newSize != 0) { |
| 216 | + this->Fill(Clusters[i], aggregate.data(), newSize); |
| 217 | + } |
| 218 | + ++i; |
| 219 | + } |
| 220 | + |
| 221 | + Y_ENSURE(reassignedCount <= vectorCount); |
| 222 | + if (Clusters.size() == 1) { |
| 223 | + return true; |
| 224 | + } |
| 225 | + |
| 226 | + bool last = Round >= MaxRounds; |
| 227 | + if (!last && Round > 1) { |
| 228 | + const auto changes = static_cast<double>(reassignedCount) / static_cast<double>(vectorCount); |
| 229 | + last = changes < MinVectorsNeedsReassigned; |
| 230 | + } |
| 231 | + if (!last) { |
| 232 | + return false; |
| 233 | + } |
| 234 | + return true; |
| 235 | + } |
| 236 | + |
| 237 | + void RemoveEmptyClusters() override { |
| 238 | + size_t w = 0; |
| 239 | + for (size_t r = 0; r < ClusterSizes.size(); ++r) { |
| 240 | + if (ClusterSizes[r] != 0) { |
| 241 | + ClusterSizes[w] = ClusterSizes[r]; |
| 242 | + Clusters[w] = std::move(Clusters[r]); |
| 243 | + ++w; |
| 244 | + } |
| 245 | + } |
| 246 | + ClusterSizes.erase(ClusterSizes.begin() + w, ClusterSizes.end()); |
| 247 | + Clusters.erase(Clusters.begin() + w, Clusters.end()); |
| 248 | + } |
| 249 | + |
| 250 | + bool NextRound() override { |
| 251 | + bool isLast = RecomputeClusters(); |
| 252 | + ClusterSizes = std::move(NextClusterSizes); |
| 253 | + RemoveEmptyClusters(); |
| 254 | + if (isLast) { |
| 255 | + NextClusters.clear(); |
| 256 | + return true; |
| 257 | + } |
| 258 | + ++Round; |
| 259 | + NextClusterSizes.clear(); |
| 260 | + NextClusterSizes.resize(Clusters.size()); |
| 261 | + NextClusters.clear(); |
| 262 | + NextClusters.resize(Clusters.size()); |
| 263 | + for (auto& aggregate : NextClusters) { |
| 264 | + aggregate.resize(Dimensions, 0); |
| 265 | + } |
| 266 | + return false; |
| 267 | + } |
| 268 | + |
| 269 | + std::optional<ui32> FindCluster(TArrayRef<const TCell> row, ui32 embeddingPos) override { |
| 270 | + Y_ENSURE(embeddingPos < row.size()); |
| 271 | + const auto embedding = row.at(embeddingPos).AsRef(); |
| 272 | + if (!IsExpectedSize(embedding)) { |
| 273 | + return {}; |
| 274 | + } |
| 275 | + |
| 276 | + auto min = TMetric::Init(); |
| 277 | + std::optional<ui32> closest = {}; |
| 278 | + for (size_t i = 0; const auto& cluster : Clusters) { |
| 279 | + auto distance = TMetric::Distance(cluster.data(), embedding.data(), Dimensions); |
| 280 | + if (distance < min) { |
| 281 | + min = distance; |
| 282 | + closest = i; |
| 283 | + } |
| 284 | + ++i; |
| 285 | + } |
| 286 | + return closest; |
| 287 | + } |
| 288 | + |
| 289 | + void AggregateToCluster(ui32 pos, const TArrayRef<const char>& embedding, ui64 weight) override { |
| 290 | + auto& aggregate = NextClusters.at(pos); |
| 291 | + auto* coords = aggregate.data(); |
| 292 | + Y_ENSURE(IsExpectedSize(embedding)); |
| 293 | + for (auto coord : this->GetCoords(embedding.data())) { |
| 294 | + *coords++ += (TSum)coord * weight; |
| 295 | + } |
| 296 | + NextClusterSizes.at(pos) += weight; |
| 297 | + } |
| 298 | + |
| 299 | + bool IsExpectedSize(const TArrayRef<const char>& data) override { |
| 300 | + return data.size() == 1 + sizeof(TCoord) * Dimensions; |
| 301 | + } |
| 302 | + |
| 303 | +private: |
| 304 | + auto GetCoords(const char* coords) { |
| 305 | + return std::span{reinterpret_cast<const TCoord*>(coords), Dimensions}; |
| 306 | + } |
| 307 | + |
| 308 | + auto GetData(char* data) { |
| 309 | + return std::span{reinterpret_cast<TCoord*>(data), Dimensions}; |
| 310 | + } |
| 311 | + |
| 312 | + void Fill(TString& d, TSum* embedding, ui64& c) { |
| 313 | + Y_ENSURE(c > 0); |
| 314 | + const auto count = static_cast<TSum>(c); |
| 315 | + auto data = GetData(d.MutRef().data()); |
| 316 | + for (auto& coord : data) { |
| 317 | + coord = *embedding / count; |
| 318 | + embedding++; |
| 319 | + } |
| 320 | + } |
| 321 | +}; |
| 322 | + |
| 323 | +std::unique_ptr<IClusters> CreateClusters(const Ydb::Table::VectorIndexSettings& settings, ui32 maxRounds, TString& error) { |
| 324 | + if (settings.vector_dimension() < 1) { |
| 325 | + error = "Dimension of vector should be at least one"; |
| 326 | + return nullptr; |
| 327 | + } |
| 328 | + |
| 329 | + const ui8 typeVal = (ui8)settings.vector_type(); |
| 330 | + const ui32 dim = settings.vector_dimension(); |
| 331 | + |
| 332 | + auto handleMetric = [&]<typename T>() -> std::unique_ptr<IClusters> { |
| 333 | + switch (settings.metric()) { |
| 334 | + case Ydb::Table::VectorIndexSettings::SIMILARITY_INNER_PRODUCT: |
| 335 | + return std::make_unique<TClusters<TMaxInnerProductSimilarity<T>>>(dim, maxRounds, typeVal); |
| 336 | + case Ydb::Table::VectorIndexSettings::SIMILARITY_COSINE: |
| 337 | + case Ydb::Table::VectorIndexSettings::DISTANCE_COSINE: |
| 338 | + // We don't need to have separate implementation for distance, |
| 339 | + // because clusters will be same as for similarity |
| 340 | + return std::make_unique<TClusters<TCosineSimilarity<T>>>(dim, maxRounds, typeVal); |
| 341 | + case Ydb::Table::VectorIndexSettings::DISTANCE_MANHATTAN: |
| 342 | + return std::make_unique<TClusters<TL1Distance<T>>>(dim, maxRounds, typeVal); |
| 343 | + case Ydb::Table::VectorIndexSettings::DISTANCE_EUCLIDEAN: |
| 344 | + return std::make_unique<TClusters<TL2Distance<T>>>(dim, maxRounds, typeVal); |
| 345 | + default: |
| 346 | + error = "Wrong similarity"; |
| 347 | + break; |
| 348 | + } |
| 349 | + return nullptr; |
| 350 | + }; |
| 351 | + |
| 352 | + switch (settings.vector_type()) { |
| 353 | + case Ydb::Table::VectorIndexSettings::VECTOR_TYPE_FLOAT: |
| 354 | + return handleMetric.template operator()<float>(); |
| 355 | + case Ydb::Table::VectorIndexSettings::VECTOR_TYPE_UINT8: |
| 356 | + return handleMetric.template operator()<ui8>(); |
| 357 | + case Ydb::Table::VectorIndexSettings::VECTOR_TYPE_INT8: |
| 358 | + return handleMetric.template operator()<i8>(); |
| 359 | + case Ydb::Table::VectorIndexSettings::VECTOR_TYPE_BIT: |
| 360 | + error = "TODO(mbkkt) bit vector type is not supported"; |
| 361 | + break; |
| 362 | + default: |
| 363 | + error = "Wrong vector type"; |
| 364 | + break; |
| 365 | + } |
| 366 | + |
| 367 | + return nullptr; |
| 368 | +} |
| 369 | + |
| 370 | +} |
0 commit comments