|
29 | 29 |
|
30 | 30 | The package outputs a simple and digested analysis of a dataset, including **time-series** and **text**.
|
31 | 31 |
|
| 32 | + |
| 33 | +## ▶️ Quickstart |
| 34 | + |
| 35 | +### Install |
| 36 | +```cmd |
| 37 | +pip install ydata-profiling |
| 38 | +``` |
| 39 | +or |
| 40 | +```cmd |
| 41 | +conda install -c conda-forge ydata-profiling |
| 42 | +``` |
| 43 | +### Start profiling |
| 44 | + |
| 45 | +Start by loading your pandas `DataFrame` as you normally would, e.g. by using: |
| 46 | + |
| 47 | +```python |
| 48 | +import numpy as np |
| 49 | +import pandas as pd |
| 50 | +from ydata_profiling import ProfileReport |
| 51 | + |
| 52 | +df = pd.DataFrame(np.random.rand(100, 5), columns=["a", "b", "c", "d", "e"]) |
| 53 | +``` |
| 54 | + |
| 55 | +To generate the standard profiling report, merely run: |
| 56 | + |
| 57 | +```python |
| 58 | +profile = ProfileReport(df, title="Profiling Report") |
| 59 | +``` |
| 60 | + |
32 | 61 | ## Key features
|
33 | 62 |
|
34 | 63 | - **Type inference**: automatic detection of columns' data types (*Categorical*, *Numerical*, *Date*, etc.)
|
@@ -70,24 +99,6 @@ YData-profiling can be used to deliver a variety of different use-case. The docu
|
70 | 99 | | [Dataset metadata and data dictionaries](https://ydata-profiling.ydata.ai/docs/master/pages/use_cases/metadata.html) | Complementing the report with dataset details and column-specific data dictionaries |
|
71 | 100 | | [Customizing the report's appearance](https://ydata-profiling.ydata.ai/docs/master/pages/use_cases/custom_report_appearance.html ) | Changing the appearance of the report's page and of the contained visualizations |
|
72 | 101 |
|
73 |
| -## ▶️ Quickstart |
74 |
| - |
75 |
| -Start by loading your pandas `DataFrame` as you normally would, e.g. by using: |
76 |
| - |
77 |
| -```python |
78 |
| -import numpy as np |
79 |
| -import pandas as pd |
80 |
| -from ydata_profiling import ProfileReport |
81 |
| - |
82 |
| -df = pd.DataFrame(np.random.rand(100, 5), columns=["a", "b", "c", "d", "e"]) |
83 |
| -``` |
84 |
| - |
85 |
| -To generate the standard profiling report, merely run: |
86 |
| - |
87 |
| -```python |
88 |
| -profile = ProfileReport(df, title="Profiling Report") |
89 |
| -``` |
90 |
| - |
91 | 102 | ### Using inside Jupyter Notebooks
|
92 | 103 |
|
93 | 104 | There are two interfaces to consume the report inside a Jupyter notebook: through widgets and through an embedded HTML report.
|
|
0 commit comments