diff --git a/.github/workflows/ci_cron_weekly.yml b/.github/workflows/ci_cron_weekly.yml index 90750afe..04072926 100644 --- a/.github/workflows/ci_cron_weekly.yml +++ b/.github/workflows/ci_cron_weekly.yml @@ -39,11 +39,11 @@ jobs: steps: - name: Checkout code - uses: actions/checkout@v3 + uses: actions/checkout@v4 with: fetch-depth: 0 - name: Set up Python - uses: actions/setup-python@v4 + uses: actions/setup-python@v5 with: python-version: ${{ matrix.python }} - name: Install language-pack-de and tzdata diff --git a/.github/workflows/ci_workflows.yml b/.github/workflows/ci_workflows.yml index 4cd61ba8..f7bfea60 100644 --- a/.github/workflows/ci_workflows.yml +++ b/.github/workflows/ci_workflows.yml @@ -64,11 +64,11 @@ jobs: steps: - name: Checkout code - uses: actions/checkout@v3 + uses: actions/checkout@v4 with: fetch-depth: 0 - name: Set up Python - uses: actions/setup-python@v4 + uses: actions/setup-python@v5 with: python-version: ${{ matrix.python }} - name: Install language-pack-de and tzdata @@ -106,11 +106,11 @@ jobs: steps: - name: Checkout code - uses: actions/checkout@v3 + uses: actions/checkout@v4 with: fetch-depth: 0 - name: Set up Python - uses: actions/setup-python@v4 + uses: actions/setup-python@v5 with: python-version: ${{ matrix.python }} - name: Install language-pack-de and tzdata diff --git a/README.rst b/README.rst index acf421db..8b7f43bd 100644 --- a/README.rst +++ b/README.rst @@ -76,7 +76,7 @@ Legal .. _`IDL®`: https://www.nv5geospatialsoftware.com/Products/IDL .. _idlutils: https://www.sdss4.org/dr16/software/idlutils/ .. _SDSS: https://www.sdss.org -.. _`Goddard utilities`: https://idlastro.gsfc.nasa.gov/ +.. _`Goddard utilities`: https://asd.gsfc.nasa.gov/archive/idlastro/ .. _idlspec2d: https://svn.sdss.org/public/repo/eboss/idlspec2d/trunk/ .. _BOSS: https://www.sdss4.org/surveys/boss/ .. _eBOSS: https://www.sdss4.org/surveys/eboss/ diff --git a/docs/changes.rst b/docs/changes.rst index e27ba8a3..39468351 100644 --- a/docs/changes.rst +++ b/docs/changes.rst @@ -5,7 +5,11 @@ PyDL Changelog 1.0.1 (unreleased) ------------------ -* No changes yet. +* Allow the ``groupbadpix`` keyword to be passed to + :func:`~pydl.pydlutils.math.djs_reject`; refactor of + :func:`~pydl.pydlutils.math.djs_median`; test infrastructure updates (PR `#78`_). + +.. _`#78`: https://github.com/weaverba137/pydl/pull/78 1.0.0 (2024-01-02) ------------------ diff --git a/docs/goddard.rst b/docs/goddard.rst index 81067393..7c050060 100644 --- a/docs/goddard.rst +++ b/docs/goddard.rst @@ -56,7 +56,7 @@ structure NA Tools for manipulating IDL data structures. Use :c tv NA Functions for manipulating IDL image displays. ============= =============== =================================================== -.. _`The IDL® Astronomy User's Libary`: https://idlastro.gsfc.nasa.gov/ +.. _`The IDL® Astronomy User's Libary`: https://asd.gsfc.nasa.gov/archive/idlastro/ .. _idlutils: https://www.sdss4.org/dr16/software/idlutils/ .. _`Coyote library`: http://www.idlcoyote.com/ .. _`Functions from the JHU Applied Physics Lab`: https://fermi.jhuapl.edu/s1r/idl/idl.html diff --git a/docs/index.rst b/docs/index.rst index d06d3f88..363bf467 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -59,7 +59,7 @@ Base API .. _`IDL®`: https://www.nv5geospatialsoftware.com/Products/IDL .. _idlutils: https://www.sdss4.org/dr16/software/idlutils/ .. _SDSS: https://www.sdss.org -.. _`Goddard utilities`: https://idlastro.gsfc.nasa.gov/ +.. _`Goddard utilities`: https://asd.gsfc.nasa.gov/archive/idlastro/ .. _idlspec2d: https://svn.sdss.org/public/repo/eboss/idlspec2d/trunk/ .. _BOSS: https://www.sdss4.org/surveys/boss/ .. _eBOSS: https://www.sdss4.org/surveys/eboss/ diff --git a/docs/notebooks/Vacuum Wavelength Conversions.ipynb b/docs/notebooks/Vacuum Wavelength Conversions.ipynb index 3a883b88..49410be6 100644 --- a/docs/notebooks/Vacuum Wavelength Conversions.ipynb +++ b/docs/notebooks/Vacuum Wavelength Conversions.ipynb @@ -12,7 +12,7 @@ " - This version is used by [specutils](https://github.com/astropy/specutils).\n", " - Specifically, this is based on the *phase* refractivity of air, there is a slightly different formula for the *group* refractivity of air.\n", "* [Ciddor (1996)](http://adsabs.harvard.edu/abs/1996ApOpt..35.1566C)\n", - " - Used by [PyDL](https://github.com/weaverba137/pydl) via the [Goddard IDL library](http://idlastro.gsfc.nasa.gov/).\n", + " - Used by [PyDL](https://github.com/weaverba137/pydl) via the [Goddard IDL library](https://asd.gsfc.nasa.gov/archive/idlastro/).\n", " - This is the standard used by SDSS, at least since 2011. Prior to 2011, the Goddard IDL library used the IAU formula (below) plus an approximation of its inverse for vacuum to air.\n", "* [The wcslib *code*](https://github.com/astropy/astropy/blob/master/cextern/wcslib/C/spx.c) uses the formula from Cox, *Allen’s Astrophysical Quantities* (2000), itself derived from [Edlén (1953)](http://adsabs.harvard.edu/abs/1953JOSA...43..339E), even though Greisen *et al.* (2006) says, \"The standard relation given by Cox (2000) is mathematically intractable and somewhat dated.\"\n", " - Interestingly, this is the **IAU** standard, adopted in 1957 and again in 1991. No more recent IAU resolution replaces this formula.\n", @@ -147,7 +147,7 @@ "\n", "def awavwave(wavelength):\n", " \"\"\"Air to vacuum conversion as actually implemented by wcslib.\n", - " \n", + "\n", " Have to convert to meters(!) for this formula to work.\n", " \"\"\"\n", " awav = wavelength.to(u.m).value\n", @@ -204,7 +204,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAANNCAYAAADF2dxQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xt8XFW5+P/Pk2m5BEiKlEthaCgmVEBuBbmICFS5HEVF4QcKnCPaYyvw9YKgHDxeUAQPKHhHG08AxRseRY4CxwtYtAhyR1EKJNBYB8pNIAFqCyTr98feCZNp0qbtpBOmn/frtV+TrP3svZ/ZM5PXPFlrrx0pJSRJkiRJL38NtU5AkiRJklQdFniSJEmSVCcs8CRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJLWCRGxa0RcEhELI2JpRDwbEXdExMci4hW1zm+sRcSlEdFd6zzWVETsERG/i4ieiEgR8eFRbDM5Ipbl8XuNELPG5yciTo6IE9dkHxX72zwino+IH60gpikilkTEz6t13JeziDgwIv4nIh7Kz11PRPwhIuZERGOt81tbIuJzEfFirfOQVBuRUqp1DpI0piLifcBFwH354z3ARGAv4H3An1JKb69dhmMvIl4JNKWU7qx1LmsiIu4ENgI+BDwFdKeUHlnJNqcCF+a/fiuldNIwMWt8fiLiL8ATKaWDVncfw+zzJ8ARwJSU0lPDrJ8NzAWOTCn9b7WO+3IUEecAHwduAC4BuoCNgdcCs4HvpJQ+WrsM156IKALbpJRurnUuktY+CzxJdS0i9gPmA78h+xK8rGL9esDhKaW67AGJiMaU0pJa51EtEfEC8O2U0smrsM3dwBbA34AdyIqlf67GsQPYYKRtx6jA+xfgGuADKaWvD7P+j8B2QDGltM722ETEu4AfAO3A+1PFl5uIaAL2SSn9phb5VUP+t6p/XX6dJY2OQzQl1buPAwmYXVncAaSUni8v7iKiIR+2eW8+rO+xiPhu/h9xyuKuj4i/RMR+EXFjRPwzIroj4j35+jfnQ0CXRMTdEXF4xfZn5UMG94iIKyKiNx9O9r2I2Lwi9tiI+HVELM6PsyAi/isiNqqIuzQferpLHv8McF3Zuu6K+P8vIm7Oj7skIh6MiIsrYqbmOT2Wn48FEXFaRDSUxWyXP5fTI+Ij+TDYZyPipojYdzQvUkS8OiL+NyKeyofQ3hUR7y5bf2JEJGACcFJ+vJX+hzIi9gFeDVwGfBtoBo4aJm6485Mi4usR8f6IWAAsA95duW0e2w3sDBw4kFv5/kZzHkfwK6AEvGeYY+4I7AN8d+BLf0TskD+Xrvw1fSgifh4ROw+z/aYR8aX8dV8WEY9GxNURsUO+/o3583hdxXatefsJZW03RMS1wxzjexHRNcy2p0bEmRHxtzzPefm69SLiC/l7/en8s7F55X6H8SngH8CHKos7gJRSb3lxFxEbRsR5+Wf2+YgoRcTXIqK5Iv9SRFwZEW+KiDvLPn/l78298ue03HsjIt6Sr3tTWdv0iPhR2Xvhnog4qWK7gXN/XP4aPQwsBbaLiI0i4sJ4abj5kxFxa0QcU7b9ckM0I6IQEf8REfeVvd7fiYitK+JuyD9/+0Q2vHVJRDwQ2d/FqNjfp/L9/TN/vf4cEf9vRS+UpLE3odYJSNJYiYgCMBO4PaX091Fu9k2y4VxfB64i6x05GzgoImaklJ4oi92KbCjY+WRfwj8AXBwR2wJHA+cCPWRfPq+MiO1TSg9XHO9nwI+Bb5EVCGcDO0XEPimlF/KYNrJenC8DzwGvAs4A9s6fX7n1gJ+TDdv7L0b4Ox9Zz+bl+XIW2ZfHlvL95V+sb8z3+Umgm2y44BeBVwKVvWinAPcCA9fFnQ1cExHTUko9w+WRH2d6fpzHgA+SfVE/Abg0IrZMKZ0PXA3sB9wE/AS4YKT9VZiVP14M/J3sHM4CvjfK7Y8EDgA+CzyS5zict+d59fDSeVkGq3UeB6WU+iPiUuATEbFbSulPZasHir7yonwb4HHgY8ATwGbAicAt+fZdeU7NeU5FsvfJLcAmwEFk7+v7R8qpSj4E3EX23DclG0L7c+BOYEme8/Zk52gu8I6RdpR/3l4FfD+ltHRlB86L6p8DB5J9Rv8A7E72Odg3IvZPKT1ftskMss/4f5G9/nPI3pudKaUbU0q3RdZL/B7gOxWHOxFYTFaoExGvzo+3EPgI8CjwJuDrEfGKlNI5Fdufn8fPzn//B/AV4J3Af5Kdw42BXche6xVpz3P8Gtnfk2lkn9HXR8SeKaUny2K3Br5L9jn7NNnfs/PI/s79II85k+z9fDbZsNj1yF6HTVeSh6SxllJycXFxqcsF2JKs9+6Ho4x/VR7/jYr2vfP2c8rars/b9ixrewXwItkX1K3L2nfLYz9Q1nZW3nZhxbGOy9uPHyHHICvaXp/H7Vq27tK87T3DbHcp2fVqA7+flsc2r+B8fD6P2bui/SKgH9gh/327PO7PQKEs7jV5+ztXct5/SFZgblvRfg1ZQdtc1paAr4/y9WwkK7huqjgP/cArV3R+yo71NLDpKI/3F+D61T2PK9jvtDzuK2VtE8gKhxtWsm2B7HrTB4Hzy9o/k+d08Aq2fWMe87qK9ta8/YSythuAa4fZx/eArmG2vZ38MpGK9+NPK7b/Wv7cG1eQ5/75tmeP8nV6cx5/6gifvfeUtZXy9+A2ZW0b5u+Lr5e1nVr5viIruJYB/1XWdi3ZUOFNKo79TbK/G80V5/66YfJfAPzPSp7j54AXy37fOd/fVyriXpu3f6bitewHZpS1Bdk/b64qa/s/4NbRnHMXF5e1uzhEU5JecnD+eGl5Y0rpFrIvVW+oiF+cUrq9LO5Jsv/w35WG9tQtyB9bhjnm9yt+/zFZkTiQCxGxfUT8ICIeAfqAF4Df5at3HGafPx2mrdKtA8eLiGMiYpthYmYC9+TPv9ylZF/4KnsPr04p9ZX9/uf8cbjnXXmc69LyvayXkhVp+61k+5EcAzQxtIfrYrLclxvyOILfpmEmN1lFq3oeh0gpLQTmAcdHdh0WwL+Q9bRVDqmdGBGfyIf9PU/2XnqerEgsf6/8S57TvNV7Smvs6pRS+VDKgc/I1RVxC8jO0dQqHnvgfF9a0f4jsn80VH7O70gpPTTwS8quwexk6Pv6e2TnunyY5vFkvVqXAEQ2pPogss/nPyNiwsBC9s+MDcn+mVRuuM/yLcAREXFuZLOGbjjyUx007HNOKd2YP5fK5/xQSumOsrgE3M3Q53wLsGdkw5gPjew6R0njgAWepHr2BNl/xaeNMn5giNPiYdY9zPJDoJ4cJu75yvb00nCvDYaJf6Qi9kWyYVibAUTExmSTxOwDfILsC+JreGnIWuWXuyUppd5hjjNESun3ZMMPJ5ANxSpFdk3hu8rCNmPkczGwvtw/Ko4xcM3jyr6ArupxRmsW2Rf2X0bEpIiYRFZ0dgMn5kN4V2a4vFZVNZ5fRx731vz39wDPkv1DoNxXyHqHryAbBroP2fvlrwx9HTYn652qlcrPzvMraR/uszNgUf64Kp/zZZWFe0qpn2zI5Arf17lllJ3PlNLjZEO63x0vXVd5InBjSum+/PfJZD2qp5L9k6Z8+XlZTLnh3jenkA1dPYpsJMGTEfGzyGaCHcmq/m1b6XMm6yX8GPA64JfAPyLi2oiYsYI8JK0FFniS6lbem3Qd2X+ZiyuL56UvNVOGWbc1WcFYbVuV/5L/N3+zslxm5sd+b0rpv1NKv08p3QY8M8L+Rj01ckrpf1NKbyCbeOQg8utr8uvzyHMY6VxA9c5H1Y8T2UQhryMrDBaR3VJhYNmO7Fq1w0axq2pMNV2N53cFWe7vza/pOwK4PKX0bEXcCcAlKaVPpJR+nVK6JX+/VBYOj5Ndf7ciA9ezrV/RXrmvgdjKuJFiqyrv+V0AHBYRKyoEB/wDWD8ihlwrlhdmW7L67+tLyHoaZ0bErsAeeduAJ8mGPnaQFd3DLb+q2OdwE8Y8m1L6ZEppOtn76mSyYaoruk1G1f+2pZReSCl9MaW0O9nfrOPIPlu/GuXrIGmMWOBJqnefJxvi9e2y4W2D8iFtb8l//W3+eEJFzGvIhrddNwb5HV/x+zFkvWrX578PfMGrnAF0TrUSSCktSyn9jmziFsi+mEL2fHca5j/y/5bnVa3hfdeRfSneuqL938h6YP+4GvscmFzlfWTDXcuXN5H1mrx3tbIdWWUPx4A1Po8pmzzkB8ChZK/TRCqGZw6EUvFeiYi3kRUu5f4vz+nAFRy2O3/ctaL9rSyvG3hV+WcsL0RHNYtqFZxNVkx+uXymx7JcNomIN+a/DnyOT6gIO4bsHwKr+zn/P7Ie+ffkyxKySYwASCk9A/ye7PP1p5TSbcMsw40KGFFK6ZGU0iX5cXaOiOGKbBj5b9u+ZJM4rdHftpTSUyml/yG7lnAy1R1SK2kVOYumpLqWUropn4L8IuD2iPgm2XC1iWRftGaTTY7xi5TSfRHRDnwgIvrJvrBtR/bl8e/Al8YgxXfk05n/hpdm0fwTLw29u5Gs5+ZbEfEZssLkeLKJW1ZbRHyWrAfnOrKeu0lkMxuWX9/3JbIi5OqI+BTZ5BBvJusx+GZKqVozLX6GrEdqXp7Xk2TP8c3Ax9IKZuAcTt4L+m/AgpTSf48Q8wvgrRGxeT68rhruBt4ZEceSTWqyNKV0N9U7jx1kw/M+AtybXz9V6SpgVkR05vm8hmwCk4cq4i4kK2h+EREDs2huRDaz5M9SSvNTSqWIuJ5sBs9esp7QQ8iG9la6jKyoviwi/ptsCOgZZJORjLmU0g/zGSo/Tla4XgI8wEvXcM7Jc7yW7HN9LfDFfNjuTWSfp88At/HSLJGrmsOLEXEZ2Wy6zwI/yYu6ch8kG3L9+4j4Fllh3ERWZL0571FfoYi4DbiS7PV9iuzvxvHA79Mwt4LJc/trZLdAOTWvf3/FS7No/g346qo9W4iIa8hm8bydrEd4GtlzfzBfJNVKrWd5cXFxcVkbC9kXuEvJvswsI/sCdgfZl7rNy+IayK4ruY/s+p/Hyb4YFiv2dz3wl2GO003ZTHNl7UNmf+SlWTRnkF1/8wzQS/blcouKbfcjK/SeI5vE5dtkxWkCTiyLuxR4doTnfylDZ9F8M9nEDqX8fDxKNsFF5YyJU8kmgnkiPx/3AqcDDWUx2+W5nD7C8z5rFK/Pq/Pz8HSez13lz22k8zjCvt6Wx31oBTGH5TEfGe78jPZYFfEtZF+ce/Nty8/3Ss/jKI9xR77vj46wflOynr3H8vfL78lmSlxulkuyWV+/Sla4PZ+/B34OtJbFbE020cc/yIqJ7/DSrLInVOzvPWRDJf9JVnwcxcizaH64YtuBWSOPrGj/97x991Gen4PIblfxMNk/K3rIbjNwGrBxWVwj2S0I/pY/94fIbo3SXLG/EnDlMMcZadbQHfN8E3DQCDluTzZ0s5Qf+7F8f/+xsvORrzufrBB9Mj/XD5DdzuAVZTFDZtHM2wpktza4n5f+tn2Xshl/y57bXcMct/K1/Gh+bh8n+8z+jexWDNsO97xdXFzW3hIpVePyAknSqoiIs8juL7V5GnpvPUmSpNXmNXiSJEmSVCcs8CRJkiSpTjhEU5IkSZLqhD14kiRJklQnLPAkSZIkqU5Y4EmSJElSnfBG5+NIZHcf3ZrsfliSJEmS1m2bAA+nVZg4xQJvfNma7MankiRJkgRQBB4abbAF3vjyDMDf//53mpqaap2LJEmSpBrp7e1l2223hVUc3WeBNw41NTVZ4EmSJElaZU6yIkmSJEl1wgJPkiRJkuqEBZ4kSZIk1QmvwZMkSZLWEX19fbzwwgu1TkO59dZbj4aG6va5WeBJkiRJdS6lxCOPPMLTTz9d61RUpqGhgWnTprHeeutVbZ8WeJIkSVKdGyjutthiCxobG4mIWqe0zuvv7+fhhx9m8eLFTJ06tWqviQWeJEmSVMf6+voGi7vNNtus1umozOabb87DDz/Miy++yMSJE6uyTydZkSRJkurYwDV3jY2NNc5ElQaGZvb19VVtnxZ4kiRJ0jrAYZnjz1i8JhZ4kiRJklQnLPAkSZIkrZMOOuggPvzhD9c6jaqywJMkSZI0bj3yyCN86EMforW1lQ022IAtt9yS173udXzrW99iyZIla7TvK664grPPPrtKmY4PzqIpSZIkaVx68MEH2X///Zk0aRLnnnsuu+yyCy+++CL3338/F198MVtvvTVvfetbl9vuhRdeGNWslK94xSvGIu2asgdPkiRJ0qiVSiXmzZtHqVQa82OdfPLJTJgwgdtuu41jjjmGHXfckV122YWjjjqKq6++mre85S1ANlnJt771Ld72trex0UYb8bnPfQ6Ae+65hze96U1svPHGbLnllvzrv/4rTzzxxOD+K4doXnTRRbS1tQ32FB599NGD61JKnH/++Wy//fZsuOGG7LbbbvzkJz8ZXH/99dcTEVx33XXstddeNDY28trXvpb77rtvrE/TEBZ4kiRJkkalo6ODlpYWZs6cSUtLCx0dHWN2rH/84x/8+te/5pRTTmGjjTYaNqZ8FspPf/rTvO1tb+Puu+/mve99L4sXL+bAAw9k991357bbbuOXv/wljz76KMccc8yw+7rtttv44Ac/yGc/+1nuu+8+fvnLX/L6179+cP0nPvEJLrnkEr75zW/y17/+lVNPPZUTTjiB3/3ud0P285//+Z9ccMEF3HbbbUyYMIH3vve9VTgbo+cQTUmSJEkrVSqVmD17Nv39/QD09/czZ84cDjvsMIrFYtWP19XVRUqJ6dOnD2mfPHkyS5cuBeCUU07hvPPOA+C4444bUkx96lOfYsaMGZx77rmDbRdffDHbbrst999/PzvssMOQ/S5atIiNNtqII444gk022YSWlhb22GMPAJ577jkuvPBCfvvb37LffvsBsP3223PDDTcwd+5cDjzwwMH9nHPOOYO//8d//AdvfvObWbp0KRtssEG1Ts0KWeBJkiRJWqnOzs7B4m5AX18fXV1dY1LgDai8V9wtt9xCf38/xx9/PMuWLRts32uvvYbE3X777cybN4+NN954uX0+8MADyxV4hxxyCC0tLWy//fYcfvjhHH744bz97W+nsbGRe+65h6VLl3LIIYcM2eb5558fLAIH7LrrroM/T5kyBYDHHnuMqVOnrsKzXn0WeJIkSZJWqq2tjYaGhiFFXqFQoLW1dUyO19raSkRw7733DmnffvvtAdhwww2HtFcO4+zv7+ctb3nLYA9fuYHCq9wmm2zCHXfcwfXXX8+vf/1rPvWpT3HWWWdx6623Dj7nq6++mm222WbIduuvv/6Q38sndxkoTisL47HkNXiSJEmSVqpYLNLe3k6hUACy4m7u3Llj1nu32Wabccghh/D1r3+d5557bpW3nzFjBn/961/ZbrvtaG1tHbKMdE3fhAkTeOMb38j555/Pn//8Z7q7u/ntb3/LTjvtxPrrr8+iRYuW29e22267pk+1quzBkyRJkjQqs2bN4rDDDqOrq4vW1tYxHZoJ2ayW+++/P3vttRdnnXUWu+66Kw0NDdx6663ce++97LnnniNue8opp/Dtb3+bd73rXXz0ox9l8uTJdHV18aMf/Yhvf/vbg4XqgKuuuooHH3yQ17/+9Wy66aZcc8019Pf3M336dDbZZBNOP/10Tj31VPr7+3nd615Hb28vN954IxtvvDHvfve7x/Q8rAoLPEmSJEmjViwWx7ywG/DKV76SO++8k3PPPZczzzyTUqnE+uuvz0477cTpp5/OySefPOK2W2+9NX/4wx8444wzOOyww1i2bBktLS0cfvjhNDQsP5Bx0qRJXHHFFZx11lksXbqUtrY2fvjDH7LzzjsDcPbZZ7PFFlvw+c9/ngcffJBJkyYxY8YMPv7xj4/Z818dkVKqdQ7KRUQT0NPT00NTU1Ot05EkSVIdWLp0KQsXLmTatGlrbSZHjc6KXpve3l6am5sBmlNKvaPdp9fgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeBpRqVRi3rx5lEqlWqciSZIkaRQs8DSsjo4OWlpamDlzJi0tLXR0dNQ6JUmSJEkrYYGn5ZRKJWbPnk1/fz8A/f39zJkzx548SZIkaZyzwNNyOjs7B4u7AX19fXR1ddUoI0mSJGl4EcGVV1454vru7m4igrvuumvEmOuvv56I4Omnnx6LFNeqCbVOQONPW1sbDQ0NQ4q8QqFAa2trDbOSJElSrSzqWcQTS54Ycf3kxslMbZ46Jsd+5JFHOOecc7j66qt56KGH2GKLLdh999358Ic/zBve8AYWL17MpptuOibHfjmywNNyisUi7e3tzJkzh76+PgqFAnPnzqVYLNY6NUmSJK1li3oWseM3dmTJC0tGjGmc2MiCUxZUvcjr7u5m//33Z9KkSZx//vnsuuuuvPDCC/zqV7/ilFNO4d5772Wrrbaq6jFX1/PPP896661X6zQcoqnhzZo1i+7ububNm0d3dzezZs2qdUqSJEmqgSeWPMGSF5bwvbd/j9tn377c8r23f48lLyxZYQ/f6jr55JOJCG655RaOPvpodthhB3beeWc+8pGP8Mc//hFYfojmLbfcwh577MEGG2zAXnvtxZ133rncfq+55hp22GEHNtxwQw4++GC6u7uXi/npT3/KzjvvzPrrr892223HBRdcMGT9dtttx+c+9zlOPPFEmpubed/73lfdJ7+a7MHTiIrFor12kiRJAmDHzXdkxpQZa+14Tz75JL/85S8555xz2GijjZZbP2nSpOXannvuOY444ghmzpzJ9773PRYuXMiHPvShITF///vfecc73sH73/9+TjrpJG677TZOO+20ITG33347xxxzDGeddRbHHnssN954IyeffDKbbbYZJ5544mDcF77wBT75yU/yiU98ojpPugos8CRJkiSNO11dXaSUeNWrXjXqbb7//e/T19fHxRdfTGNjIzvvvDOlUomTTjppMOab3/wm22+/PV/60peICKZPn87dd9/NeeedNxhz4YUX8oY3vIFPfvKTAOywww7cc889fOELXxhS4M2cOZPTTz99zZ9sFTlEU5IkSdK4k1ICsiGYo7VgwQJ22203GhsbB9v222+/5WL23XffIfsdLmb//fcf0rb//vvT2dlJX1/fYNtee+016tzWFgs8SZIkSeNOW1sbEcGCBQtGvc1AUViNmMrCcrjthhs6WmsWeJIkSZLGnVe84hUcdthhfOMb3+C5555bbv1w96zbaaed+NOf/sQ///nPwbaByVjKYyrbhou54YYbhrTdeOON7LDDDhQKhVV+LmuTBZ4kSZKklVrw+ALuWHzHcsuCx0ffw7aqLrroIvr6+th777356U9/SmdnJwsWLOCrX/3qcsMqAY477jgaGhqYNWsW99xzD9dccw1f/OIXh8S8//3v54EHHuAjH/kI9913Hz/4wQ+49NJLh8ScdtppXHfddZx99tncf//9fOc73+HrX//6uLvebjhOsiJJkiRpRJMbJ9M4sZETfnbCiDGNExuZ3Di56seeNm0ad9xxB+eccw6nnXYaixcvZvPNN2fPPffkm9/85nLxG2+8Mb/4xS94//vfzx577MFOO+3Eeeedx1FHHTUYM3XqVH76059y6qmnctFFF7H33ntz7rnn8t73vncwZsaMGfz4xz/mU5/6FGeffTZTpkzhs5/97JAJVsarGM0YVK0dEdEE9PT09NDU1FTrdCRJklQHli5dysKFC5k2bRobbLDBau1jUc+iFd7nbnLj5Krf5HxdsKLXpre3l+bmZoDmlFLvaPdpD54kSZKkFZraPNUC7mXCa/AkSZIkqU5Y4EmSJElSnbDAkyRJkqQ6YYEnSZIkSXXCAk+SJEmS6oQFniRJkiTVCQs8SZIkSaoTFniSJEmSVCcs8CRJkiSpTljgSZIkSRqdvj64/nr44Q+zx76+MT3ciSeeyJFHHjmk7cYbb6RQKHD44YcvF3/99dcTETz99NPLrdt9990566yzxirVccMCT5IkSdLKXXEFtLbCwQfDccdlj62tWftadPHFF/OBD3yAG264gUWLFq3VY78cWOBJkiRJWrErroCjj4ZddoGbboJnnsked9kla19LRd5zzz3Hj3/8Y0466SSOOOIILr300rVy3JcTCzyNWqlUYt68eZRKpVqnIkmSpLWlrw9OOw2OOAKuvBL23Rc23jh7vPLKrP3008d8uCbA5ZdfzvTp05k+fTonnHACl1xyCSmlMT/uy4kFnkalo6ODlpYWZs6cSUtLCx0dHbVOSZIkSWvD/PnQ3Q0f/zg0VJQPDQ1w5pmwcGEWN8Y6Ojo44YQTADj88MN59tlnue6668b8uC8nFnhaqVKpxOzZs+nv7wegv7+fOXPm2JMnSZK0Lli8OHt89auHXz/QPhA3Ru677z5uueUW3vnOdwIwYcIEjj32WC6++OIxPe7LzYRaJ6Dxr7Ozc7C4G9DX10dXVxfFYrFGWUmSJGmtmDIle/zLX7JhmZX+8pehcWOko6ODF198kW222WawLaXExIkTeeqpp9h0001pamoCoKenh0mTJg3Z/umnn6a5uXlMcxwP7MHTSrW1tdFQ0R1fKBRobW2tUUaSJElaaw44ALbbDs49Fyr+6U9/P3z+8zBtWhY3Rl588UW++93vcsEFF3DXXXcNLn/6059oaWnh+9//PvDS99Zbb711yPaLFy/moYceYvr06WOW43hhgaeVKhaLtLe3UygUgKy4mzt3rr13kiRJ64JCAS64AK66Co48cugsmkcembV/8YtZ3Bi56qqreOqpp5g1axavfvWrhyxHH3304PwQm2yyCXPmzOG0007jyiuvZOHChfzhD3/gXe96FzvuuCOHHnromOU4XoSzzowfEdEE9PT09Ax2L48npVKJrq4uWltbLe4kSZJeJpYuXcrChQuZNm0aG2ywwerv6Iorstk0u7tfaps2LSvu3vGONc5zOCeeeCJPP/00fX199Pf3c/XVVy8Xc8cdd7Dnnnty++23M2PGDJYtW8Zqt5CKAAAgAElEQVT555/PD3/4Q7q7u9liiy04+OCD+fznP89WW201JnmurhW9Nr29vQNDSptTSr2j3acF3jgy3gs8SZIkvfxUrcCD7FYI8+dnE6pMmZINyxzDnrt6NxYFnpOsSJIkSRqdQgEOOqjWWWgFvAZPkiRJkuqEBZ4kSZIk1QkLPEmSJEmqExZ4kiRJ0jrAyRXHn7F4TSzwJEmSpDo2ceJEAJYsWVLjTFTp+eefBxi833Q1OIumJEmSVMcKhQKTJk3iscceA6CxsZGIqHFW6u/v5/HHH6exsZEJE6pXllngSZIkSXVu4AbfA0WexoeGhgamTp1a1YLbAk+SJEmqcxHBlClT2GKLLXjhhRdqnY5y6623Hg0N1b1qzgJPkiRJWkcUCoWqXu+l8cdJViRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwtNpKpRLz5s2jVCrVOhVJkiRJWOBpNXV0dNDS0sLMmTNpaWmho6Oj1ilJkiRJ67xIKdU6B+Uiogno6enpoampqdbpjKhUKtHS0kJ/f/9gW6FQoLu7m2KxWMPMJEmSpPrQ29tLc3MzQHNKqXe029mDp1XW2dk5pLgD6Ovro6urq0YZSZIkSQILPK2GtrY2GhqGvnUKhQKtra01ykiSJEkSWOBpNRSLRdrb2ykUCkBW3M2dO9fhmZIkSVKNeQ3eOPJyuQZvQKlUoquri9bWVos7SZIkqYpW9xq8CWOXkupdsVi0sJMkSZLGEYdoSpIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwJEmSJKlOWOBJkiRJUp0YlwVeRJwcEQsjYmlE3B4RB6wk/qiIuCciluWPb69YHxFxVkQ8HBH/jIjrI2LniphNI+KyiOjJl8siYlLZ+ukRMS8iHs3zejAiPhcRE8ti3hERt0XE0xHxXETcFRH/Wq3zIkmSJEkrMu4KvIg4FvgycA6wBzAf+L+ImDpC/H7A5cBlwG75448jYp+ysI8BHwH+H/Aa4BHgNxGxSVnMD4DdgcPzZfd8XwNeAL4LHApMBz4MvA/4TFnMk3ne+wG7ApcAl0TEYat0EiRJkiRpNURKqdY5DBERNwN3pJROKmtbAFyZUjpzmPjLgaaU0r+Utf0SeCql9K6ICOBh4MsppfPy9esDjwJnpJTmRsSOwD3Avimlm/OYfYGbgFellO4bIdcLgdeklEbsYYyIO4CrU0qfHMVzbwJ6enp6aGpqWlm4JEmSpDrV29tLc3MzQHNKqXe0242rHryIWA/YE/h1xapfA68dYbP9hon/VVn8NGCr8piU0jLgd2Ux+wE9A8VdHvNHoGek40ZEK1lP3+9GWB8R8Qay3r7fjxCzfkQ0DSzAJsPFSZIkSdJojKsCD5gMFMh618o9SlakDWerlcRvVda2opjHhtn3Y5XHjYgbI2Ip0Ek2fPRTFeubI+JZ4HngauADKaXfjJD7mWRF5MBSGiFOkiRJklZqvBV4AyrHjcYwbasav7KY4fY/3H6OBWYAxwFvBk6vWP8M2fV7rwH+E7gwIg4aIe/PA81lS3GEOEmSJElaqQm1TqDCE0Afy/fWbcHyPXADHllJ/CP541bA4hXEbDnMvjevPG5K6e/5j/dERAFoj4gLUkp9+fp+oCuPuSu/vu9M4PrKnedDRZcN/J5dLihJkiRJq2dc9eCllJ4HbgcOqVh1CHDjCJvdNEz8oWXxC8kKuMGY/Fq/A8tibgKaI2Lvsph9yHrVRjouZD18E/PHFcWsv4L1kiRJklQV460HD+BC4LKIuI2s8JoNTAW+BRAR3wUeKptR8yvA7yPiDOB/gbcBbwReB5BSShHxZeDjEdFJdu3cx4ElZLdGIKW0IJ9589sRMSffbztw1cAMmhFxPNmtEu4m63Xbk2yI5eUppRfzmDOB24AHgPWANwH/BgzOCFrPSqUSnZ2dtLW1USw62lSSJEla28ZdgZdSujwiNiObvGQK8BfgTSmlv+UhU4H+svgbI+KdwOeAs8mKq2PLZ8QEzgc2BC4CNgVuBg5NKT1TFnM88FVemm3z52T3zRvwInAGsANZr9zfgG8AXyqL2Sg/RhH4J3AvcEJK6fJVPxMvLx0dHcyePZv+/n4aGhpob29n1qxZtU5LkiRJWqeMu/vgrctervfBK5VKtLS00N8/WHdTKBTo7u62J0+SJElaDXVxHzy9PHV2dg4p7gD6+vro6uoaYQtJkiRJY8ECT2usra2Nhoahb6VCoUBra2uNMpIkSZLWTRZ4WmPFYpH29nYKhQKQFXdz5851eKYkSZK0lnkN3jjycr0Gb0CpVKKrq4vW1laLO0mSJGkNrO41eONuFk29fBWLRQs7SZIkqYYcoilJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwJEmSJKlOWOBJkiRJUp2wwJMkSZKkOmGBJ0mSJEl1wgJPkiRJkuqEBZ4kSZIk1QkLPEmSJEmqExZ4kiRJklQnLPAkSZIkqU5Y4EmSJElSnbDA05gplUrMmzePUqlU61QkSZKkdYIFnsZER0cHLS0tzJw5k5aWFjo6OmqdkiRJklT3IqVU6xyUi4gmoKenp4empqZap7PaSqUSLS0t9Pf3D7YVCgW6u7spFos1zEySJEl6eejt7aW5uRmgOaXUO9rt7MFT1XV2dg4p7gD6+vro6uqqUUaSJEnSusECT1XX1tZGQ8PQt1ahUKC1tbVGGUmSJEnrBgs8VV2xWKS9vZ1CoQBkxd3cuXMdnilJkiSNMa/BG0fq5Rq8AaVSia6uLlpbWy3uJEmSpFWwutfgTRi7lLSuKxaLFnaSJEnSWuQQTUmSJEmqExZ4kiRJklQnLPAkSZIkqU5Y4EmSJElSnbDAkyRJkqQ6YYEnSZIkSXXCAk+SJEmS6oQFniRJkiTVCQs8SZIkSaoTFniSJEmSVCcs8CRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT2tNqVRi3rx5lEqlWqciSZIk1SULPK0VHR0dtLS0MHPmTFpaWujo6Kh1SpIkSVLdiZRSrXNQLiKagJ6enh6amppqnU7VlEolWlpa6O/vH2wrFAp0d3dTLBZrmJkkSZI0PvX29tLc3AzQnFLqHe129uBpzHV2dg4p7gD6+vro6uqqUUaSJElSfbLA05hra2ujoWHoW61QKNDa2lqjjCRJkqT6ZIGnMVcsFmlvb6dQKABZcTd37lyHZ0qSJElV5jV440i9XoM3oFQq0dXVRWtrq8WdJEmStAKrew3ehLFLSRqqWCxa2EmSJEljyCGakiRJklQnLPAkSZIkqU5Y4EmSJElSnbDAkyRJkqQ64SQrGl5fH8yfD4sXw5QpcMABkN/mQJIkSdL4ZA+elnfFFdDaCgcfDMcdlz22tmbtkiRJksYtCzwNdcUVcPTRsMsucNNN8Mwz2eMuu2TtFnmSJEnSuOWNzseRmt/ovK+PF7ffjmenb8+Dl1wADWX1f38/27/nNDa+fyETHljocE1JkiRpDHmjc62xR//vJ2y5qMThh5S4+b9fs9z6fafCTb/J4444tgYZSpIkSVoRCzwNWrLoAQBO/ff/pq1lj+XWd3bfAR3vG4yTJEmSNL5Y4GnQC1tOBmC3Jybwqn1nLLd+o9v+PCROkiRJ0vjiJCsa9Ow+e7BwEmz11Yuhv3/oyv5+tvzaJTw4KYuTJEmSNP5Y4OklhQKnHQrN186HI48cOovmkUfSfO18Tj8UJ1iRJEmSxikLPA3xs51g4bfPh7vvhte+Fpqasse//IWF3z6fn+1U3eOVSiXmzZtHqVSq7o4lSZKkdZAFnpbz9JtmQlcXzJsHP/hB9tjZmbVXUUdHBy0tLcycOZOWlhY6Ojqqun9JkiRpXeMkK1rOgscXZD9Mb8oWgMf+9FJ7FZRKJWbPnk1/fq1ff38/c+bM4bDDDqNYLFbtOJIkSdK6xAJPgyY3TqZxYiMn/OyEEWMaJzYyuXHNZ9Hs7OwcLO4G9PX10dXVZYEnSZIkrSYLPA2a2jyVBacs4IklT4wYM7lxMlObp67xsdra2mhoaBhS5BUKBVpbW9d435IkSdK6ygJPQ0xtnlqVAm5lisUi7e3tzJkzh76+PgqFAnPnzrX3TpIkSVoDkVKqdQ7KRUQT0NPT00NTU1Ot01krSqUSXV1dtLa2WtxJkiRJud7eXpqbmwGaU0q9o93OHjzVVLFYtLCTJEmSqsTbJEiSJElSnbDAkyRJkqQ6YYEnSZIkSXXCAk+SJEmS6oQFniRJkiTVCQs8SZIkSaoTFniSJEmSVCcs8CRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT+NKqVRi3rx5lEqlWqciSZIkvexY4Gnc6OjooKWlhZkzZ9LS0kJHR0etU5IkSZJeViKlVOsclIuIJqCnp6eHpqamWqezVpVKJVpaWujv7x9sKxQKdHd3UywWa5iZJEmStPb19vbS3NwM0JxS6h3tdvbgaVzo7OwcUtwB9PX10dXVVaOMJEmSpJcfCzyNC21tbTQ0DH07FgoFWltba5SRJEmS9PJjgadxoVgs0t7eTqFQALLibu7cuQ7PlCRJklaB1+CNI+vyNXgDSqUSXV1dtLa2WtxJkiRpnbW61+BNGLuUVFf6+mD+fFi8GKZMgQMOgLy3rZqKxaKFnSRJkrSaHKKplbviCmhthYMPhuOOyx5bW7N2SZIkSeOGBZ5W6PHL5pKOPpqn26Zy7y8u5a7O+dz7i0t5um0q6eijefyyubVOUZIkSVLOa/DGkfF2Dd6iJxfS3/pK/rx54sh3Qir7d0D0w5U/gl0eDwpdDzD1FdNql6gkSZJUZ9bKNXgR8dZVTQz4TUrpn6uxnWps6bzfsMNTiXu/eha3veEty61/vPXnTPu3z3D/vN/AUbNrkKEkSZKkcqs6ycqVqxifgDbgwVXcTuPAxEefAGCrfd/A7lNmLLf+rn2fAz4zGCdJkiSptlbnGrytUkoNo1mAJdVOWGvPC1tOBmCDex8Ydv2GeftAnCRJkqTaWtUC7zvAqgy3/B4w6vGiAyLi5IhYGBFLI+L2iDhgJfFHRcQ9EbEsf3x7xfqIiLMi4uGI+GdEXB8RO1fEbBoRl0VET75cFhGTytZPj4h5EfFonteDEfG5iJhYFvO+iJgfEU/ly7URsfeqPv/x4tl99mDhJNjqqxdDf//Qlf39bPm1S3hwUhYnSZIkqfZWqcBLKb0npfTMKsSflFJapfF7EXEs8GXgHGAPYD7wfxExdYT4/YDLgcuA3fLHH0fEPmVhHwM+Avw/4DXAI8BvImKTspgfALsDh+fL7vm+BrwAfBc4FJgOfBh4H/CZspiDgB8CBwP7AYuAX0fENqtyDsaNQoHTDoXma+fDkUfCTTfBM89kj0ceSfO18zn9UMbkfniSJEmSVt24m0UzIm4G7kgpnVTWtgC4MqV05jDxlwNNKaV/KWv7JfBUSuldERHAw8CXU0rn5evXBx4FzkgpzY2IHYF7gH1TSjfnMfsCNwGvSindN0KuFwKvSSkN28MYEQXgKeD/pZS+O4rnPq5m0bxj8R3s2b4nDxS/wPaf+wZ0d7+0cto0HvzPk3ll6aPcPvt2ZgxzjZ4kSZKk1bNWZtEcjYjYFvhMSum9q7HtesCewH9VrPo18NoRNtsP+FJF26/IetgApgFb5fsAIKW0LCJ+l+9zbr6PnoHiLo/5Y0T05DHLFXgR0UrW07eiu303AhOBJ4dbmRea65c1bTJcXK3d9JopPD3/x2x8851MfPQJXthyMs/uswcLnrwfSrXOTpIkSdKAqhd4wCuAdwOrXOABk4ECWe9auUfJirThbLWS+K3K2ipjWspiHhtm349VHjcibgRmkBVm7cCnRsgLskL1IeDaEdafCXx6BdvX1OTGyTRObOSEn50wdMXjwF+yHxsnNjK50UlWJEmSpPFglQu8UdwLb/vVzKVc5bjRGKZtVeNXFjPc/ofbz7FkPW27AV8ATgfOX27DiI8B7wIOSiktHSHvzwMXlv2+CeOoT2xq81QWnLKAJ5aMfBnl5MbJTG0e9vLIqiiVSnR2dtLW1kaxWByz40iSJEn1YHV68K4kK3piBTGre2HfE0Afy/fWbcHyPXADHllJ/CP541bA4hXEbDnMvjevPG5K6e/5j/fk19i1R8QFKaW+gZiIOB34OPDGlNKfR8iblNIyYFnZdiOF1szU5qljWsCtSEdHB7Nnz6a/v5+Ghgba29uZNWtWTXKRJEmSXg5W5z54i4GjVnDvu9WebSOl9DxwO3BIxapDgBtH2OymYeIPLYtfSFbADcbk1/odWBZzE9BcfkuDfBbO5hUcF7IidyJlxW5EfBT4JHB4Sum2FWyrFSiVSoPFHUB/fz9z5syhVBo3HZySJEnSuLM6PXi3kxVxV46wfmW9eytzIXBZRNxGVnjNBqYC3wKIiO8CD5XNqPkV4PcRcQbwv8DbgDcCrwNIKaWI+DLw8YjoBDrJeteWkN0agZTSgnzmzW9HxJx8v+3AVQMzaEbE8WS3SribrNdtT7IhlpenlF7MYz4GnA0cB3RHxEDP4rMppWfX4Jysczo7OweLuwF9fX10dXU5VFOSJEkaweoUeF8ANlrB+i6y+8CtlpTS5RGxGdnkJVPIpvN4U0rpb3nIVKC/LP7GiHgn8Dmy4uoB4NjyGTHJrpHbELgI2BS4GTi04p5+xwNf5aXZNn9Odt+8AS8CZwA7kBWwfwO+wdAZPE8G1gN+UvG0PgOcNbozIIC2tjYaGhqGFHmFQoHW1tYaZiVJkiSNb+PuPnjrsvF2H7xa6+joYM6cOfT19VEoFJg7d67X4EmSJGmdsLr3wbPAG0cs8JZXKpXo6uqitbXVoZmSJElaZ4ybG51L1VQsFi3sJEmSpFFanVk0JUmSJEnjUFUKvIiYkd96QJIkSZJUI9XqwbsV2K5K+5IkSZIkrYZqFXhrct87SZIkSVIVeA2eJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwJEmSJKlOWOBJkiRJUp2wwNPLSqlUYt68eZRKpVqnIkmSJI071SrwPgM8UaV9ScPq6OigpaWFmTNn0tLSQkdHR61TkiRJksaVSCnVOgflIqIJ6Onp6aGpqanW6YwrpVKJlpYW+vv7B9sKhQLd3d0Ui8UaZiZJkiRVX29vL83NzQDNKaXe0W43YexSUl3r64P582HxYpgyBQ44AAqFMTtcZ2fnkOIuS6GPrq4uCzxJkiQpZ4GnVbKoZxEv/uTHbPOZL7H+3x8ebF+27dY89OlTmXD0MUxtnlr147a1tdHQ0LBcD15ra2vVjyVJkiS9XFVtkpWImFitfWl8WtSziDNObmO7f/8ov9rwYfadBRufCfvOgl9t+DDb/ftHOePkNhb1LKr6sYvFIu3t7RTyXsJCocDcuXPtvZMkSZLKVOUavIhoAO5IKe2+5imtu8b7NXh3lG5l0132ZuJue/DY99uhoez/A/39bHH8bJ7/0508ffctzCi+ZkxyKJVKdHV10draanEnSZKkulXTa/BSSv0RcUtE7JxS+ms19qnxZ+Ob72Ta03Dv6R9ixjZ7Lbf+vtM+yPS3vof7b74TxqjAKxaLFnaSJEnSCKp5Dd7ewJ0RcT+wBAggpZT2ruIxVEMTH83uhLH0Va8cdv0/8/aBOEmSJElrVzULvLdVcV8ah17YcjIAG9z7ALS+brn1G977wJA4SZIkSWtX1Qq8lNLfqrUvjU/P7rMHCyfBVl+9GN70r8tdg7fl1y7hwUlZnCRJkqS1b41n0YyIy/LHW/Pr8AaWWyPiljVPUeNGocBph0LztfPhyCPhppvgmWeyxyOPpPna+Zx+KGN6PzxJkiRJI6tGD97H8sejq7AvjXM/2wnmf/GD7PPl/2H91752sH3Z1G24+Ysf5GfPfIVP1DA/SZIkaV22xgVeSmlx/vg3gIjYElh/Tfer8Wdy42QaJzZy4DNfoeE9cMDfYMqzsHhjmN/yEP3PfIXGiY1MbvQaPEmSJKkWqnYNXkQcCXwe2Bb4O7AD8GfAC7LqxNTmqSw4ZQFPLBl5lszJjZOZ2jx1LWYlSZIkaUA1Z9H8LLAP8PuU0u4RsTdwUhX3r3FgavNUCzhJkiRpnFrjSVbKLBu4w3pErJdSugXYrYr7l5ZTKpWYN28epVKp1qlIkiRJNVfNAm9xREwCfgFcExGXA49Xcf/SEB0dHbS0tDBz5kxaWlro6OiodUqSJElSTUVKqfo7jTgIaAJ+lVJaVvUD1KmIaAJ6enp6aGpqqnU641qpVKKlpYX+/v7BtkKhQHd3N8VisYaZSZIkSWuut7eX5uZmgOaBkZKjUc1r8AallK4fi/1KAzo7O4cUdwB9fX10dXVZ4EmSJGmdVZUCLyImANOBVw8sKaW3V2Pf0nDa2tpoaGhYrgevtbW1hllJkiRJtbXK1+BFxPYR8baI+M+I+GFE3A08R3ZLhEuBNwOj7kKUVkexWKS9vZ1CoQBkxd3cuXPtvZMkSdI6bZWuwYuI7wHvAhKwBNgIuBq4DLgb6Ewp9Y1BnusEr8FbdaVSia6uLlpbWy3uJEmSVDfW1jV4RwMfAC7Otz0HmAPcC1xlcae1rVgsWthJkiRJuVUdovkF4LsppaUppWdTSh8C9gcOBu6JiMOrnqEkSZIkaVRWqcBLKX0ypfRsRdvtwN7Al4HLI+IHEbF5FXOUJEmSJI1CVW50njJfAXYC1icbsilJkiRJWotWZxbNcyNi7+HWpZQeSikdBfzbGmcmSZIkSVolq9ODNwW4KiIWR0R7RLw5ItYvD0gpXV2d9CRJkiRJo7XKBV5K6T3AlsAxwNPABcATEXFFRJwYEZOrnKMkSZIkaRRW6xq8/Jq7+Smlj6WUXkU2ycofgfcBD0XE7yPi9IjYpprJSpIkSZJGtqr3wRtWSmkBsAA4PyK2AN4CvDVf/cVqHEOSJEmStGJVKfDKpZQeAzryReuKvj6YPx8WL4YpU+CAA6BQWOtplEolOjs7aWtr8wbokiRJWudUrcCLiFcCHwBagMFv9imlt464kV72FvUs4sWf/JhtPvMl1v/7w4Pty7bdmoc+fSoTjj6Gqc1T10ouHR0dzJ49m/7+fhoaGmhvb2fWrFlr5diSJEnSeBAppersKOJu4OvAn4H+gfaU0s1VOcA6ICKagJ6enh6amppqnc5KLepZxBknt/H9HzzPVTvAuQfAX7aAVz8GH58PR9wPxx+3Hudd1DnmRV6pVKKlpYX+/sG3HoVCge7ubnvyJEmS9LLT29tLc3MzQHNKqXe021VziOZzKaW5VdyfxrknnnmUc695nocP3IPi99u5qKFszp7+fh4+fjbnXHMnTzzz6JgXeJ2dnUOKO4C+vj66uros8CRJkrTOqGaB9/mIOA+4Flg20JhS+n0Vj6FxZOOb72Ta03Dv6R9ixjZ7Lbf+vtM+yPS3vof7b74Tiq8Z01za2tpoaGhYrgevtbV1TI8rSZIkjSfVLPAOAw4CWnlpiGYCLPDq1MRHnwBg6ateOez6f+btA3FjqVgs0t7ezpw5c+jr66NQKDB37lx77yRJkrROqWaBdyCwc6rWRX0a917YMrun/Qb3PgCtr1tu/Yb3PjAkbqzNmjWLww47jK6uLlpbWy3uJEmStM5ZrRudj+AWYPiuHNWlZ/fZg4WTYKuvXgwV17/R38+WX7uEBydlcWtLsVjkoIMOsriTJEn/P3v3Hx31dd/5//meqWyQCRLNJML2LFOMFMCJ7WAvBqdAkEwQ9X7rxoe4btP4uwElKI3XbGto3LhO0jZpc5KCY3DcLUrG5ht328aUJin9YVi2qlFrKuMYk2SNsATI6sfBcmbjkU0HHHnmfv/4zMBoEEKaGWlGmtfjnDkafe7VnTcc7MObe+/7LVKRipngLQJ+ZGZHzOxZMztkZs8WcX0pN8Egm1ZDzf4O+PCH4eBBePNN/+uHP0zN/g42r6Yk/fBERERERCpRMY9o/koR15JJ4jvXQseWjSx5eBeXf+AD556/NedqOrds5DtvbuPBEsYnIiIiIlJJin0HbzjfKuJnSBkJVYeorqrmg29uI7AOlr8MV56GUzOgI/IKqTe3UV1VTah6Yu7giYiIiIhUumImeNdlvb8c+BB+03MleFPUnJo5HL3nKLHExatkhqpD494DT0REREREfEVL8Jxzv5P9vZnNAP6qWOtLeZpTM0cJnIiIiIhImShmkZVcDnjPOK4vIiIiIiIiWYq2g2dmh/CTOoAgcCXwJ8VaX0REREREREZWzDt4H8l6/zbwmnNusIjri+TF8zy6u7tpaGhQfzwRERERmdLGtYqmmeGcU5EVKZloNMqGDRtIpVIEAgHa2tpoaWkpdVgiIiIiIuPCnHOXnjWahcyyj2Oeq6LpnLurKB9QAcxsJjAwMDDAzJkzSx3OpOd5HpFIhFQqde5ZMBikt7dXO3kiIiIiUtbeeOMNampqAGqcc2+M9udURVOmrO7u7iHJHUAymaSnp0cJnoiIiIhMSaqiKVNWQ0MDgcDQP+LBYJD6+voSRSQiIiIiMr6KluCZ2SEzezb9+j7QDfxpsdYXGatwOExbWxvBYBDwk7sdO3Zo905EREREpqxi3sGLZH2rKpp50B288eF5Hj09PdTX1yu5ExEREZFJoRzu4L1crLVEiikcDiuxExEREZGKUMwjmn9sZrVZ388ysz8q1voiIiIiIiIysmIWWfkl51w8841z7nXgl4q4voiIiIiIiIygmAleMN0aATh3n6yqiOuLiIiIiIjICIp2Bw94BPhXM/s2YMCvAl8r4voiIiIiIiIygmIWWfmGmXUCH0w/+qhz7v8Ua32ZHPoG+oglYpBMMqPzMFX9MQbrQvQn51AAACAASURBVJxesgiCQULVIebUzCl1mCIiIiIiU1Ixd/Bwzv3AzPqBywHMbI5zrq+YnyHlq2+gj4WPLqT5SIKt+2Bu/PzYyVrYtBr23lDN0XuOKskTERERERkHxayieYeZHQWOA3uBk8D3irW+lL9YIkbzkQS7dxmzFq+ga89OXujuoGvPTmYtXsHuXUbzkYS/w1dCnufR3t6O53kljUNEREREpNiKuYP3B8AS4IBz7v1mdjPwm0VcX8pdMsnWfTCwajm1T7VTG0j/+0H9MrjtbuJrGtmy7wDxZLJkIUajUTZs2EAqlSIQCNDW1kZLS0vJ4hERERERKaZiVtF8K9Nh3cwuc849C9xQxPWlzM3oPMzcOLy6cT0Ecv5oBQL037uOa+L+vFLwPO9ccgeQSqVobW3VTp6IiIiITBnFTPBOpRud7wH+IV1N8ydFXF/KXFW/f/Ty7IJ5w46fST/PzJto3d3d55K7jGQySU9PT0niEREREREptmIe0fwz4LRz7nNmthKYiX8XTyrEYF0IgGldx/1jmTmmdx0fMm+iNTQ0EAgEhiR5wWCQ+vr6ksQjIiIiIlJsxdzB+whwzMx2AtXAPzjn3iri+lLmTi9ZxMlamL39McjZKSOVou6RxzlR688rhXA4TFtbG8FgEPCTux07dhAOh0sSj4iIiIhIsRUtwXPOrQfmA38FrAW6zOzxYq0vk0AwyKbVULO/g/iaRo6lq2ge27OT+JpGavZ3sHm1P69UWlpa6O3tpb29nd7eXhVYEREREZEppdh98N42s2eAdwFXASuLub6Ut1B1iL03VLOWBFv3HWD+7QfOjZ2ohfV3+n3wHq4uzRHNjHA4rF07EREREZmSzDlXnIXMPg7cCcwD/hb463QlTRklM5sJDAwMDDBz5sxSh5OXvoE+v89dMsmMzsNU9ccYrAv5xzKDQULVITU5FxERERG5hDfeeIOamhqAmky3gtEo5g7eQuALzrnnirimTDJzauacT+DCi0sbjIiIiIhIhSlaguecu79Ya4mIiIiIiMjYFSXBM7Ofwy+w8r7Myzl3RzHWFhERERERkdEZc4JnZtcA15GVzAHvAaqAt4CjwA+LGKOIiIiIiIiMwpgSPDP7c+DXAQckgCuAvwf+ED+p63bOJYsdpMh48jyP7u5uGhoaVF1TRERERCa1sfbB+whwLzADvw3C14HVwGLgZSV3MtlEo1EikQhNTU1EIhGi0WipQxIRERERyduY2iSY2ReBrzjnTmc9uwn4MyAE/KZz7qmiR1khpkKbhMnE8zwikQipVOrcs2AwSG9vr3byRERERKSk8m2TMKYdPOfc57KTu/Sz7wM3Aw8D3zazvzCzd41lXZFS6O7uHpLcASSTSXp6ekoUkYiIiIhIYcZ6RHNYzrcNuBa4HOgqxroi46mhoYFAYOh/AsFgkPr6+hJFJCIiIiJSmKIkeBnOuVecc2uB/7eY64qMh3A4TFtbG8FgEPCTux07duh4poiIiIhMWmO9g3c98CPnXOqSk/357wWOOefezjO+iqI7eKXheR49PT3U19cruRMRERGRspDvHbyxJnhJYLZz7iejnP8G8H7n3IlRf0gFU4InIiIiIiKQf4I31kbnBnzRzBKjnH/ZGNcXERERERGRPI01wTsAzB/D/IPAmTF+hkxFySR0dMCpU3DllbB8OaTvvomIiIiISHGMKcFzzq0cpzhkiuob6OPtv36Sq//ga1z+7z8+9/yt/3QVr3zht/m5j/wqc2rmlDBCEREREZGpo6hVNIvBzD5tZifN7KyZfd/Mll9i/loze9HM3kp/vSNn3Mzs983sx2Z2xsz+OV38JXvOLDN7wswG0q8nzKw2a3y+mbWbWX86rhNm9iUzq8qa814z221mvWbmzOy3ivV7Mln1DfRx/6cb+IVP/A57p/+YpS0w47OwtAX2Tv8xv/CJ3+H+TzfQN9BX6lBFRERERKaEsR7RHFdmdhd+w/RPA/8KtAL/aGbXOucuyALM7Bbg28DngO8AdwBPmtky51xnetpngPuAjwMvAQ8C/8vM5jvn3kzP+QsgDKxJf98GPAH8cvr7QeBbwPNAHLgB+AZ+gvxAek41cALYBXytoN+IKSL2Zj9//A8/48cfXET4f7bxp9k951IpfvwbG/ijfzhM7M3+strF8zyP7u5uGhoaVFVTRERERCaVMVXRHG9m1gk875z7zaxnR4HvOuc+O8z8bwMznXO/lPXsKeB159yvm5kBPwYeds59JT1+OdAP3O+c22FmC4EXgaWZpNDMluLfH1zgnDt2kVgfAhY75y7YYTSz3vRnPjzGX/+UqqL50u423vORVrr27GTB//NfLxg/tmcn829fx0t/vYP3rN1QgggvFI1G2bBhA6lUikAgQFtbGy0tLaUOS0REREQqTL5VNMvmiKaZXQbcBOzLGdoHfOAiP3bLMPP3Zs2fC8zOnuOcewt4OmvOLcBA1o4fzrl/AwYu9rlmVo+/2/f0iL+oClfVHwPg7IJ5w46fST/PzCs1z/POJXcAqVSK1tZWPM8rcWQiIiIiIqNTNgkeEAKC+Ltr2frxk7ThzL7E/NlZz0aa89owa7+W+7lm9oyZnQW6gQ7g8xeJa1TM7HIzm5l5Ae8oZL1yM1gXAmBa1/Fhx6enn2fmlVp3d/e55C4jmUzS09NToohERERERMamoDt4ZnYrcCvwbnKSRefc+jyXzT0zasM8G+v8S80Zbv3h1rkLPwm7AfgTYDPw1RFiu5TPAl8o4OfL2uklizhZC7O3Pwa33Q05d/DqHnmcE7X+vHLQ0NBAIBAYkuQFg0Hq6+tLGJWIiIiIyOjlvYNnZl/AP/p4K/7u26yc11jFgCQX7ta9mwt34DJevcT8V9NfLzWnbpi135X7uc65f3fOveic+0vgd4HfN7NCmrl9GajJek2tih7BIJtWQ83+Dvjwh+HgQXjzTf/rhz9Mzf4ONq+mbPrhhcNh2traCKbjCQaD7NixQ4VWRERERGTSKGQH71PAx51zTxQjEOfcz8zs+8CH8CtiZnwI+N5Ffuxgejy7auVq4Jn0+5P4CdyHgMNw7q7fB4H7s9aoMbObnXPPpucswU+4nuHiDKhKf81L+j7gW+cWtLyXKlvfuRY6tmxkycO7uPwD5680vjXnajq3bOQ7b27jwRLGl6ulpYXm5mZ6enqor69XciciIiIik0ohCd5ljJwA5eMh4Akzew4/8doAzAH+DMDMvgW8klVRcxtwwMzux08CfwVYBSwDcM45M3sYeMDMuvHvzj0AJPBbI+CcO5quvPkNM2tNr9sG/F2mgqaZ/QZ+q4Qf4idkN+Hvvn3bOfd2es5lwLVZvzdXm9n7gdPOuYq8xBWqDlFdVc0H39xGYB0sfxmuPA2nZkBH5BVSb26juqqaUHV53MHLCIfDSuxEREREZFIqJMH7JvBR4ItFigXn3LfN7J34xUuuBH4E3Oacezk9ZQ6Qypr/jJn9GvCldBzHgbuyK2Li35GbDvwp/tHRTmB1Vg88gN8AtnO+2ubfAv8ta/xt/B2/9+Dv2L0MPMrQncOrSO8Spm1Ov54GVo76N2EKmVMzh6P3HCWWuHiVzFB1qKx64ImIiIiITGZj6oOX7v2WEQD+K/CD9Gswe65z7r5iBFhJplofPBERERERyU++ffDGuoOXW+7whfTX9+U8L5/u6SIiIiIiIhViTAmec65xvAIRERERERGRwhTSJmGOXaTso5npUpVMGZ7n0d7ejud5pQ5FRERERGREeSd4+C0I3pX7MF0k5WQB64qUjWg0SiQSoampiUgkQjQaLXVIIiIiIiIXNaYiK0N+0CwF1DnnfpLzPAK86Jy7ogjxVRQVWSkvnucRiURIpc4VbiUYDNLb26s2CiIiIiIyriaqyEp2JU0HfNHMElnDQWAJ54uviExa3d3dQ5I7gGQySU9PjxI8ERERESlL+fTBy1TSNOA64GdZYz8DjgBbCoxLpOQaGhoIBAIX7ODV19eXMCoRERERkYsbc4KXqaRpZo8DG3MahotMGeFwmLa2NlpbW0kmkwSDQXbs2KHdOxEREREpW4Xcwfsaw/e7c8BZoAf4nnPup/mHV1l0B688eZ5HT08P9fX1Su5EREREZELkewevkASvHbgR/97dMfwjmw1AEugC5uMne8uccy/m9SEVRgmeiIiIiIjABBZZyfI94KfAuswHphOUKPAvwDeAvwC+BjQX8DkyxfQN9BFLxCCZZEbnYar6YwzWhTi9ZBEEg4SqQ8ypUStFEREREZGxKmQH7xXgQ7m7c2b2XmCfc+5qM7sx/T5UeKhTXyXs4PUN9LHw0YU0H0mwdR/MjZ8fO1kLm1bD3huqOXrPUSV5IiIiIlKx8t3BK6TReQ3w7mGevwvIZCdx4LICPkOmmFgiRvORBLt3GbMWr6Brz05e6O6ga89OZi1ewe5dRvORhL/DJyIiIiIiY1LoEc3HzGwTcAj/vt3N+C0SvpueczPwUkERytSSTLJ1HwysWk7tU+3UBtL/xlC/DG67m/iaRrbsO0A8mSxtnCPwPI/u7m4aGhpUdEVEREREykohO3itwP8G/gp4GehLv//fwKfSc7qATxQSoEwtMzoPMzcOr25cD4GcP36BAP33ruOauD+vHEWjUSKRCE1NTUQiEaLRaKlDEhERERE5J+8Ezzl32jn3SeCd+M3PbwTe6Zzb4Jz7j/ScF5xzLxQnVJkKqvr9o5dnF8wbdvxM+nlmXjnxPI8NGzaca3yeSqVobW3F87wSRyYiIiIi4itkBw84l+j9wDl3xDl3uhhBydQ1WOfX25nWdXzY8enp55l55aS7u/tccpeRTCbp6ekpUUQiIiIiIkMVcgcPM7sVuBW/2MqQZNE5t76QtWVqOr1kESdrYfb2x+C2u4ce00ylqHvkcU7U+vPKTUNDA4FAYEiSFwwGqa+vL2FUIiIiIiLn5b2DZ2ZfAPbhJ3ghYFbOS+RCwSCbVkPN/g7iaxo5lq6ieWzPTuJrGqnZ38Hm1f68chMOh2lrayOYji0YDLJjxw4VWhERERGRslFIH7xTwGecc08UN6TKVel98E7UwuZJ0AfP8zx6enqor69XciciIiIi4yLfPniFJHj/F7jZOTf8ZSoZs0pI8MBP8mKJGCSTzOg8TFV/jMG6kH8sMxgkVB0q2+RORERERGQilCLB+wpw2jn3xbwWkAtUSoInIiIiIiIjyzfBK6TIyjRgg5mtAn4ADGYPOufuK2BtERERERERGaNCErzrgUyPu/fljOW3LSgiIiIiIiJ5yzvBc841FjMQkcnM8zy6u7tpaGhQ4RURERERKZmCG52LVLpoNEokEqGpqYlIJEI0Gi11SCIiIiJSofIusgJgZsuBVmAe8BHn3Ctmdjdw0jn3L0WKsWKoyMrk43kekUjkgubnvb292skTERERkbzlW2SlkEbna4G9wBlgEXB5eugdwAP5risymXR3dw9J7gCSySQ9PT0likhEREREKlkhRzQfBD7lnPskQytoPgPcWFBUIpNEQ0MDgcDQ/4yCwSD19fUlikhEREREKlkhCd584MAwz98AagtYV2TSCIfDtLW1EQwGAT+527Fjh45nioiIiEhJFNIm4RRQD/TmPF8GnChgXZFJpaWlhebmZnp6eqivr1dyJyIiIiIlU0iCtwPYZmbr8fveXWVmtwBbgD8sRnAik0U4HFZiJyIiIiIlV0gfvK+aWQ3QDkzDP675FrDFOff1IsUnFaBvoI9YIgbJJDM6D1PVH2OwLsTpJYsgGCRUHWJOzZxShykiIiIiUvYK2cHDOfd7ZvZHwLX49/ledM6dLkpkUhH6BvpY+OhCmo8k2LoP5sbPj52shU2rYe8N1Ry956iSPBERERGRSyi40blzLuGce84596ySOxmrWCJG85EEu3cZsxavoGvPTl7o7qBrz05mLV7B7l1G85GEv8M3iXieR3t7O57nlToUEREREakgY9rBM7OHRjvXOXff2MORipNMsnUfDKxaTu1T7dRmWg7UL4Pb7ia+ppEt+w4QTyZLG+cYRKNRNmzYQCqVIhAI0NbWRktLS6nDEhEREZEKMNYjmotGOc+NNRCpTDM6DzM3Dl0b159P7jICAfrvXcf82w/wUudhCC8uTZBj4HneueQOIJVK0draSnNzs4qwiIiIiMi4G1OC55xrHK9ApDJV9ftHL88umDfs+Jn088y8ctfd3X0uuctIJpP09PQowRMRERGRcVfQHTwzW25mf25mz5jZ1elnd5vZsuKEJ1PdYF0IgGldx4cdn55+nplX7hoaGgjk7EQGg0Hq6+tLFJGIiIiIVJK8EzwzWwvsBc4ANwKXp4feATxQeGhSCU4vWcTJWpi9/THI2fkilaLukcc5UevPmwzC4TBtbW0Eg0HAT+527Nih3TsRERERmRCF7OA9CHzKOfdJYDDr+TP4CZ/IpQWDbFoNNfs7iK9p5Fi6iuaxPTuJr2mkZn8Hm1f78yaLlpYWent7aW9vp7e3VwVWRERERGTCFNIHbz5+c/NcbwC1BawrFSRUHWLvDdWsJcHWfQeYf/v5P1InamH9nX4fvIerJ8cRzYxwOKxdOxERERGZcIUkeKeAeqA35/ky4EQB60oFmVMzh6P3HCWWiPF6Mslg52Gq+mMM1oU4vWQRDwaDPFwdUpNzEREREZFRKCTB2wFsM7P1+G0RrjKzW4AtwB8WIzipDHNq5pxP4CZBKwQRERERkXKVd4LnnPuqmdUA7cA0/OOabwFbnHNfL1J8IlOC53l0d3fT0NCgo5siIiIiMm4KapPgnPs9IATcDCwF3uWc+1wxAhOZKqLRKJFIhKamJiKRCNFotNQhiYiIiMgUZc65/H7Q7HHgz4F/cvkuIkOY2UxgYGBggJkzZ5Y6HCkCz/OIRCJDmp8Hg0F6e3u1kyciIiIiF/XGG29QU1MDUOOce2O0P1fIDt47gb8HPDPbambvL2AtkSmpu7t7SHIHkEwm6enpKVFEIiIiIjKV5Z3gOeduB2YDfwDcBHzfzF40swfM7BeKE57I5NbQ0EAgMPQ/s2AwSH19fYkiEhEREZGprNA7eHHnXJtzbiUQAR4H7ga0PSGC3w+vra2NYLpRezAYZMeOHTqeKSIiIiLjIu87eEMWMasC/gvwsfTXnzrnri544QqjO3hTl+d59PT0UF9fr+RORERERC4p3zt4hfTBw8wagY8Ca4Eg8DfALwP/VMi6Utn6BvqIJWKQTDIjp/E5wSChSdj4PBwOK7ETERERkXGXd4JnZh5+oZW9QCuwxzl3tliBSWXqG+hj4aMLaT6SYOs+mBs/P3ayFjathr03VHP0nqOTLskTERERERlvhezg/SGwyzn3erGCEYklYjQfSbB7lzGwajldG9dzdsE8pnUdZ/b2x9i9q4O1JIglYpM6wVPjcxEREREZD3kneM65tmIGIgJAMsnWfTCwajm1T7VTm6lAWb8Mbrub+JpGtuw7QDyZLG2cBYhGo2zYsIFUKkUgEKCtrY2WlpZShyUiIiIiU0BBVTQBzOxaM1tjZrdnv4oRnFSeGZ2HmRuHVzeuh5z2AgQC9N+7jmvi/rzJyPO8c8kdQCqVorW1Fc/zShyZiIiIiEwFhdzBuwb4DnAd4ABLD2XKcgYLC00qUVV/DICzC+YNO34m/Twzb7IZqfG5jmqKiIiISKEK2cHbBpwE6oAE8F5gBfAcsLLgyKQiDdaFAJjWdXzY8enp55l5k40an4uIiIjIeCokwbsF+Lxz7idACkg55/4F+CywvRjBSeU5vWQRJ2th9vbHIGeni1SKukce50StP28yUuNzERERERlPhVTRDAKn0+9jwFXAMeBlYH6BcUmlCgbZtBp27+ogvqaR/nvXcWbBPKZ3Hafukcep2d/B+jvhweDkPQHc0tJCc3OzGp+LiIiISNEVkuD9CLgeOAF0Ap8xs58BG9LPRMYsVB1i7w3VrCXB1n0HmH/7gXNjJ2ph/Z1+H7yHqyfnEc0MNT4XERERkfFgzrlLzxruB82agSucc3+TLrjyd8AC4P8Cdznn/ql4YVYGM5sJDAwMDDBz5sxSh1MyfQN9xBIxSCaZ0XmYqv4Yg3Uh/1hmMEioOjSpe+ANR33xRERERCTbG2+8QU1NDUCNc+6N0f5c3gnesIuZ/TzwuivmohVECV5lUl88EREREck1YQmemdU753rGGJ+MghK8yuN5HpFIZEjrhGAwSG9vr3byRERERCpYvglePlU0XzKzfzezb5nZOjP7hTzWEBFG7osnIiIiIjJW+RRZ+WD6tRL4OjDNzPqAfwLagXbn3CtFi1BkCsv0xcvdwVNfPBERERHJx5h38JxzHc65LznnVgG1QCPwODAXaAP6zOxYccMUmZrUF09EREREiqkoRVbMbDqwDGgGPgnMcM5N3kZlJaI7eJXL8zz1xRMRERGRc/K9g5dXHzwzmwZ8AH/3biWwGDgJPA38ZvqriIyS+uKJiIiISDGMOcEzs6fxE7rjwAHgEeBp51x/kWMTqVjqiyciIiIi+chnB+8DwCn8gir/DBxwzsWKGZRItkprfK6+eCIiIiKSr3z64F0BLMc/mtkIvB94Cf9Y5j/j7+b9pKhRVgjdwbtQ30AfCx9dSPORBFv3wdz4+bGTtbBpNey9oZqj9xydEkme+uKJiIiICExgHzzn3H84555yzv2uc24JEAI+AyTSXz0z+9FY1xUZTiwRo/lIgt27jFmLV9C1ZycvdHfQtWcnsxavYPcuo/lIwt/hmwLUF09ERERECpFXkZUc/wH8NP16HXgbWFiEdUUgmWTrPhhYtZzap9qpDaT/TaJ+Gdx2N/E1jWzZd4B4MlnaOItEffFEREREpBBj3sEzs4CZ3WxmnzGzfwTiwDPAp4FXgXuAa4obplSqGZ2HmRuHVzeuh0DOH9dAgP5713FN3J83FagvnoiIiIgUIp8dvDhwBX6hlX8G7gPanXPHixiXCABV/f7Ry7ML5g07fib9PDNvKmhpaaG5uVl98URERERkzPJJ8H4HP6F7qdjBiOQarAsBMK3ruH8sM8f0ruND5k0V6osnIiIiIvnIp8jKDiV3MlFOL1nEyVqYvf0xyCk+QipF3SOPc6LWnzfVeZ5He3s7nueVOhQRERERKVNjTvBEJlQwyKbVULO/g/iaRo6lq2ge27OT+JpGavZ3sHm1P28qi0ajRCIRmpqaiEQiRKPRUockIiIiImVozH3wZPyoD96FRuqDd6IWNk+xPnjDUW88ERERkcqTbx+8YrRJEBk3c2rmcPSeo8QSMV5PJhnsPExVf4zBuhCnlyziwWCQh6tDUza5g5F74ynBExEREZFsSvCk7M2pmXM+gQsvLm0wJaDeeCIiIiIyWgUleGZ2K3Ar8G5y7vM559YXsraI+DK98VpbW0kmk+qNJyIiIiIXlfcdPDP7AvB54Dn8nnhDFnLO3VFwdBVGd/BkJJ7nqTeeiIiISIUoxR28TwEfd849UcAaIjJKub3xPM+ju7ubhoYGJXwiIiIiAhTWJuEy4JliBSIio6e2CSIiIiIynEKOaH4FOO2c+2JxQ6pcOqIpo6G2CSIiIiJTXymOaE4DNpjZKuAHwGD2oHPuvgLWFrmovoE+YokYJJPMyGmbQDBISG0TRERERKRCFZLgXQ+8kH7/vpwxdU+XcTFS4/OTtbCpAhqfq22CiIiIiFxM3gmec66xmIGIjEYsEaP5SILdu4yBVcvp2rieswvmMa3rOLO3P8buXR2sJUEsEZuyCZ7aJoiIiIjIxeR9B0+KT3fwLu157xCzrruZWYtXUPtUOwSy6gSlUsTXNPLTQweI//BZbpziTdHVNkFERERk6pqQO3hm9hDwOefcf6TfX5Tu4Ml4mNF5mLlx6Nq4ntpAThHYQID+e9cx//YDvNR5GKZ4gqe2CSIiIiKSa6xHNBcBVVnvL0bbgjIuqvpjAJxdMG/Y8TPp55l5lSIajbJhwwZSqRSBQIC2tjZaWlpKHZaIiIiITLAxJXjZ9+50B09KYbAuBMC0ruNQv+yC8eldx4fMqwSe551L7gBSqRStra00NzdrJ09ERESkwhTS6Fxkwp1esoiTtTB7+2OQ0yqAVIq6Rx7nRK0/r1KM1DZBRERERCqLEjyZXIJBNq2Gmv0dxNc0cmzPTl7o7uDYnp3E1zRSs7+Dzav9eZUi0zYhm9omiIiIiFSmskzwzOzTZnbSzM6a2ffNbPkl5q81sxfN7K301ztyxs3Mft/MfmxmZ8zsn83svTlzZpnZE2Y2kH49YWa1WePzzazdzPrTcZ0wsy+ZWVXOOiPGIoUJVYfYe0M1a+90vH7oAPNvX8f737OC+bev46eHDrD2TsfeG6oJVVfOEc1M24RgOqlV2wQRERGRylV2bRLM7C7gCeDTwL8CrcAngGudc33DzL8F6AA+B3wHuAP4Q2CZc64zPed+4PeAjwMvAQ8CK4D5zrk303P+EQgDG9JLtwG9zrlfTo9fA3wQeB6IAzcA3wCizrkHRhvLJX7tapMwCn0DfcQSMUgmmdF5mKr+GIN1If9YZjBIqDo0ZXvgjURtE0RERESmjnzbJJRjgtcJPO+c+82sZ0eB7zrnPjvM/G8DM51zv5T17Cngdefcr5uZAT8GHnbOfSU9fjnQD9zvnNthZguBF4GlWUnhUuAgsMA5d+wisT4ELHbOLR9NLKP4tSvBk6JR2wQRERGRySvfBK+gI5pmttzM/tzMDprZ1elnd5vZheUNR7feZcBNwL6coX3ABy7yY7cMM39v1vy5wOzsOc65t4Cns+bcAgxk77I55/4NGLjY55pZPbAmvc5oYxGZENFolEgkQlNTE5FIhGg0WuqQRERERGQC5J3gmdla/OTlDH5PvMvTQ+8AHshz2RAQxN9dy9aPn6QNZ/Yl5s/OejbSnNeGWfu13M81s2fM7CzQjX8c8/NjiGUIM7vczGZmXvi/dyIFuVjbBM/z5TvpKwAAIABJREFUShyZiIiIiIy3QnbwHgQ+5Zz7JDCY9fwZ4MaCorqwUboN82ys8y81Z7j1h1vnLvxf30eB/wJsziOWjM/i7xJmXvobuBRMbRNEREREKteYGp3nmA8cGOb5G0DtMM9HIwYkuXDH691cuDOW8eol5r+a/jobODXCnLph1n5X7uc65/49/fZFMwsCbWa21TmXHEUsub4MPJT1/TtQkicFyrRNyE7y1DZBREREpDIUsoN3Chjub4zLgBP5LOic+xnwfeBDOUMfwt8ZHM7BYeavzpp/Ej/xOjcnfdfvg1lzDgI1ZnZz1pwlQM0Inwv+7lxV+utoYhnCOfeWc+6NzAt4c4TPkovoG+jj+VPP87x3iJd2t3HyT/+Yl3a38bx3iOdPPU/fwAXFV6c0tU0QERERqVyF7ODtALaZ2Xr8I4hXpdsEbMFvDZCvh4AnzOw5/IRpAzAH+DMAM/sW8EpWRc1twIF0K4TvAb8CrMJPNHHOOTN7GHjAzLrx7849ACSAv0jPOZqudvkNM2tNr9sG/F2mgqaZ/Qb+UdQfAm/hF4P5MvBt59zbo4lFiq9voI+Fjy6k+UiCrftgbvz82Mla2LQa9t5QzdF7jlZU64SWlhaam5uHtE1QVU0RERGRqS/vBM8591UzqwHagWn4xzXfArY4575ewLrfNrN34hcvuRL4EXCbc+7l9JQ5QCpr/jNm9mvAl4AvAseBu3L6zn0VmA78KTAL6ARWZ3rgpf0GsJ3zVTD/FvhvWeNvA/cD78HfsXsZeBT42hhjkSKKJWI0H0mwe5cxsGo5XRvXc3bBPKZ1HWf29sfYvauDtSSIJWIVleCBv5OXSeSi0ei5wiuBQIC2tjZaWlpKHKGIiIiIFFvBffDMrBq4Fv+454vOudPFCKwSqQ/e2D3vHWLWdTcza/EKap9qh0DWqeNUiviaRn566ADxHz7LjeHFpQu0hDzPIxKJXHAnr7e3Vzt5IiIiImUq3z54ee/gpZt8D/fcAWeBHuB7zrmf5vsZIpcyo/Mwc+PQtXE9tYGcK6WBAP33rmP+7Qd4qfMwVGiCN1JVTSV4IiIiIlNLIXfwFuG3CwgCx/CPLTbgV8HsAj4NbDWzZc65FwsNVGQ4Vf0xAM4umDfs+Jn088y8SqSqmiIiIiKVo5Aqmt8D9gNXOeducs7dCFwN/C/gL9PvD5B1R02k2AbrQgBM6zo+7Pj09PPMvEqkqpoiIiIilSPvO3hm9grwodzdOTN7L7DPOXe1md2Yfl+5f7seA93BGzvdwRs9z/NUVVNERERkksj3Dl4hO3g1+E28c70LyGQnceCyAj5DZGTBIJtWQ83+DuJrGjm2ZycvdHdwbM9O4msaqdnfwebV/rxKFw6HWblyJeFwmGg0SiQSoampiUgkQjQaLXV4IiIiIlIEhezg/U/gFmATcAi/F97N+H3wnnHO3Z1uGbDZOfefixTvlKYdvLEbqQ/eiVrYXKF98EaiqpoiIiIi5W/Cq2gCrfj36/4qa523gf8P+O30913AJwr4DJERzamZw9F7jhJLxHg9mWSw8zBV/TEG60KcXrKIB4NBHq4OKbnLoqqaIiIiIlNXMfrgzQCuwa+ieVx98PKnHTyZCNrBExERESl/pbiDB4Bz7rRz7gfOuSNK7kTKn6pqioiIiExdBe3gmdmtwK34xVaGJIvOufWFhVZ5tIMnEym3qmbmmSprioiIiJTehO/gmdkXgH34CV4ImJXzEpEyll1VE1BlTREREZEpoJAqmqeAzzjnnihuSJVLO3jF0zfQRywRg2SSGTmFVwgGCanwyhC6lyciIiJSXkpRRfMy4JkCfl5kXIzUOuFkLWxS64QLqLKmiIiIyNRQSJGVbwIfLVYgIsUSS8RoPpJg9y5j1uIVdKWbn3ft2cmsxSvYvctoPpLwd/gEgIaGBgKBof87CAaD1NfXlygiEREREclHITt404ANZrYK+AEwmD3onLuvkMBE8pZMsnUfDKxaTu1T7dRmEpf6ZXDb3cTXNLJl3wHiyWRp4ywjmcqara2tJJPJc5U1Adrb21V0RURERGSSKGQH73rgBSAFvA9YlPV6f+GhieRnRudh5sbh1Y3rIWdXikCA/nvXcU3cnyfntbS00NvbS3t7O729vQAquiIiIiIyyeS9g+ecayxmICLFUtXvH708u2DesONn0s8z8+S8cDhMOBzG8zw2bNhw7l5eKpWitbWV5uZm7eSJiIiIlLGCG52LlJvBuhAA07qODzs+Pf08M08uNFLRFREREREpX4XcwQPAzK4F5uBX1TzHOfe3ha4tko/TSxZxshZmb38Mbrt76DHNVIq6Rx7nRK0/T4aXKbqS2zZBRVdEREREylshjc6vMbMjwI+Avwe+m359J/0SKY1gkE2roWZ/B/E1jRxLV9E8tmcn8TWN1OzvYPNqf54ML1N0JZj+PcoUXdHxTBEREZHyVkij8z1AEvgkcAK4GXgnsBXY7JzrKFaQlUKNzotjpD54J2phs/rgjZrnefT09FBfX3/ubl53d7eqaoqIiIiMs3wbnReS4MWAJufcD8xsALjZOXfMzJqArc45nX8bIyV4xdM30Of3uUsmmdF5mKr+GIN1If9YZjBIqDqk5G6MotHoucIrgUCAtrY2WlpaSh2WiIiIyJRUigTvdeAm59wJMzsOfMI5125m84AfOueq81q4ginBk3LleR6RSOSCO3m9vb3ayRMREREZB/kmeIVU0fwRfi88gE7gM2b2i8Dn8Y9sisgUoaqaIiIiIpNDIQnel7J+/kEgAnQAtwEbC4xLRMpIpqpmtmAwyBVXXEF7ezue55UoMhERERHJVkij871Z708A15rZzwOvu3zPfYqME93JK0ymqmZrayvJZJJgMMjHPvYxli5dqjt5IiIiImUk7zt4Uny6gzc+RqqqebIWNqmq5qhlqmpeccUV55K7DN3JExERESmefO/gFdTo3MxuBW4F3k3OcU/n3PpC1hYpllgiRvORBLt3GQOrltO1cT1nF8xjWtdxZm9/jN27OlhLglgipgTvEsLhMOFwmPb29oveyVOCJyIiIlI6eSd4ZvYF/IIqzwGnAG0FSnlKJtm6DwZWLaf2qXZqM3fJ6pfBbXcTX9PIln0HiCeTpY1zEsncycvdwauvry9hVCIiIiJSSJGVTwEfd84tcc592Dl3R/arWAGKFGpG52HmxuHVjeshp1AIgQD9967jmrg/T0YncycvGAwCfnK3Y8cOABVdERERESmhQhK8y4BnihWIyHip6o8BcHbBvGHHz6SfZ+bJ6LS0tNDb20t7ezu9vb0ARCIRmpqaiEQiRKPR0gYoIiIiUoEKSfC+CXy0WIGIjJfBuhAA07qODzs+Pf08M09GLxwOs3LlSgA2bNhw7shmKpWitbVVO3kiIiIiE2xMd/DM7KGsbwPABjNbBfwAGMye65y7r/DwRAp3eskiTtbC7O2PwW13Dz2mmUpR98jjnKj150l+RmqErqIrIiIiIhNnrEVWcv8G/EL66/tynqvgipSPYJBNq2H3rg7iaxrpv3cdZxbMY3rXceoeeZya/R2svxMeTN8nk7FT0RURERGR8jCmBM851zhegYiMl1B1iL03VLOWBFv3HWD+7QfOjZ2ohfV3+n3wHq7WEc18DdcIPbvoSkNDg3byRERERCbAmBudm1kT8HVgaW7DPTOrwS+88innXEfRoqwQanQ+fvoG+oglYpBMMqPzMFX9MQbrQv6xzGCQUHVIPfCKINMIvb6+nr179567lxcIBGhra6OlpaXUIYqIiIhMCvk2Os8nwftboN0597WLjG8EGtUqYeyU4MlU4XkekUjkgiObvb292skTERERGYV8E7x8qmjeADw1wvg+4KY81hWRKWKkoisiIiIiMn7GWmQFoI6cipk53gbelV84IhPj3JHNi9CRzcKMVHTF8zy6u7t1L09ERERkHOST4L0CXAdc7J/irwdO5R2RyDjrG+hj4aMLSQwmCKRg+ctw5Wk4NQM6IpAKQHVVNUfvOaokL08XK7qie3kiIiIi4yufO3iPACuBxc65szlj04Fn8e/obSxWkJVCd/AmxvOnnuemtpt4+h3/nSUP7+Lyf//xubG3/tNVdP7WnXzwzW18f8P3ufHKG0sY6eSXXXQF0L08ERERkVGayDt4XwJ+HnjJzD5jZr9iZreb2f3AsfTYH+WxrsiEueNFWL55O5e//yY4eBDefBMOHuTy99/E8s3buePFUkc4NYTDYVauXEk4HNa9PBEREZEJMOYjms65fjP7APA/gC8DlhkC9gKfds71Fy9EkSJLJtm6DwZWLaf2u9+FQPrfOZYuhe9+l4E1jWzZd4B4MlnaOKeYi93Lu+KKK9QrT0RERKRI8tnBwzn3snPuNiAELAGWAiHn3G3Oud4ixidSdDM6DzM3Dq9uXH8+ucsIBOi/dx3XxP15UjyZe3nBYBDwk7uPfexjLF26lKamJiKRCNFotMRRioiIiExu+RRZOcc59zpwqEixiEyIqn6/eubZBfOGHT+Tfp6ZJ8XT0tJCc3MzPT09XHHFFSxduvTcjl4qlaK1tZXm5mbt5ImIiIjkKa8dPJHJbLAuBMC0ruPDjk9PP8/Mk+LK3Ms7ffq07uSJiIiIFFlBO3gik9HpJYs4WQsztmzj+UXvHXpMM5Xi3Vu3c6LWnyfjR3fyRERERIpPO3hScULvqOOB2y7jqqcP4zUt5p7P3cQHH7mJez53E17TYq56+jC/d9tlhN5RV+pQpzTdyRMREREpvjH3wZPxoz54E6dvoI+3//pJrv6Drw3tgzfnal75/G/xcx/5VTU5nyCZXnm5d/JAffJERESkcuXbB08JXhlRglcCySR0dMCpU3DllbB8OaR3lGRitbe309TUdMHzJ598klAopCObIiIiUlEmJMEzs4dGO9c5d9+oFxZACZ5UNs/ziEQiQ3bwzAwzI5VKEQgEaGtro6WlpYRRioiIiEyMiUrw2kc51TnnLvyneBmRErzS6RvoI5aIQTLJjM7DVPXHGKwL+YVWgkFC1SEd2ZwA0WiU1tZWkskkgUAA5xzZ/4/SkU0RERGpFDqiOQUowSuNvoE+Fj66kOYjCbbug7nx82Mna2HTath7QzVH7zmqJG8CZO7kvfbaa9x1110XjLe3t7Ny5cqJD0xERERkAuWb4BXcJsHMrgXmAJdlPXbOuT2Fri0yEWKJGM1HEuzeZQysWk7XxvWcXTCPaV3Hmb39MXbv6mAtCWKJmBK8CRAOhwmHw3iepzYKIiIiImOUd4JnZtcA3wGuAxxg6aHMlqAqVcjkkEyydR8MrFpO7VPt1Gb64tUvg9vuJr6mkS37DhBPJksbZ4XJtFHIHNnMbqOgO3kiIiIiwyukD9424CRQBySA9wIrgOeAlQVHJjJBZnQeZm4cXt24fmjTc4BAgP5713FN3J8nE6ulpYXe3l7a29s5ePAgTzzxxLkdvVQqRWtrK57nlThKERERkfJRSIJ3C/B559xPgBSQcs79C/BZYHsxghOZCFX9MQDOLpg37PiZ9PPMPJlY4XCYlStXcvr06SHHNQGSySQHDx6kvb1diZ6IiIgIhSV4QeB0+n0MuCr9/mVgfiFBiUykwboQANO6jg87Pj39PDNPSqOhoYFAzg6rmfFrv/ZrNDU1EYlEiEajJYpOREREpDwUkuD9CLg+/b4T+IyZ/SLweeBEoYGJTJTTSxZxshZmb38McnaISKWoe+RxTtT686R0MnfygulG9JlkT0c2RURERM4rJMH7UtbPPwhEgA7gNmBjgXGJTJxgkE2roWZ/B/E1jRzbs5MXujs4tmcn8TWN1OzvYPNqf56UVvadvL/8y78kt81LMpmkp6cHz/N0bFNEREQqUt5VNJ1ze7PenwCuNbOfB153aq4nk0ioOsTeG6pZS4Kt+w4w//YD58ZO1ML6O/0+eA9X64hmObhUG4XnnnuOW2+9VZU2RUREpCKp0XkZUaPz0ukb6COWiEEyyYzOw1T1xxisC/nHMoNBQtUh9cArQ9FodEgbhS9/+cv87u/+7gVJX29vr3rmiYiIyKSSb6PzghI8M7sVuBV4NznHPZ1z6/NeuEIpwRMZO8/z6Onpob6+nu7ubpqami6Y8+STTxIKhdQcXURERCaNfBO8QhqdfwG/oMpzwCnONzgXmfS0ozd5ZI5sZuQe28xU2tSRTREREakEee/gmdkp4DPOuSeKG1Ll0g5eeegb6GPhowtpPpJg6z6YGz8/drIWNq327+QdveeokrwylH1sMxAI4JwbUoxFRzZFRERkMsh3B6+QKpqXAc8U8PMiZSmWiNF8JMHuXcasxSvoSlfV7Nqzk1mLV7B7l9F8JOHv8EnZGU2lTTVHFxERkamqkB28rwCnnXNfLG5IlUs7eOXhee8Qs667mVmLV1D7VDtkN9dOpYivaeSnhw4Q/+Gz3BheXLpA5ZI8zyMSiVxwZNPMdGRTREREylopdvCmAfeZ2dNm9oiZPZT9KmBdkZKa0XmYuXF4deP6ockdQCBA/73ruCbuz5PypuboIiIiUmnyLrICXA+8kH7/vpwxFVyRSauq3z96eXbBvGHHz6SfZ+ZJeWtpaaG5uZmenh5ee+017rrrriHjmSObqrIpIiIiU0Ehjc4bixmISLkYrPMbmk/rOg71yy4Yn951fMg8KX8jNUdXlU0RERGZSgo5oomZ1ZrZJjP7ppl9w8x+28xqihWcSCmcXrKIk7Uwe/tjkJUIAJBKUffI45yo9efJ5DLaI5uHDh1SERYRERGZlPJO8MzsPwPHgd8Gfh4IAfcBx83sxuKEJ1ICwSCbVkPN/g7iaxo5lq6ieWzPTuJrGqnZ38Hm1f48mXxGU2Vz6dKlNDU1EYlEiEajJYpUREREZOwKqaLZAfQAn3TOvZ1+9nPAN4FrnHMrihZlhVAVzfIwUh+8E7WwWX3wpozhqmzmUt88ERERKYV8q2gWkuCdARY557pynl8LPOecq85r4QqmBK989A30+X3ukklmdB6mqj/GYF3IP5YZDBKqDim5myJyG6MPl+w9+eSTKsIiIiIiE6oUCV4/cLdzbl/O82bgW865urwWrmBK8MqXEr6pzfM8enp6uOKKK1i6dKn65omIiEjJlSLB2w7cAWwGnsFvjbAM+BNgt3Put/JauIIpwStPIx3ZPFkLm3Rkc0rJ3dFzzg25p5c5sgnQ3d2tXT0REREZF6VodL4Z+BvgW0Av8DKwE/hr4P4C1hUpK7FEjOYjCXbvMmYtXkFXuuhK156dzFq8gt27jOYjCX+HTya90RRh2bZtG5FIRIVYREREpOzkvYN3bgGzamAeYECPcy5RjMAqkXbwytPz3iFmXXczsxavoPapdghk/btIKkV8TSM/PXSA+A+f5cbw4tIFKkU3XBGW3NYK4O/qHTx4kNOnT2tHT0RERIqiFDt4ADjnEs65HzrnfqDkTqaiGZ2HmRuHVzeuH5rcAQQC9N+7jmvi/jyZWnL75gWDQe67774LCrGotYKIiIiUi58by2Qzewj4nHPuP9LvL8o5d19BkYmUiap+/+jl2QXzhh0/k36emSdTS0tLC83NzfT09FBfXw/AQw89dEGSl9ss/frrr9eOnoiIiEy4MSV4wCKgKuv9xRR27lOkjAzWhQCY1nUc6pddMD696/iQeTL1hMPhIUlaW1vbiK0VMjt6qrwpIiIiE63gO3hSPLqDV550B0+GM1JrhVy6oyciIiJjNeF38MxsjpnZxcbyXVek7ASDbFoNNfs7iK9p5Fi6iuaxPTuJr2mkZn8Hm1f786RyhMNhVq5cyeLFi4fc0wvk3tNEd/RERERk4hTSBy8JXOmcey3n+TuB15xz+tvuGGkHrzyN1AfvRC1sVh88QTt6IiIiUlylaHSeAuqccz/JeR4BXnTOXZHXwhVMCV756hvo8/vcJZPM6DxMVX+MV2caJ9/n/8V87o88Zr/hGKwLcXrJIggGCVWHlPBVqNxm6cMle5nnuqMnIiIiw5mwBC+reuZ/B74BZLdGCAJLgKRz7hfHtLAowZtERtrVO1kLm7SrV/G0oyciIiKFyDfBG2sVTThfPdOA64CfZY39DDgCbMljXZFJI5aI0Xwkwe5dxsCq5XRtXM/ZBfOY1nWc2dsfY/euDtaSIJaIKcGrUNmVN1V1U0RERCZKIUc0Hwc2OufeLG5IlUs7eJOHKmvKWI11R6+3txeA7u5u7eqJiIhUoAmvogl0A3fmPjSz9WZ2fwHripS9GZ2HmRuHVzeuH5rcAQQC9N+7jmvi/jwRGHvVzW3bthGJRFR5U0RERMakkARvA9A1zPP/A3yqgHVFyl5VfwyAswvmDTt+Jv08M08kW0tLC729vbS3t/Nv//ZvFyR5gUCAhx566NwuXyqVorW1lUOHDtHe3o7neaUIW0RERCaBQhK82cCpYZ7/BLiygHVFyt5gXQiAaV3Hhx2fnn6emSeS62I7esFgkPvuu++i9/Syd/Q8z1PCJyIiIkMUcgevG/gD59yf5zy/O/38miLEV1F0B2/y0B08KbbMHb36+noAIpHIiPf0zAwzU2EWERGRKWoiq2hmfBN42MyqgH9KP7sV+CqwtYB1RcpfMMim/5+9O4+Pqrr/P/46CREMSIKE1TQKKksVCVBAVBCUrRZRRLStWlREWm2tC24o7gutG9pqK4siWL8/WSpIVTYNJC6sSXAjBCESEAhEyCAEIYTz++POJJPJJJMJIZmZvJ+PxzzinXvm3puowJtzzuczGObNSaNg6ADy/nIThzqdyclZm2n1jzeJW5bGzaPgYfesjEgg3lU3IXDlTWstnr+g8yzhPO+889RqQUREpJ47nhk8A0wC7gBOcr/9M/A3a+0TNfN49Ytm8MJHZX3wtsTDePXBkxoQTOVNKN88fciQIarCKSIiEqZqrdF5uQsY0wToDBwCNllrDx/XBesxBbzwkuvKJb8wH4qLabIqg4O535EfF0N+1w4krM8mwVVE46SzONC7G0RHkxCboLAn1TZ9+vQyM3reM3j++FvCqcAnIiISPuos4EnNUcALX5XN6OXEwz2a0ZMa4L1Pb/HixZUu4fSlPXsiIiLhpS764AFgjPmlMWaoMWa49+s4rnebMSbHGPOzMWadMaZvgPEjjTHfGmMOu7+O8DlvjDGPGWN2GGMOGWOWG2PO8RnTzBgzyxjjcr9mGWPivc73N8YsMMbsNMYcNMZkGmOu87lGjDHmEWPMZvezrzfGDK3uz0HCS35hPkPWFzJvjqFZz35kLZxB5qY0shbOoFnPfsybYxiyvtCZ8ROpJk/lzcTExICtFnxZa8u1Xdi+fbsqcYqIiESYahdZMca0B94DugAWMO5TninBoKtLGGOuBSYDtwGfAeOAj4wxv7TW5voZ3wd4F5jofpYRwGxjzEXW2lXuYfcBdwM3AtnAw8BSY0xHa+1P7jHvAImAJ5BNAWYBl7uPLwC+BP4G5AG/AWYaY/Zbaxe6xzwFXA+MxekPOAR4zxhzgbVW3a4jXXExLywB18C+xC9KId7zh+2zLoLLbqBg6ACeX5JKQXFx3T6nRBTvwiy+RVkCLeH0NFP39NvTMk4REZHIcDxFVhYCxTiBZgvQC2iOU0FzvLU2rRrXXAWkW2v/5PXeBmC+tfZBP+PfBZpaa3/t9d4iYJ+19nfuQjA7gMnW2r+5zzfECWn3W2tfN8Z0Br4FzveEQmPM+cAXQCdr7cYKnvUDIM9ae7P7eAfwtLX2Va8x84ED1trrq/j9a4lmmMqeN4UOV48ja+EMOg0bXe78xoUz6Dj8JrLnvk6HkbfWwRNKfVDZEk7fwOeZ8fNe2ql9eyIiIqGjLpZo9gEesdbuAY4Bx6y1nwIPAq8EezFjzElAD2CJz6klODNoFT2D7/jFXuPb4TRkLxnjLgKzwmtMH8DlNeOHtXYl4KrkvgBxwF6v44Y4VUS9HQIuquQaEiFi8pyllz93OtPv+UPu9z3jRE6EipZwbt26lalTpwZspu67jHPs2LGcfvrpaq4uIiISRo6nD140cMD9z/lAW2AjsBXoWI3rJbivmefzfh5OSPOndYDxrb3e8x1zuteY3X6uvbui+xpjrgZ64iwh9VgM3G2MSQU24/QEvIJKlqq6ZxMber11SkVjJbQVtUoAoFHWZmdZpo+TszaXGSdSG7yXcI4ZM4YhQ4aUaabuWZ5ZEd9ee2PHjtUMn4iISIg7nhm8r4Hz3P+8CrjPGHMh8AjOks3q8l0zavy8F+z4QGP8Xd/vfY0x/YEZwFhr7Tdep/4KbMLZf3cE+CfwJs4y1oo8iDNT6Hnpr8TD1IHe3ciJh9avvAG+f2A+doxW/3iTLfHOOJG64j3Dl5iYyJQpU0pm9aKionBWtVesKjN8IiIiUreOJ+A95fX5h3FmxNKAy3CanwcrHycM+c6ataT8DJzHrgDjd7m/BhrTys+1W/je1xhzMbAQuNtaO9P7nLV2j7X2SqAxzs+iE84MZ04Fzw7wLM5ST89Lf/0drqKjuWcwxC1Lo2DoADa6q2huXDiDgqEDiFuWxvjBzjiRUFHZMs7qBL5x48axZs0aLeEUERGpQzXaB88YcypOgZNqXdRdZGWdtfY2r/e+BRZUUmTlFGvtZV7vfQQU+BRZecla+3f3+ZNwll/6Flnpba1d7R7TG1iJV5EV98zd/9yfKymkUsn3EgNsAGZbaydU8ftXkZUwVVkfvC3xMF598CRMBFOoxR9PTz7vXnvbt28vs4zT91hERETKq9VG5+7wsgQYZ63NDvoCFV/3Wpz2BH/EqWJ5K06VznOstVuNMTOBHzxhzxhzAZAKPAQswNnz9hRQ0ibBGHM/zlLIm3CWUE4A+gMlbRLcobAtpXvqpgBbrbWXu8/3Bz4AXqZsAZkj1tq97jG9gdOATPfXx3CKvHS31nr9cb/S718BL4zlunKdPnfFxTRZlcHB3O/Ij4shv2sHEtZnk+Djqoo1AAAgAElEQVQqonHSWc4yzehoEmITFPYk5B1P4IuOjmbSpEncf//9JaHvhhtuYNasWdrHJyIiEkCtBjwAY8we4AJr7aZqXaDi696G07uuDc4+v7ustanuc8uB7621N3qNvxon1LXHKW7ykLX2v17nDfAoTnhrhrNf8HZr7ddeY07FCW6eBu3vA3/2BDNjzAygfO17WGGt7e8eczHwL/dzHAA+BB6w1u4I4ntXwIsQlc3o5cTDPZrRkzBVWeDzV7Clovc91JpBRETEv7oIeC8ARdbaB6p1ASlHAS9ypO9M56k7ezBvjsE1sC+77riZnzudSaOszbR+5Q3ilqUxcpTl4cnr6N6me10/rki1eQJf48aNOf/888uEuUDhzh8FPhEREUddBLx/AH8AvgPWAge9z1tr767WhesxBbzIkb59Dc269KJZz37EL0qBKK96RseOUTB0AHvXpFLw1Wq6J/asuwcVqUHTp08vmdGLjo7m2Wef5YEHHgg65HlT4BMRkfqqLhqdnwukA/uBDkA3r1fycVxXJOw1WZVBuwLYdcfNZcMdQFQUeX+5ifYFzjiRSOFdlfP777/n3nvvLdOKITo6mtGjR5+Q1gy+DdjVkF1EROqroBudG2PaAznW2gEn4HlEIkJMXj4AP3c60+/5Q+73PeNEIoV3c3Uo32A9MTGRp556qtqFW3ybr48bN459+/apkIuIiIhb0Es0jTHFQBtr7W738bvAHdbainrVSRVpiWbkyJ43hQ5XjyNr4Qw6DStfn2fjwhl0HH4T2XNfp8PIW+vgCUVCR021ZqhIVZZ5qnWDiIiEmlrbg2eMOQa09gp4PwFdrbVbgrqQlKOAFzm0B0+k+oIJfDVRyMXfjJ/694mISF2riz14IlKR6GjuGQxxy9IoGDqAjQtnkLkpjY0LZ1AwdABxy9IYP9gZJyJlJSYm0r9/fxITE8vs69u6dStTp04ts6dv0qRJRPnucw3Ad1/fW2+9VeZ43LhxPP/882X2+t14443l9v5p35+IiISi6i7RbG2t3eM+/gk4z1qbcwKer17RDF7kqKwP3pY4eLMb5LaI4Y/DH6dh/4FqfC4SBO8ZvsTExHLVO6+//nrefvvtoJZ5+gp22WdV9v1pBlBERIJR20s0PwIOu9+6HPiE8m0SrgrqwqKAF2FyXbnkF+ZDcTGHly/j3+8/StKeIm7OVONzkZrmG/qOZ19fdZZ9+tIyUBEROV61GfDerMo4a+1NQV1YFPAimBqfi9StigKf74xfTfXvC8SzvDTY6p8KhCIi9UetNzqXmqeAF7lUdEUktFQ243eiln36Ot5loFVtB6FQKCISnhTwIoACXuRS2wSR8FPVZZ/VCYA1sQzUl792EAC33nqrZglFRMKQAl4EUMCLXDmvPUO72x8ic1MayWddVO585qY0kjv0I+fVp2l324Q6eEIRCVZ1A2BtLQP1VBcNhVlChUQRkeAp4EUABbzIpRk8kfonFJaB1rTqzBLW1KyhQqOI1DcKeBFAAS9yaQ+eiPhzPLOAgQJhVWbwjld17lGdWUOo+aWm1QmRCpUiUpsU8CKAAl7k8q2imfeXm8hJbIz55hvOmbqA01Izeel86DJ2As0HX6m+eCICBJ4FrCwQvv766wBhN0vo60QsNa1OiKytmcjjPfZ3DxEJT9UNeCW/uOtV9y+gKWBdLpeVyLK1YKuNfTrWjrgGuyUeayl9HYkqe7wlHjviGmzs07F2a8HWun50EQkj27ZtsykpKXbbtm0Vvud9PG3aNBsdHW0BGx0dbUePHl3hcVRUlDXGWKDkFRUVZaOiosq8F46v6nwfxpiSz0RFRdnRo0dXejxt2jQ7bdq0oD4T7LG/e0ybNs1u27bNfvLJJ2X+Gzie45q4RrjcQ6QuuVwuz685TW0wmSKYwXop4En1bS3YatftWGfXbVttl0yfYF84H3vMYLf162Y/mvWY/Shjjt2wcIbdN6ifPWaMHXENdt2OdXX92CIS4SoLgL7HvoHQEyiOJySeiPAViq/a+D783SPYIBqqQbUu7lET4bg6nwmX8Ftf7lGXFPAi4KWAV3+s27babonH7hvUz9ri4rIni4vtvkH97OZ47Lptq+vmAUVEKhDsLKHvcTCBsCohsjqhMVJDZG286iqo1sU9jjccn4igGirht77cY9q0aXXy66yHAl4EvFDAqzc2zn3dWrAbFs7wez7r/TetBWeciEiECSYQVuUzwYbGYENkuMxEKqiG1utE/PuIlP+OwuUe0dHRdTqTp4AXAS8U8OqNLa8+bS3YjE1pfs9nZKdaC844EREJKNjQGGozkTVx7HuPmpjdDNc/mIfCPfSKjFdKSkot/kpWlgJeBLxQwKs3NIMnIhL+TnSIrIl71HSorIugWhf3CNWlv5ESfsPlHprB00sBT6pMe/BERKS2nOgQGan3qO2lv+ESfuvTPcJ1D5764IUQ9cGrP9QXT0REJPQF04vS33FNXKM2rql7VH6NuqJG5xFAAa/+yHXl0vnVzgxZX8gLS6BdQem5oiiI8ernmxMP9wyGxV1j2XD7BoU8ERERkXqgugGvwYl7JBGpSFJcEhtu30B+YT77iov5bsl8vpr6DHetgryLuvH12Cvg3HM4Y/tBWr/yBvPmpDGSQvIL8xXwRERERKRCmsELIZrBq7/St6+hWZdeNOvZj/hFKRAVVXry2DEKhg5g75pUCr5aTffEnnX3oCIiIiJSK6o7gxcVeIiInGhNVmXQrgB23XFz2XAHEBVF3l9uon2BM05EREREpCIKeCIhICYvH4CfO53p9/wh9/uecSIiIiIi/ijgiYSAolYJADTK2uz3/Mnu9z3jRERERET8UZEVkRBwoHc3cuKh9StvwGU3lCzTzHXlkn9gNy2ff5kdjWFPdibMm8KB3t3UOkFEREREylHAEwkF0dHcMxjmzUmjYOiAkr54k/59Pc8tPMJpO8EAbSf8C1DrBBERERHxTwFPJAQkxCawuGssIynkhSWpdByeSkdgKGCBtW1h/OUn8eAf/6PWCSIiIiJSIbVJCCFqk1C/5bpyyS/Mh+JimqzKYHd2Bmc+82+Ku3dj9ztTSGjSsjTIqXWCiIiISERTo3ORMJcUl1Qa4BJ7wrwptDkAWff+le6n/arsYHfrhI7DU8leleGMFxEREZF6T1U0RUKUWieIiIiISLAU8ERClFoniIiIiEiwtERTJET5a51Qsk+vqIhfTHyavFjI3fc9B7avUdsEEREREVHAEwlZPq0Tvrnlcq78+mHGfH6YiSug8VFnWKuxz5IT/6zaJoiIiIiIAp5IqPJtnXDh0lT2uM8dbAAPXArTLmjIgi5Pc87U99U2QURERETUJiGUqE2C+PJunfDjov/S9a+TMGefzbb3Z0FMTOmSTLVNEBEREYkoapMgEoG8WydkN8ugZSFkPfUQ3ZN6lx2otgkiIiIigqpoioQNtU0QERERkUAU8ETChNomiIiIiEggWqIpEibUNkFEREREAlHAEwkXapsgIiIiIgEo4ImECbVNEBEREZFA1CYhhKhNggSitgkiIiIi9YPaJIjUA2qbICIiIiKVURVNkTCltgkiIiIi4ksBTyRMqW2CiIiIiPjSEk2RMKW2CSIiIiLiSwFPJFypbYKIiIiI+FDAEwlTapsgIiIiIr7UJiGEqE2CBEttE0REREQik9okiNRDapsgIiIiIt5URVMkQqhtgoiIiIhoBk8kQpRpm3DWRUDZJZxHZ0wH4Mfvv2WfqmqKiIiIRCTtwQsh2oMnxyN9+xqadelFs579iF+UQu5P2+n8ameGrC/khSXQrqB0bE48qqopIiIiEsKquwdPSzRFIoW7bULcMqdtwoaFb3DlukLmzYHW0U2xwO9HwKJZj9GsZz/mzTEMWe9U1RQRERGRyKCAJxIhStomjLLsW5PKkBse5z//BWNh59H9jLwGFvwqll9efhPxi1JwDezL80uA4uK6fnQRERERqSEKeCIRIikuiQ23b+DhyevY99Vq1t57HQCrJ4ym4OvVPDx5XelyTHdVzfYF0GRVRh0/uYiIiIjUFBVZEYkg3m0Tcs74JQAn3XQLye62CLmuXNJ3pkNxMQXbvqEjcHjxh6T37qaiKyIiIiIRQAFPJEL5VtXMdeWWKbrS3V10pcvUBeTMWaCiKyIiIiIRQEs0RSLUgd7dyImH1q+8AceOkV+Yz5D1hcybY2jWsy+7u3UgJw4Wv/WIiq6IiIiIRAgFPJFI5VNVc8/S+by4GPYknw0WWmRu4p4h0GLQFSq6IiIiIhIhFPBEIlS5qpqjn+QMF7TMyGbv2jRGjrIs7hpLQmyCiq6IiIiIRAjtwROJUJ6qmvmF+ewrLubAk0/TZcoCPnl1PPHDr+Hh6GgmexVVOdTpTABi8rREU0RERCRcKeCJRDDvqprZgy+DKQtom3QundxVNcGprJlfmM+eL5YCcGD9arLnTeGAKmuKiIiIhB1jra3rZxA3Y0xTwOVyuWjatGldP45EmPTta2jWpRfNevYjflEKREWVVNYcmlnIzPeg8dHS8TnxqLKmiIiISB3Zv38/cXFxAHHW2v1V/Zz24InUFz5FVzYunMEXG5bwl08KmTsHYo/CA5fCuyunkbVwhiprioiIiIQhzeCFEM3gyYnk2wevXUHpuYMN4A8jYFGy12zdsWMUDB3A3jWpFHy1mu5eyzpFRERE5MSq7gye9uCJ1BO+RVeKVmVwePGHdJm6gE+nP8JDg67gJe/9du7Kmh2Hp5K9KgMU8ERERERCngKeSD3iXXSFxJ7k5OUDC2h1wSCS23QHSouuUFxMwbZv6AgcXvwh6Sq6IiIiIhLyFPBE6rGiVgkANMraDGddVG4ZZ3f3Ms4uUxeQM2eBiq6IiIiIhDgVWRGpxw707kZOPLR+5Q04doz8wnyGrC9k3hxDs5592d2tAzlxsPitR1R0RURERCQMKOCJ1Gc+lTX3LJ3Pi4thT/LZYKFF5ibuGQItBl1B/KIUXAP78vwSoLi4rp9cRERERPxQwBOpxxJiE1jcNZaRoyz71qQyZPSTnOGClhnZ7F2bxshRlsVdY0mITSgputK+AJqsyqjrRxcRERERP7QHT6Qe862seeDJp+kyZQGfvDqe+OHX8HB0NPcePUx+YT75P+Wp6IqIiIhIiFMfvBCiPnhS17LnTaHD1ePIWjiDTsNGV9o7LyceFV0REREROUGq2wdPSzRFpISKroiIiIiENwU8ESmloisiIiIiYU178ESkREnRFQp5YUkqQ5amOicystkSn83No+Cj8xox5sBO0oE9fxjAkKWpLF0yn/RfR5dcQ8s1RUREROqG9uCFEO3Bk1CQ68p1llwWFxPjU3Rl56HdjJo9ikNHDxF1DAZ/Bx+9A0/0g8f7w7EoiI3RnjwRERGR46U9eCJSI5LikujepjvdE3vScPBlALRNOpfuiT1p06QNh44eYsUpf6XwzbZ89I7zmUdSofDNts77RdqTJyIiIlJXFPBEpEK+RVcARnwLfce/QsOu3fmpZzI5cZC1YDoNk3vQd/wrjPi2jh9aREREpB5TwBORilVSdKXgZxdN1q7nniFQ2DMZ5s9X0RURERGROqaAJyIVKim6Msqyb00qQ0Y/yRkuaJmRzd61aYwcZfnovEbsPLCT9B3ryO7ZjvYFcOyVl0nfvob0nenkunLr+tsQERERqTdUZCWEqMiKhKKqFF0Z+uUhNUIXERERqUEqsiIiJ0SgoitDvzzkboTej5WPjgFg9YTRaoQuIiIiUgcU8ESkyjxFV5o8/zLpP6wlK+8bXlgCP/RLZsv050hcns6WeGjwp9vVCF1ERESkDijgiUiVJZzSigmXnUTbFRlsv6Qnnz70B9oVwGNNM9g+sDdtV2Qw4dcx7Dy0W3vyREREROqA9uCFEO3Bk3CQ68rl6NzZnPb4SzTctqPk/cNJp/H1vaPp63pJe/JEREREjpP24IlIrUiKS6L9mPE0zMll22N3A5D7zP003LIVM3Kk9uSJiIiI1CEFPBGpnuho9oz5LTnx0DTlCzAGiot5YQm4BvYl/sOP6fT5Ju3JExEREalFCngiUn0+jdCP/utV2hVA1gVnU3DZpcQtS2P8YJw9eXmZrLr+YtoXQMyTT5M9b4r25YmIiIjUMO3BCyHagyfhJteVS+dXOzNkfWG5PXdb4mH8YPjovEYYDEO/PMSLi+EMV+kY7csTERER8S9i9uAZY24zxuQYY342xqwzxvQNMH6kMeZbY8xh99cRPueNMeYxY8wOY8whY8xyY8w5PmOaGWNmGWNc7tcsY0y81/n+xpgFxpidxpiDxphMY8x1fp7lTmPMRvd9thljXjLGNDren4lIqEqKS2LD7Rt4ePI69n21mrX3Ov9brJ4wmoKvVvPw5HXMvWZuyb682PYdAPjk1fFkLZyhfXkiIiIiNSykAp4x5lpgMvA00A1IAz4yxvj9a31jTB/gXWAW0NX9dbYxprfXsPuAu4E/Az2BXcBSY8wpXmPeAZKBoe5XsvtaHhcAXwIjgfOAN4CZxpjLvZ7lOmAS8DjQGRgDXAs8G+zPQSSceDdCj7rjr+TEQ4c1OXRv24PubbrT5uSW7n15F3FS81ZsiYf44dfQadho7csTERERqWEhFfBwgth0a+00a+0Ga+2dwDbgTxWMvxNYaq191lqbZa19FvjY/T7GGOP+56ettf+11n4NjAZigd+7x3TGCXW3WGu/sNZ+AYwFhhljOgJYa5+x1k601n5urd1srX0FWAR4zxb2AT6z1r5jrf3eWrsE+D/gVzX34xEJcT578jYunEHB+7NpVwBH8vOI+/jT0j15O9PVK09ERESkhoVMwDPGnAT0AJb4nFqCM4PmTx8/4xd7jW8HtPYeY609DKzwGtMHcFlrV3mNWQm4KrkvQByw1+v4U6CHMaaX+/tpD1wGfFDJNUQiSkJsAou7xjJylGXfmlQ6Dr+JS25/HoCDW7IZOcry0XmNGDV7FE/d2YNmXXrR65m3APjVc/+hWZdePHVnDzq/2lkhT0RERKQaGtT1A3hJAKKBPJ/383BCmj+tA4xv7fWe75jTvcbs9nPt3RXd1xhzNc5yz3Ge96y1/88Y0wL41D1z2AD4l7V2UgXPjjGmIdDQ661TKhorEg48e/LyC/PZV1xM0aoMDi/+kC5TF5D9yiM8POgKxhzYyfSHhzFvjsE1sC8rLzib8x+fzuoJo+mwJod5c9IYibMnT0VXRERERIITMjN4XnzLeho/7wU7PtAYf9f3e19jTH9gBjDWWvuNz/sPAbcB3YGrcJZ5Tqzk2R/EmSn0vLZXMlYkLHjvyesw8laKHnmInHjo/fZyurdK9tqTp155IiIiIjUtlAJePlBM+VmzlpSfgfPYFWD8LvfXQGNa+bl2C9/7GmMuBhYCd1trZ/qMfxKY5d4/+JW19j1gAvCgMaain/OzOEs9Pa/ECsaJhK8q9srbsC9be/JEREREjlPIBDxr7RFgHTDI59Qg4PMKPvaFn/GDvcbn4AS4kjHuvX4Xe435Aojz7J1zj+mNE7g+93qvP85+ugestVP8PEsscMznvWKcmUDj7+GttYettfs9L+CnCr5PkbDluy/Ps+fu/Mens3dNKiNHWd77Jcx76nrtyRMRERE5TiET8NxeBG4xxtxsjOlsjHkJSAL+DWCMmWmM8W478DIw2BhzvzGmkzHmfmAgTqsFrNPFfTIwwRgzwhhzLs7yykKc1ghYazfgVMScaow53xhzPjAV+J+1dqP7vv1xwt0rwDxjTGv361SvZ1kI/MkY81tjTDtjzCCcWb33rbVaayb1VqBeeSMffpsR38K8OYZmPfux8tExJefVJ09EREQkOMbJQKHDGHMbTu+6NsDXwF3W2lT3ueXA99baG73GXw08BbQHNgMPWWv/63XeAI/iFERpBqwCbne3TPCMORUnvA13v/U+8GdrbYH7/Ayc9gq+Vlhr+7vHNMDZg3cDcBqwByf0PeS5ThW+96aAy+Vy0bRp06p8RCTspG9fQ7MuvWjWsx/xi1JI37Gu9PjDjym47FL2rkllZcpMOp3agV8Mv55jm77jq5cf5NShIyA6moTYBBVgERERkYi2f/9+4uLiAOLcq/2qJOQCXn2mgCf1QfrOdJ66s0dJFc3snu3o9cxbrHx0DJ0+30TcsjRGjnJ+XXphCbTz+uuRnHi4ZzAs7hrLhts3KOSJiIhIxKpuwAu1JZoiEuGqsicPSpdsLpv6AADrb7tKSzZFREREAlDAE5FaFWhP3tUPzixto7AohV+06gjA7h6d2DLt7+Sfdyb/+h/s/WCuqmyKiIiI+NASzRCiJZpSH/nuyct+bxodrh5H1sIZdLrsBvIG9eFg+mruGwTPLdWSTREREakftERTRMKTT5+8Q58sBmD7ro0UDB1Ay5Q1zPklzJmrJZsiIiIigSjgiUid8t2T1/U1pwjuwLHPsndNKqNGWq75FnYP6KklmyIiIiIBaIlmCNESTamvcl25zgxccTE/LvovXf86CXP22Wx7fxY/LnufQWOe0ZJNERERqVe0RFNEwlZSXBLd23Sne2JPmv9mFH8cBglffkf7W+6j5bosQEs2RURERKqiQV0/gIiIt5IlmxTywpJUui513h849lm2xMMtI+G5Zc6SzVaLUvjFBzMBKOzzK7ZMGETL34/lnx9kkpM8jewOyRzo3U3N0UVERKTe0BLNEKIlmiKOYJZsFgwdwN41qXS5uyFDvj7MPz+EtgdKr6VlmyIiIhKOtERTRCJGMEs245alMX4wDPn6MPPmGGxyVwA+f3wsWQtnaNmmiIiI1CsKeCIS0gJV2Rw5yrL43IYlzdEPjL8DANO+HYU9uqjSpoiIiNQrWqIZQrREU8S/ypZsEhPD4Y8X0+eGCWQteIPW/5xRZsnmC0tUaVNERETCj5ZoikjEqmzJZuO1X8KWLQCc8tzkcks2VWlTRERE6hNV0RSRsOJbZbPj8NTSk5lfMnIULD63IV+/eBjXwL5Oc3R3pc3dPTpRfP9wfjH8ev71v+/4atBc0ocWq8qmiIiIRAwt0QwhWqIpUjXeSzabrMpgd3YGZz7zb4q7d2P3O1M4nLLUWbKp5ugiIiISpqq7RFMzeCISdpLikkqDWGJPDuxM5/bMfzNvTiZNbrqHrWcnAE6lzdbu5uh/7+M0R3cN7Muyay5g4NhJLL/pEs7avJd5szN5KbeQja1fJ3/wlZrRExERkbClGbwQohk8kerJdeXS+dXODFlfWK6oypZ4uG+g0xw9tnsvWi39gs/mvsiF197LxP5wc6Zm9ERERCT0qMiKiNRbSXFJbLh9Aw9PXse+r1azdOoD7I6FPV3PpmD9Ssb9egLtCmDfXbcBcPpr77ArFp5Y4RRhWfnoGABWTxitIiwiIiIS1hTwRCQiBNMc/bQVGRgDP/RLJn5RCo2uGw3AkaaN1TdPREREwpoCnohEnEDN0R/pD60Owtbbr4OoKA5mrAJg8aLXaNb1fFqs/45Whc74Zl168dSdPej8ameFPBEREQl5CngiEnECLdkcMtRZqtm4W284dqzckk1P37zlN11CzHnJzJsNTy4sZOO81zWjJyIiIiFNAU9EIlJlSzZP2n8QgJ/fnuF3yebJTZsD8HHOJxR9mYkB7l4Jg8Y8oxk9ERERCWmqohlCVEVT5MSotMpmHLzZDZ5cDp/Nfp4LR97F9kt+RYM1GbQ65LRVyLrgbM5/fDqfjB9JhzVbOG1FBo/0hyFDb6PlWV050LubWiuIiIhIjVIfPBGRCniWbOYX5rOvuJjvlsznq6nPcNcqOKlrNy5tFw/LUzjk+rFkRm93Y2dGL3FRCo02fwaPT+etre9zoGURMxs4gZDlrwFqrSAiIiKhQwFPROoF7+bouSNbceWuyXyaVMgLSzLon+qMGTj2WbbEwwv93TN6t19HYlQUJ2dtdq6xp4gnVhj2JJ9N44xs3nthLCe3PI1zpy1g3pxMRlJIWm4anRM6A2hGT0RERGqdlmiGEC3RFKk9ua5cp89dcTE/LvovXf86CXP22Wx7fxaF/zeTix54jcxNaSS3v4CCoQPYuzoVY6BZz358/48nSO7Un9GjYph5ThHRR2HFDDhrL/zualhxBhyLgtgYzeiJiIhI9ajRuYhIEIIpwhK3LI03uzl793bdcTMnZ+cAsDW2iBWn/JWDb7Xlwu3QqhA+mQmuaS2YHf1bCoucGb30nemqvCkiIiK1QjN4IUQzeCJ1I1ARlvFD4BQbw1tzisjcuIIz/jyRvWtSuW8QzJlrMMOG8cXI3vS58WEm9oeeP8CwTTD5fHi/I6Sdrhk9ERERCY6KrIiIVFOgIizjLh/Ood07YM5U2v52LHGZm7hlJDy3FFwD+xI/fz7733kCgEvbXUKfzVlEsYO7VzrtFQ60SWDtr7vwuiuFjfNeJ3/wlaq6KSIiIieEZvBCiGbwREJDZTN6BxvAH0bAT6fEsOSNIrIWzqDTZTeUaa1ghg1jfa/T6Trxn0zpDtd9CY2Pll5DVTdFREQkEM3giYjUEN8ZvaJVGez+bj2LF73GEysML+9OZltcK2AR23dtpLVva4X588la/QZdJ8LYdHAN6svu/DwObslm+dO3MGj2WubNzuSl3EI2ttaMnoiIiNQczeCFEM3giYSuSvfpxcObyV7N0kfdw+KZjzBk9JPs6Xo2LdKz+Gzui1x47b1M7A83Z5b9vGb0RERExJeqaIqInECeWb2HJ69j31erWTr1AXbHwrZzfsHKj2fQve8oALYnxZP+w1p++fcZAKTf/TuIimJ7UjwATyx3Wi2sfHQMAB/dOYyY85KZNxueXFjIxnmvk759japuioiISLVoiaaISBWVaZY+qhV/TXmR/7yzjSa/u5FFZ8EIYOnTt3DyRkjOdj5jz+sCQHy2E9byu55Ni0UpFKyfB49PZ8PK/9EpCwxOQRZWPkNO/DOa0RMREZFq0UBeYPcAACAASURBVAyeiEg1JMUl8bfXNvH9tOcYcqgtr33ovD9tIQw4kEDqzQOcN77+xu+MnvnmGwDuWlV2Ru+T8SOJ6dqNebPh7qWF5P77b2TPm6JZPREREakS7cELIdqDJxKmiovJ+2gus5+9nts/P8oHHWDShfCf/8K2ONjX0OmLFwUsypjD0POuYvuAHrT6NJO8i7qRmLKWzM2fkdyhH6NHxXCAIma+51N5Mw7e6Aa5LWL44/DHadh/oAqziIiIRDDtwRMRqSvR0bQadi1XfLiZ76c9x+BDbfnsTTjDBX1z4bJtJ5Hxm+4AxM9fRMHQAZyWmknMMfh67BUQFcXJWZsBSNpTxNy5hoNdOgAw/IYGPHAptDzoFHF5a04RfW6YQLMuvXjqzh50frWzZvVERESkhGbwQohm8EQihHtG7/5Zf+AXu4+Uq5q5JQ7md3b23Hlm9AqGDmDv6lSMcZZsfv+PJ0ju1J8Xz4e7VhlcAy/iiE+rhdNSM3npfOgydgLN1WpBREQkolR3Bk8BL4Qo4IlEllxXLvmF+VBczI9L5vPV1Ge4axX80LcbX3Vry69f/oCVj46h0+ebiFuWxiMXW55cDlkLZ2CspePwm9jZBE7u04/4RSmVt1rQEk4REZGIooAXARTwRCJXpX304mD8EDjFxvDWnCIyN67gjD9PpPDzVNoedAJfp2GjeXflNK7tMxYLuAb1Y22P1gycNJsp3eG6L3327Ll76310XiPmXjOXNk3aACjwiYiIhInqBjy1SRARqQWePnr5hfnsKy7mO68ZvZO6dmPc5cM5tHsHzJlK29+OJS5zE2/0dpZx/tzpTKB8q4UfV78Bk2YzNh1cg/ryQ952jmzN4bqR8EAazJ0Nk3N/5rlNw0g7HY5FQWyMWi+IiIhEMgU8EZFaUqaP3shWXLlrMp8mFfLCkgyG3JBRMq7xV9lcfTX8dEoMd68solHWZmh/Ad1f/D/AabUwJCrKJ/AtZ9U7TzDkhsd5xl5Cn5+ziGIHd690QuKBNgms/XUXXnelsHHe6+Rrz56IiEhE0hLNEKIlmiL1i/cevSarMtj93XoWL3qNJ1YYfuiXzOe/v4he9/2D2PYdOKl5K+KWpWHAWarZ8yb2dO9Ii/XfsfitRxjyh8dLl3AaMMMuZ32v0+k68Z8VLuG8dyDsbxrD3869k8ZJZ3GgdzeFPhERkRChJZoiImHGe0aPxJ40cuXyYvEMvmnpzOpds8I9q5eRzcEG2UztBrdmQPP5SyiYOJOE9d8BUNDRuUbJjN55Z9Ni/nyyVr9B14mULOHc7a7CeeOoBjz/wVHmzAVDEfAcoEItIiIikUABT0QkRPju09u1fBn/fv9RkvYUcXOmE+4ABk6azZY4eKG/0xsvMbcAeh4LuIRz4wcz6Tj8Jvp9d5Rf7TL83PwU9h7eT/IdMYxZVcTEFc71oAjmTCAnboICn4iISJjREs0QoiWaIuKrslYLy0Z1p//D06u8hDNzUxrJHfqxOxZOurAfebePpuOVY5jYH55Y4fTaO+gu1DKlBzycqsqcIiIidUVLNEVEIlBlhVluTA1uCefJWZsBaFkIWXfczM8d2wPwl9XgGtiX+EUppYVaUpz3qlKZs1EDBT4REZFQoYAnIhImqruEk6+/Jj1xLS1feIW8WGhV6LReOHmDEwA9gS8+KgpXu7YA7O10Bs0DVOb07Nn7rrkCn4iISKhQwBMRCSNlCrNc35PTLr+uTOBb89pE/vxFMd+0gk/awZgMaPvEZLb/bTLJm+CpS6J55JNiGn27iVb/nFEm8AGc8eHnAGwecTHNo6IoOCsRgItnfIIZdjkrb/415z8+nfRhPei67GueXH645Nn8BT6AS7erUqeIiEht0R68EKI9eCJyvHJduRydO5vTHn+Jhtt2lLx/tNFJfHXrlawclswVV02gWcOmNPpxP4/0d2b5shbOoNNlN/Djue1pvmErsz+bwjUXjGXxzEcYMvpJ9nQ9mxbpWby7+o3SVgy/GcbuH7I5uCWbnFGXcvHbnxL9c2ngy4sFDLQ6WPp8qtQpIiJSNdXdg6eAF0IU8ESkxhQXk/fRXO6f9Qd+sfsIN2dCu4LS0xZY2xbu/XU0M+YWlyvUsmjWYwz9/cRyhVp8A99i9xJOT+D7KW87+dmZTOkBz3zi3OvBS2Fqn5MY+8URJq7wKdyiwCciIuKXAl4EUMATkZrm20z9YO533P/1ZJr+VMRzS8uGvoMN4Km+MC4dYs5oR+MWiQErc87+bArXXDSOHzufQfOvN5e0YtjZBE7u0xcs7F2bxn2DYM7cKlTqVOATEREBVEVTRET88G2mDjDN9ecKC7U8m+L+4PocDjbICViZ03fP3iH3Xr42ByDrjjEYa+k4PI1/fBS4Uqcn8Pnrxbe1RQOG9x/HkQt6Y6OjiG8UX1LEBVTIRURExEMBT0SknglUqCWYypy/mLMEgO9/cyG9KG3FAO7CLe5VIk7gC1Cps9LAdxTmvEpO3KvuQi6wswkq5CIiIuJDAU9EpJ473sqcAHbDt6Sf7rRi2NEY2h6ERlmbMV7bACqq1Bko8OXu2kpxbi7rh/di2JxMnlx+pOSapYVcioDngNJlnpr1ExGR+kgBT0REyvAX+L6fO5vBj7/E5W86lTnPcDl79h4a4OzZ8w58v7smmklLimny/MtgbZnAR/sLOPO95UDprF9VA98Zb6+usJDLAz6FXCqb9fvsF3DhNji9UPv8REQk8ijgiYhIpZLikmDMeLjxLkhLI3/zVxzJ+obm777Psyk7gdLAN+ES+PDMYtr1gGc/dtZ3Trw0ilvWHuPUR56h4OXpnLphKwBNt+yA848FF/gWLGCHu5DLHavBNcgp5HLr2jS+O/UIz37iFHKpbNavKApijoHvPr/cFjH8dvBd7PvVuQC0+3o7rfdbilolaNmniIiEDVXRDCGqoikiYaW4uFzga7htZ8npXbFgfPrgVVap09OawbcX3+qHbqTXM2+xesJoej09g8xNaSR36Ac4/fucQi6eyp39iF+UUq59w+4fsrEbs2l5CI42P5UG+Xu5bgQk7adc64bK+vd5ln0W9e5JwvpsElxF2vcnIiInhKpoiohI7YqOhv79Sejf3zme9CqkpcHOneSdEsWO5PYAbAlQqXOCe5lnl+ffouCtjwPO8AVdyGXBAjLefqy0f9/ab9k+sBcvLs6g1SFnxm93fh4Ht2RXedln6SygQwFQRERChQKeiIjUDHfgA2jlfgEBK3UGG/ha/ePNoAu5xBw4BMCOC7vQokEDvrl5GENWZLCn61m0WLS8pH9foGWfDTfnOrOAzZoS/eN+rveaBaxKAPS3DLTRnn3kx8Wwp3snFYMREZHjpoAnIiInXDCtGSoKfB0mTWX71PmclraeW0bCc8uociGX5t9sAeDHc5xZxTKBr6r9+96ufBawagGwCOb8vdJloL7FYJIKy84KxuTlU9QqQYFQRET8UsATEZFaV63A5/qBgw1+4MEBsPhsOGtf1Qu5tP3sSwCKmsQC5QNfVZZ9BpoFDBQAK1oG+s9e8H7+IPrNWlFBMZjKZwX9VQfVLKGISP2lgCciInWussBXtCqDg7nfEfXdZs6cn8qkT/KZ5A5InkIuT33sTj4Z2RxskF1u1q/t+u/IawztXn+X9AG/ocWKNYA78B2r2rLPQLOA1V8GCgPmLsP85jdlisFw6qnY/L1M7gV3rik7KziqaS8uf7ey6qA1M0uY37WDZg1FRMKMAp6IiIScMoEvsWfpiVeKgyvk4p71m3AJbIuHWf/dyO7OvWl5EHbHwrkvzqJgVgpxH39asuyz9SvTwVJu2WegWcDjXgbqrxjMpT3586eZ/NC3G4kfr/aaFVxTYSD0VAd99mPnR3A8s4SBZg3TTnfev3R7DBPOuslvKFRIFBGpXQp4IiISPqpYyMXfrJ9H80MQBbQspGSf34MDIKVTDK/vK+LZpWkA/M09C+hZ9pngngU8542F8PuJZQPfsROzDHTHRV1JTM1kx0Xnkeg7K+gnEBZcdilPfZKKMcc3S/hyFWcNS2cJi4ApzvcfZEisaBYxwVXEzy2akXNuIlB2qWlFofFI8RFOij6p5F4KkSJSHyngiYhIRAg065e/+Sv2xjfkwK/O43BaSpkZv0mfwKRPioDSZZ8ls4DuZZ8PumcB334vg0Otm9P8x/3sjoXOz8+gYFZKwABYnWWgxQ1jADja0AktgZaF5v3lJjoOTwWOY5YwwKzhT3nbyc/OLLeXMDcO/vNe8CEx0Cxiez9LTasaGtscqLkQWdWZSYVMEalrCngiIhLZvPr1JXjeO/38cjN+MXn57GpqSv6w32zt1/y/JS+VCYEeDfbtL50F/CqXgxtyAwbA6iwDjT7shM4Gh51AFGhZqGcZKFR/ljDQrOEOf3sJ16Q5s4YD+xH/4cfVWlrqPYvY4Mf9fpea+obIikLjsegooopLE2BNhMjqzkx6QmZ1lrNW9fh4gmpFwVRBVSR8KeCJiEi95G/Grx3QxzMgGc4ZdXu5ZZ+ePzTHrFrD+8tf5/Q9R6sWACtZBho74RG2Pze5XDGY+JQvKIqCtp9+CUePBlwW6r0MtLqzhIFmDSvaSwjuEFmNpaW+gdDvUlPfEFlJaIxKaIHNyysJjccTIn1nIqs6M+kbMquznDXY4+oE1arOfoZ6UA3XewQTsAEKfi7we+zvM8EeV+ceCv6hSQFPRESkAhUu+wToMZpe190XVACscBnoV7kcbJDrtxjMy73gzrSys4Jn/m0K26e/Xy4QtnzhFbbEOdeu7ixhoFnDivYSlhwT/NJS30BY0VJT59gJkYFC4w8Blp5WKUQGuXzVX8isiRBZ2XF1g2pVg2m4BNVwvUd1A3bfrRWPOd7j47lHoIq8oRawK7tG46SzONC7G0RHh19wtdbqFSIvoClgXS6XFRGR8Le1YKtdt2OdXbdttd0493W75dWn7eeznrH/yZhp/5Mx034+6xmb/uK9NvO2q+xPbROsdeKStWCPRFHp8YEG2Psvwf7+Kmwx2J2Nna83jIy291+KPYbzemAANicOu7VLkt3WL9kWg93VGLvxgo52Xe4qu7FPB3skCrutXzdri4rstn7JZY53dz3LWrCL3nrE2uJiu29QP/tDY+cZNiycYbPef7PkmTYsnGGttXbVhNHWgvPVWpt521XWgv341fF+jz9//BZrwX72+FhrrbUZ2akl18zYlFbu2FrrfBaca/k59n0G32Pf567K9+F7vOitidaC3d31bGuLi8seFxXZfYP62c1x2C3x2H2D+tp9A/t6Hffz+/MO9rha97i4m90Ziz1mjLXDhtm8bh3srljsMYO1rVrZY2Bf7FX2+HcjKPPf1f2XYn93lTOmsHlTW+z1meoc17d7/G4E9r+je9miRieV+f+6ODqq0uMD8bH2QHzjoD4T7HF17hHo1yvf412xzq9Dx3ON2rjHlnjsiGuwsU/H2q0FW2vit4WguFwuC1igqQ0mUwQzWC8FPBEROUGOHrU2JcXumfaK3Tj3dbvu+y/sxrmv2/QX77VLpk+w76ydYZdMn2BTnrm1SoFwp58/3FQUCgP9ATYvFrvpl63ttn7J9pgxduTVzh98tl3czW7rlxwwUPiGxDLHtnrhK9jQWJ0QGegagUJmTYTIExFUAwXTGgmRtRFUw/UeNRqwTYWfCfb4eO5xJOHUMsehHrCrco2PZj1m9w3qZ48ZY0dcg123Y10Qv6DXjOoGPC3RFBERCQUVFIMpo4fXP/upDtpk7ZflisV4lidV1jLirtXOsWfvoO9xy0Jo+e0uDjbYxYMDYPHZcNY+ePbjDAAeHhjN902Lefu9VA61bk5bz5LAKi4t9d1r2Oofb5Zbalp6/AYMvS7gfsRAS08r26/YKGsznHVR0MtXq1r0puSYwHsgAx1X5x4nYslsoGI9gY7r0z2CXV7sqnQ5cV/iP/y43GeCPa6JewRa0lwjy6Jr4R4Fl13KUympFLxyGfG/n0jB0AE8vySVguJiwoUCnoiISDiqJBD6FospUUEo9N47WNH+lGbb80sCoqegjGcv4dPLSv/gU5WQGGivYdyP+7nNs6/MXZBmUkmV0tRKQ2ObV9/iP13a02VpCkVREJ+ykvRtq6sXIj9dX7bIje/xcRS9qWqIPBFBNVAwrYkQWRtBNVzvoYAd2vfwXCN7VQaM7Fn22HcvdohSwBMREakvgp0l9D12B0R27iTvlCh2JDuBwOVTYKYqIdHD3yyiAd55zzn2hMiKqpSWD41badn3xpLQ+Ncvqh8ifWciqzoz6QmZPSdNKgmNTZ5/GawNPkQGOK5WUA1y9jNUg2q43kMBO7Tv4blGTF6+3+NwoIAnIiIiVeMOiACt3C/AT4VRKj6u4ixiVSvh+QuNLX+OIopjJaHxeEJkMMtX/YXM60sqXFZtOWuwx9UJqlWd/Wy0dDn/ufqt0A2q4XoPBeyQvofnGkWtEvweh4VgNuzppSIrIiIiIcddoMa+847z9fDhKhWsSX/xXr9VTX2L2gQ69lf0xrfKoL+iNzVdNbA696is8I73sW/higkDo+3vT3RxDPdzReI9vAsXeSrbru91un07fYZd3zPJHonCru/pHG+8oGNJoZaNF3S0G/t0KHPs7zPBHh/PPTb2qVpF3pApclOVa8Rj121bXVI5uOS4llW3yIqx1lYaAKX2GGOaAi6Xy0XTpk3r+nFERESkqopLl6/Spg1ccAF8/nnJctYf3MtZm1RxOWtt9P3yzH422VE6+xmoD55ntvNE9o+rT/c42ACe7OeZ+YXdjSldXry69Ph6n16HD14S+DPBHtfUPe5cAz+f2pSGXv0Xfz61KY389Gz03OPt9/x/JtjjmriH5xqjr3qU3jNTiFuWxshRlocnr6N7m+7Upv379xMXFwcQZ63dX9XPKeCFEAU8ERERqVWVBNNwCarheo/qBOxDpzbFAI327q/yZ4I9rs49wjVgBzreEg/jB8PirrFsuH1DrTc7V8CLAAp4IiIiIvVIEAGbNm2gb1/nc8F8JtjjIO4RbEXeUArYga7ROOksDvTuBtHRJMQm1Hq4AwW8iKCAJyIiIiIiUP2AF3XiHklERERERERqkwKeiIiIiIhIhFDAExERERERiRAKeCIiIiIiIhFCAU9ERERERCRCKOCJiIiIiIhECAU8ERERERGRCKGAJyIiIiIiEiEU8ERERERERCKEAp6IiIiIiEiEUMATERERERGJEAp4IiIiIiIiEUIBT0REREREJEIo4ImIiIiIiEQIBTwREREREZEIoYAnIiIiIiISIRTwREREREREIkRIBjxjzG3GmBxjzM/GmHXGmL4Bxo80xnxrjDns/jrC57wxxjxmjNlhjDlkjFlujDnHZ0wzY8wsY4zL/ZpljIn3Ot/fGLPAGLPTGHPQGJNpjLnO5xrLjTHWz+uDmvi5iIiIiIiIVCbkAp4x5lpgMvA00A1IAz4yxiRVML4P8C4wC+jq/jrbGNPba9h9wN3An4GewC5gqTHmFK8x7wDJwFD3K9l9LY8LgC+BkcB5wBvATGPM5V5jrgLaeL3OBYqBOUH9EERERERERKrBWGvr+hnKMMasAtKttX/yem8DMN9a+6Cf8e8CTa21v/Z6bxGwz1r7O2OMAXYAk621f3OfbwjkAfdba183xnQGvgXOt9auco85H/gC6GSt3VjBs34A5Flrb67g/J3AE0Aba+3BKnzvTQGXy+WiadOmgYaLiIiIiEiE2r9/P3FxcQBx1tr9Vf1cSM3gGWNOAnoAS3xOLcGZQfOnj5/xi73GtwNae4+x1h4GVniN6QO4POHOPWYl4KrkvgBxwN5Kzo8B/l9F4c4Y09AY09TzAk7xN05ERERERKQqQirgAQlANM7smrc8nJDmT+sA41t7vVfZmN1+rr27ovsaY67GWe75ZgXne+Es0ZxWwXMDPIgTIj2v7ZWMFRERERERqVSoBTwP33Wjxs97wY4PNMbf9f3e1xjTH5gBjLXWflPBM40BvrbWrq7gPMCzOLOAnldiJWNFREREREQq1aCuH8BHPk5REt9Zs5aUn4Hz2BVg/C7319bAzkrGtPJz7Ra+9zXGXAwsBO621s7090DGmFjgt8AjFTwzULJU9LDX5yobLiIiIiIiUqmQmsGz1h4B1gGDfE4NAj6v4GNf+Bk/2Gt8Dk6AKxnj3ut3sdeYL4A497JKz5jeOLNqn3u91x/4AHjAWjulkm/lGqAh8HYlY0RERERERGpUqM3gAbwIzDLGrMUJXrcCScC/AYwxM4EfvCpqvgykGmPuBxYAVwADgYsArLXWGDMZmGCM2QRsAiYAhTitEbDWbnBX3pxqjBnnvu4U4H+eCppe4e5lYJ4xxjNreMRa61toZQxO1c8fa+hnIiIiIiIiElDIBTxr7bvGmOY4yxvbAF8Dl1lrt7qHJAHHvMZ/boz5LfAU8CSwGbjWuyIm8HfgZOA1oBmwChhsrf3Ja8x1wCuUVtt8H6dvnseNQCxOYRTvdg0rgP6eA2NMB5xwOTjIb73E/v1VroIqIiIiIiIRqLqZIOT64NVnxpjTUCVNEREREREplWit/aGqgxXwQoi7KXtb4KdAY2vJaqBXwFH1W6T9jEL9+wmF56vtZzjR9zsR16+pa56C85deiYTOr4ty4oXC/+ehLtJ+RqH+/YTC8+n3ntq7Zqj93nMKsMMGEdpCbolmfeb+F1fldH6iGWOOWWu1XrQSkfYzCvXvJxSer7af4UTf70Rcv6au6VVZ+Ke6/vcutScU/j8PdZH2Mwr17ycUnk+/99TeNUPw956gnyGkqmhKyHm1rh8gDETazyjUv59QeL7afoYTfb8Tcf1Q+Pck4Uv//QQWaT+jUP9+QuH59HtP3VwzLGmJpoiIhCRjTFPABcSFyN+iiohIhIuE33s0gyciIqHqMPC4+6uIiEhtCPvfezSDJyIiIiIiEiE0gyciIiIiIhIhFPBEREREREQihAKeiIiIiIhIhFDAExERERERiRAKeCIiIiIiIhFCAU9ERMKWMSbWGLPVGPN8XT+LiIhEPmPMUWNMpvs1ra6fx58Gdf0AIiIix+EhYFVdP4SIiNQbBdba5Lp+iMpoBk9ERMKSMeZsoBPwYV0/i4iISKhQwBMRkVpnjOlnjFlojNlhjLHGmCv9jLnNGJNjjPnZGLPOGNPXZ8jzwIO188QiIhLuauj3nqbu9z81xlxcS48eFAU8ERGpC42B9cCf/Z00xlwLTAaeBroBacBHxpgk9/krgGxrbXbtPK6IiESA4/q9x+0Ma20P4I/ATGNM0xP7yMEz1tr/396dx9hVlnEc//4oi0hJBFEkEUQhghgSlMUFSUoENWoMaqLiAq2ICnFDCAa31C1ucdeoCAkoBRXQGhQF0S7BooBsIhZBkJ0iixoUhNbHP8476eF6h06nwzDc+X7+uXPe7TxnbtLTZ973vOfRjkGSNIslKeDVVbW4V/Y74JKqOqJX9idgcVUdl+TTwJuBNcBcYBPgC1X18emNXpL0WDSZe8+QMX4OfKSqLp6OmCfKGTxJ0oySZFNgT+DcgapzgRcCVNVxVbV9Ve0IHAN8x+ROkjRZE7n3JNkqyWbt56cCuwHXTWecE+EumpKkmWYbYA6waqB8FfCU6Q9HkjQLTOTe8yzg20n+CxTw3qq6e/pCnBgTPEnSTDX4DEGGlFFVJ01LNJKk2WDce09VrQB2n/aI1pNLNCVJM82ddM/WDc7WPZn//8uqJElTYWTuPSZ4kqQZpaoeAH4PHDhQdSCwYvojkiSNulG697hEU5I07ZLMBXbuFT09yR7A3VV1I/BF4HtJLgYuAN4O7AB8a9qDlSSNhNly7/E1CZKkaZdkHrBkSNXJVTW/tTkSOBbYDrgSOKqqlk9XjJKk0TJb7j0meJIkSZI0InwGT5IkSZJGhAmeJEmSJI0IEzxJkiRJGhEmeJIkSZI0IkzwJEmSJGlEmOBJkiRJ0ogwwZMkSZKkEWGCJ0mSJEkjwgRPkiRNiyQbJTk+yW3t0/+HSNIU8x9WSZI0XV4KPBN4OfCsdixJmkImeJKkx6Qk85JUkic82rFMlSQ7tmva49GOBSDJSUkWr2efhe0aKsn7Bqr/AdwDXAPcBdw90Hd+r++XNyh4SZqlTPAkSTNWkhcmWZPkF0OqVwDb0SUN6zPmbUk+MFD22ZZUvHig/FdJTl3vwB9jHoHE8o90383x/cKqWgFsSvedzamq3w30+0Hrd8EUxSFJs44JniRpJnsr8DXgRUl26FdU1QNVdXtV1bCOSeaM84zXUmD/gbJ5wE398iSbAi8Alkw6+tlrdftu/t0vTLIJsBfwOWCfJBv366vqvqq6HXhg+kKVpNFigidJmpGSbAG8Dvgm8FNg/kD9Q5ZotuV9f0/yyiRXAf8BnjZk6CXAvmPJRZItgecAn6FL9MY8D9i8tSfJTkl+kmRVknuTXJTkgF48n07y2yHXcUWSj/WOFyT5U5L7k6xMcuQ6fg+7JTm7nXNVku8l2aZXvzTJV5N8LsndSW5PsnBgjF2TnN/OeVWSA9rv7qDW5Pr2eWkrXzrQ/5g283lXkm+0RG0yXgE8CHwUWN2OJUlTyARPkjRTvR64uqquBk4BFiTJOvo8HjgOeBvwbOCOIW2WAHOBvdvxfsCfgTOAvZM8vpXvD9xcVde247nA2cABdAnhOcBZvZnFRcDzkuw0dqIkzwZ2b3UkORz4FPAhuk1GPgh8Ismhwy4myXbAMuAyupmvlwHbAj8caHoo8C+6pPRY4KNJDmxjbAQsBv7d6t/eYujbp30eQLdE8jW9uv2BndrnoXSJ9vxh8U7AAuC0qnoQOK0dS5KmkAmeJGmmOowusQP4BV2C9eLxmwOwCXBkVa2oqqur6l+DDarqGuAW1s7WzQOWVdUdwHXAvr3yJb1+l1fVt6vqD1V1TVV9uLV/Vau/ErgCeGPvdG8CLqqqP7fjPKnFXAAABCBJREFUjwBHV9WPqur6qvoR8CXgHeNczxHAJVX1wapaWVWX0i1b3T/JM3vtrqiqj7W4vgtc3PtdvYQuQTukXcP5dAlm39/a511taWV/85N7gHe18/8U+Bnr/h7+T5In0+2eOfadngK8opVLkqaICZ4kacZJsgvdrNL3AapqNd0GHG9dR9cH6JKsdVnKQxO8pe3nZcC8JJsBzwd+3Ytpi7YM8qq2FPReYFeg/2zgIrqkjjbbeDBrZ++eBGwPnNiWW97bxvgwXQI2zJ50yVy//cpW1+8zeM23AWOJ0y7ATe3ZtjEXjnO+Yf5YVWvGGXt9vAVYWVWXA1TVZXTX8uZJjCVJGsfG624iSdK0O4zuHnVLb1VmgAeTbFVV94zT777xNl0ZsAT4SpIn0i23XN7KlwHvBs6l9/xd83m697YdA1wL3Ee3rHPTXptTgc8keW7rvz0tSWXtH1UPBwZ3j1zDcBsBZwEfGFJ3W+/nBwfqqne+tOPJerix18cCYLckq3tlG7XyL04yNknSABM8SdKM0jY/OQQ4mi7R6juTbobs6xt4miXAFsD7gWuqalUrXwacTLf5x/VVdUOvz37ASVX14xbnXGDH/qBVdXOS5S3GzYHzxsauqlVJbgGeUVWLJhjnJcBrgb+2WczJWAnskGTb3nXuPdBmbNfKOZM8x8NKsjewG91saX/55xOA5Un2qqqLH4lzS9JsY4InSZppXglsBZxYVQ95x12SM+hm9zYowauq65LcSDdbt6hXfmuSG4B3AqcPdLsWeE2Ss+hmsT7B8JmsRcBCupm9owbqFgJfTfJP4OfAZnSbp2xVVcNmsb5BN+N3WpLPA3cCOwNvAA4fWDo5nl8CfwFOTnIssCVrN1kZm9m7g25G8mVJbgbuH/zdb6AFwIVVtXywIskFrd4ET5KmgM/gSZJmmsPoZr6GJRhnAnu0JZAbagldsrN0oHxZKx98/91RdBuOrKBbNnkO3QzboNOBJ9Lt6Lm4X1FVJ9Dt8Dkf+EM713zWvqaAgfa30m36Mqed70rgK3QvCv/vOq5vbIw1wEF0m9RcBJwAfLJV39/arAbeQ7fZy63ATyYy9kQkeRzds4hnjtPkTODg1k6StIEysUcVJEnSqEiyL3A+sHNV/WWKx14IHFRVe2zAGEuBy6rqfVMVlyTNFs7gSZI04pK8OsmBSXZsL2c/HvjNVCd3Pbu3XT8f9iXug5K8qe0Uut8jFJckjTxn8CRJGnFJDqF7B9/2dM/xnUf3Pr67HoFzbQ1s3Q7/tj7P8iXZku5F7gB/r6o7pzo+SRp1JniSJEmSNCJcoilJkiRJI8IET5IkSZJGhAmeJEmSJI0IEzxJkiRJGhEmeJIkSZI0IkzwJEmSJGlEmOBJkiRJ0ogwwZMkSZKkEWGCJ0mSJEkj4n/vLUyJdcUdrwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAANNCAYAAADF2dxQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xt8XFW5+P/Pk2m5BEiKlEthaCgmVEBuBbmICFS5HEVF4QcKnCPaYyvw9YKgHDxeUAQPKHhHG08AxRseRY4CxwtYtAhyR1EKJNBYB8pNIAFqCyTr98feCZNp0qbtpBOmn/frtV+TrP3svZ/ZM5PXPFlrrx0pJSRJkiRJL38NtU5AkiRJklQdFniSJEmSVCcs8CRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJLWCRGxa0RcEhELI2JpRDwbEXdExMci4hW1zm+sRcSlEdFd6zzWVETsERG/i4ieiEgR8eFRbDM5Ipbl8XuNELPG5yciTo6IE9dkHxX72zwino+IH60gpikilkTEz6t13JeziDgwIv4nIh7Kz11PRPwhIuZERGOt81tbIuJzEfFirfOQVBuRUqp1DpI0piLifcBFwH354z3ARGAv4H3An1JKb69dhmMvIl4JNKWU7qx1LmsiIu4ENgI+BDwFdKeUHlnJNqcCF+a/fiuldNIwMWt8fiLiL8ATKaWDVncfw+zzJ8ARwJSU0lPDrJ8NzAWOTCn9b7WO+3IUEecAHwduAC4BuoCNgdcCs4HvpJQ+WrsM156IKALbpJRurnUuktY+CzxJdS0i9gPmA78h+xK8rGL9esDhKaW67AGJiMaU0pJa51EtEfEC8O2U0smrsM3dwBbA34AdyIqlf67GsQPYYKRtx6jA+xfgGuADKaWvD7P+j8B2QDGltM722ETEu4AfAO3A+1PFl5uIaAL2SSn9phb5VUP+t6p/XX6dJY2OQzQl1buPAwmYXVncAaSUni8v7iKiIR+2eW8+rO+xiPhu/h9xyuKuj4i/RMR+EXFjRPwzIroj4j35+jfnQ0CXRMTdEXF4xfZn5UMG94iIKyKiNx9O9r2I2Lwi9tiI+HVELM6PsyAi/isiNqqIuzQferpLHv8McF3Zuu6K+P8vIm7Oj7skIh6MiIsrYqbmOT2Wn48FEXFaRDSUxWyXP5fTI+Ij+TDYZyPipojYdzQvUkS8OiL+NyKeyofQ3hUR7y5bf2JEJGACcFJ+vJX+hzIi9gFeDVwGfBtoBo4aJm6485Mi4usR8f6IWAAsA95duW0e2w3sDBw4kFv5/kZzHkfwK6AEvGeYY+4I7AN8d+BLf0TskD+Xrvw1fSgifh4ROw+z/aYR8aX8dV8WEY9GxNURsUO+/o3583hdxXatefsJZW03RMS1wxzjexHRNcy2p0bEmRHxtzzPefm69SLiC/l7/en8s7F55X6H8SngH8CHKos7gJRSb3lxFxEbRsR5+Wf2+YgoRcTXIqK5Iv9SRFwZEW+KiDvLPn/l78298ue03HsjIt6Sr3tTWdv0iPhR2Xvhnog4qWK7gXN/XP4aPQwsBbaLiI0i4sJ4abj5kxFxa0QcU7b9ckM0I6IQEf8REfeVvd7fiYitK+JuyD9/+0Q2vHVJRDwQ2d/FqNjfp/L9/TN/vf4cEf9vRS+UpLE3odYJSNJYiYgCMBO4PaX091Fu9k2y4VxfB64i6x05GzgoImaklJ4oi92KbCjY+WRfwj8AXBwR2wJHA+cCPWRfPq+MiO1TSg9XHO9nwI+Bb5EVCGcDO0XEPimlF/KYNrJenC8DzwGvAs4A9s6fX7n1gJ+TDdv7L0b4Ox9Zz+bl+XIW2ZfHlvL95V+sb8z3+Umgm2y44BeBVwKVvWinAPcCA9fFnQ1cExHTUko9w+WRH2d6fpzHgA+SfVE/Abg0IrZMKZ0PXA3sB9wE/AS4YKT9VZiVP14M/J3sHM4CvjfK7Y8EDgA+CzyS5zict+d59fDSeVkGq3UeB6WU+iPiUuATEbFbSulPZasHir7yonwb4HHgY8ATwGbAicAt+fZdeU7NeU5FsvfJLcAmwEFk7+v7R8qpSj4E3EX23DclG0L7c+BOYEme8/Zk52gu8I6RdpR/3l4FfD+ltHRlB86L6p8DB5J9Rv8A7E72Odg3IvZPKT1ftskMss/4f5G9/nPI3pudKaUbU0q3RdZL/B7gOxWHOxFYTFaoExGvzo+3EPgI8CjwJuDrEfGKlNI5Fdufn8fPzn//B/AV4J3Af5Kdw42BXche6xVpz3P8Gtnfk2lkn9HXR8SeKaUny2K3Br5L9jn7NNnfs/PI/s79II85k+z9fDbZsNj1yF6HTVeSh6SxllJycXFxqcsF2JKs9+6Ho4x/VR7/jYr2vfP2c8rars/b9ixrewXwItkX1K3L2nfLYz9Q1nZW3nZhxbGOy9uPHyHHICvaXp/H7Vq27tK87T3DbHcp2fVqA7+flsc2r+B8fD6P2bui/SKgH9gh/327PO7PQKEs7jV5+ztXct5/SFZgblvRfg1ZQdtc1paAr4/y9WwkK7huqjgP/cArV3R+yo71NLDpKI/3F+D61T2PK9jvtDzuK2VtE8gKhxtWsm2B7HrTB4Hzy9o/k+d08Aq2fWMe87qK9ta8/YSythuAa4fZx/eArmG2vZ38MpGK9+NPK7b/Wv7cG1eQ5/75tmeP8nV6cx5/6gifvfeUtZXy9+A2ZW0b5u+Lr5e1nVr5viIruJYB/1XWdi3ZUOFNKo79TbK/G80V5/66YfJfAPzPSp7j54AXy37fOd/fVyriXpu3f6bitewHZpS1Bdk/b64qa/s/4NbRnHMXF5e1uzhEU5JecnD+eGl5Y0rpFrIvVW+oiF+cUrq9LO5Jsv/w35WG9tQtyB9bhjnm9yt+/zFZkTiQCxGxfUT8ICIeAfqAF4Df5at3HGafPx2mrdKtA8eLiGMiYpthYmYC9+TPv9ylZF/4KnsPr04p9ZX9/uf8cbjnXXmc69LyvayXkhVp+61k+5EcAzQxtIfrYrLclxvyOILfpmEmN1lFq3oeh0gpLQTmAcdHdh0WwL+Q9bRVDqmdGBGfyIf9PU/2XnqerEgsf6/8S57TvNV7Smvs6pRS+VDKgc/I1RVxC8jO0dQqHnvgfF9a0f4jsn80VH7O70gpPTTwS8quwexk6Pv6e2TnunyY5vFkvVqXAEQ2pPogss/nPyNiwsBC9s+MDcn+mVRuuM/yLcAREXFuZLOGbjjyUx007HNOKd2YP5fK5/xQSumOsrgE3M3Q53wLsGdkw5gPjew6R0njgAWepHr2BNl/xaeNMn5giNPiYdY9zPJDoJ4cJu75yvb00nCvDYaJf6Qi9kWyYVibAUTExmSTxOwDfILsC+JreGnIWuWXuyUppd5hjjNESun3ZMMPJ5ANxSpFdk3hu8rCNmPkczGwvtw/Ko4xcM3jyr6ArupxRmsW2Rf2X0bEpIiYRFZ0dgMn5kN4V2a4vFZVNZ5fRx731vz39wDPkv1DoNxXyHqHryAbBroP2fvlrwx9HTYn652qlcrPzvMraR/uszNgUf64Kp/zZZWFe0qpn2zI5Arf17lllJ3PlNLjZEO63x0vXVd5InBjSum+/PfJZD2qp5L9k6Z8+XlZTLnh3jenkA1dPYpsJMGTEfGzyGaCHcmq/m1b6XMm6yX8GPA64JfAPyLi2oiYsYI8JK0FFniS6lbem3Qd2X+ZiyuL56UvNVOGWbc1WcFYbVuV/5L/N3+zslxm5sd+b0rpv1NKv08p3QY8M8L+Rj01ckrpf1NKbyCbeOQg8utr8uvzyHMY6VxA9c5H1Y8T2UQhryMrDBaR3VJhYNmO7Fq1w0axq2pMNV2N53cFWe7vza/pOwK4PKX0bEXcCcAlKaVPpJR+nVK6JX+/VBYOj5Ndf7ciA9ezrV/RXrmvgdjKuJFiqyrv+V0AHBYRKyoEB/wDWD8ihlwrlhdmW7L67+tLyHoaZ0bErsAeeduAJ8mGPnaQFd3DLb+q2OdwE8Y8m1L6ZEppOtn76mSyYaoruk1G1f+2pZReSCl9MaW0O9nfrOPIPlu/GuXrIGmMWOBJqnefJxvi9e2y4W2D8iFtb8l//W3+eEJFzGvIhrddNwb5HV/x+zFkvWrX578PfMGrnAF0TrUSSCktSyn9jmziFsi+mEL2fHca5j/y/5bnVa3hfdeRfSneuqL938h6YP+4GvscmFzlfWTDXcuXN5H1mrx3tbIdWWUPx4A1Po8pmzzkB8ChZK/TRCqGZw6EUvFeiYi3kRUu5f4vz+nAFRy2O3/ctaL9rSyvG3hV+WcsL0RHNYtqFZxNVkx+uXymx7JcNomIN+a/DnyOT6gIO4bsHwKr+zn/P7Ie+ffkyxKySYwASCk9A/ye7PP1p5TSbcMsw40KGFFK6ZGU0iX5cXaOiOGKbBj5b9u+ZJM4rdHftpTSUyml/yG7lnAy1R1SK2kVOYumpLqWUropn4L8IuD2iPgm2XC1iWRftGaTTY7xi5TSfRHRDnwgIvrJvrBtR/bl8e/Al8YgxXfk05n/hpdm0fwTLw29u5Gs5+ZbEfEZssLkeLKJW1ZbRHyWrAfnOrKeu0lkMxuWX9/3JbIi5OqI+BTZ5BBvJusx+GZKqVozLX6GrEdqXp7Xk2TP8c3Ax9IKZuAcTt4L+m/AgpTSf48Q8wvgrRGxeT68rhruBt4ZEceSTWqyNKV0N9U7jx1kw/M+AtybXz9V6SpgVkR05vm8hmwCk4cq4i4kK2h+EREDs2huRDaz5M9SSvNTSqWIuJ5sBs9esp7QQ8iG9la6jKyoviwi/ptsCOgZZJORjLmU0g/zGSo/Tla4XgI8wEvXcM7Jc7yW7HN9LfDFfNjuTWSfp88At/HSLJGrmsOLEXEZ2Wy6zwI/yYu6ch8kG3L9+4j4Fllh3ERWZL0571FfoYi4DbiS7PV9iuzvxvHA79Mwt4LJc/trZLdAOTWvf3/FS7No/g346qo9W4iIa8hm8bydrEd4GtlzfzBfJNVKrWd5cXFxcVkbC9kXuEvJvswsI/sCdgfZl7rNy+IayK4ruY/s+p/Hyb4YFiv2dz3wl2GO003ZTHNl7UNmf+SlWTRnkF1/8wzQS/blcouKbfcjK/SeI5vE5dtkxWkCTiyLuxR4doTnfylDZ9F8M9nEDqX8fDxKNsFF5YyJU8kmgnkiPx/3AqcDDWUx2+W5nD7C8z5rFK/Pq/Pz8HSez13lz22k8zjCvt6Wx31oBTGH5TEfGe78jPZYFfEtZF+ce/Nty8/3Ss/jKI9xR77vj46wflOynr3H8vfL78lmSlxulkuyWV+/Sla4PZ+/B34OtJbFbE020cc/yIqJ7/DSrLInVOzvPWRDJf9JVnwcxcizaH64YtuBWSOPrGj/97x991Gen4PIblfxMNk/K3rIbjNwGrBxWVwj2S0I/pY/94fIbo3SXLG/EnDlMMcZadbQHfN8E3DQCDluTzZ0s5Qf+7F8f/+xsvORrzufrBB9Mj/XD5DdzuAVZTFDZtHM2wpktza4n5f+tn2Xshl/y57bXcMct/K1/Gh+bh8n+8z+jexWDNsO97xdXFzW3hIpVePyAknSqoiIs8juL7V5GnpvPUmSpNXmNXiSJEmSVCcs8CRJkiSpTjhEU5IkSZLqhD14kiRJklQnLPAkSZIkqU5Y4EmSJElSnfBG5+NIZHcf3ZrsfliSJEmS1m2bAA+nVZg4xQJvfNma7MankiRJkgRQBB4abbAF3vjyDMDf//53mpqaap2LJEmSpBrp7e1l2223hVUc3WeBNw41NTVZ4EmSJElaZU6yIkmSJEl1wgJPkiRJkuqEBZ4kSZIk1QmvwZMkSZLWEX19fbzwwgu1TkO59dZbj4aG6va5WeBJkiRJdS6lxCOPPMLTTz9d61RUpqGhgWnTprHeeutVbZ8WeJIkSVKdGyjutthiCxobG4mIWqe0zuvv7+fhhx9m8eLFTJ06tWqviQWeJEmSVMf6+voGi7vNNtus1umozOabb87DDz/Miy++yMSJE6uyTydZkSRJkurYwDV3jY2NNc5ElQaGZvb19VVtnxZ4kiRJ0jrAYZnjz1i8JhZ4kiRJklQnLPAkSZIkrZMOOuggPvzhD9c6jaqywJMkSZI0bj3yyCN86EMforW1lQ022IAtt9yS173udXzrW99iyZIla7TvK664grPPPrtKmY4PzqIpSZIkaVx68MEH2X///Zk0aRLnnnsuu+yyCy+++CL3338/F198MVtvvTVvfetbl9vuhRdeGNWslK94xSvGIu2asgdPkiRJ0qiVSiXmzZtHqVQa82OdfPLJTJgwgdtuu41jjjmGHXfckV122YWjjjqKq6++mre85S1ANlnJt771Ld72trex0UYb8bnPfQ6Ae+65hze96U1svPHGbLnllvzrv/4rTzzxxOD+K4doXnTRRbS1tQ32FB599NGD61JKnH/++Wy//fZsuOGG7LbbbvzkJz8ZXH/99dcTEVx33XXstddeNDY28trXvpb77rtvrE/TEBZ4kiRJkkalo6ODlpYWZs6cSUtLCx0dHWN2rH/84x/8+te/5pRTTmGjjTYaNqZ8FspPf/rTvO1tb+Puu+/mve99L4sXL+bAAw9k991357bbbuOXv/wljz76KMccc8yw+7rtttv44Ac/yGc/+1nuu+8+fvnLX/L6179+cP0nPvEJLrnkEr75zW/y17/+lVNPPZUTTjiB3/3ud0P285//+Z9ccMEF3HbbbUyYMIH3vve9VTgbo+cQTUmSJEkrVSqVmD17Nv39/QD09/czZ84cDjvsMIrFYtWP19XVRUqJ6dOnD2mfPHkyS5cuBeCUU07hvPPOA+C4444bUkx96lOfYsaMGZx77rmDbRdffDHbbrst999/PzvssMOQ/S5atIiNNtqII444gk022YSWlhb22GMPAJ577jkuvPBCfvvb37LffvsBsP3223PDDTcwd+5cDjzwwMH9nHPOOYO//8d//AdvfvObWbp0KRtssEG1Ts0KWeBJkiRJWqnOzs7B4m5AX18fXV1dY1LgDai8V9wtt9xCf38/xx9/PMuWLRts32uvvYbE3X777cybN4+NN954uX0+8MADyxV4hxxyCC0tLWy//fYcfvjhHH744bz97W+nsbGRe+65h6VLl3LIIYcM2eb5558fLAIH7LrrroM/T5kyBYDHHnuMqVOnrsKzXn0WeJIkSZJWqq2tjYaGhiFFXqFQoLW1dUyO19raSkRw7733DmnffvvtAdhwww2HtFcO4+zv7+ctb3nLYA9fuYHCq9wmm2zCHXfcwfXXX8+vf/1rPvWpT3HWWWdx6623Dj7nq6++mm222WbIduuvv/6Q38sndxkoTisL47HkNXiSJEmSVqpYLNLe3k6hUACy4m7u3Llj1nu32Wabccghh/D1r3+d5557bpW3nzFjBn/961/ZbrvtaG1tHbKMdE3fhAkTeOMb38j555/Pn//8Z7q7u/ntb3/LTjvtxPrrr8+iRYuW29e22267pk+1quzBkyRJkjQqs2bN4rDDDqOrq4vW1tYxHZoJ2ayW+++/P3vttRdnnXUWu+66Kw0NDdx6663ce++97LnnniNue8opp/Dtb3+bd73rXXz0ox9l8uTJdHV18aMf/Yhvf/vbg4XqgKuuuooHH3yQ17/+9Wy66aZcc8019Pf3M336dDbZZBNOP/10Tj31VPr7+3nd615Hb28vN954IxtvvDHvfve7x/Q8rAoLPEmSJEmjViwWx7ywG/DKV76SO++8k3PPPZczzzyTUqnE+uuvz0477cTpp5/OySefPOK2W2+9NX/4wx8444wzOOyww1i2bBktLS0cfvjhNDQsP5Bx0qRJXHHFFZx11lksXbqUtrY2fvjDH7LzzjsDcPbZZ7PFFlvw+c9/ngcffJBJkyYxY8YMPv7xj4/Z818dkVKqdQ7KRUQT0NPT00NTU1Ot05EkSVIdWLp0KQsXLmTatGlrbSZHjc6KXpve3l6am5sBmlNKvaPdp9fgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeBpRqVRi3rx5lEqlWqciSZIkaRQs8DSsjo4OWlpamDlzJi0tLXR0dNQ6JUmSJEkrYYGn5ZRKJWbPnk1/fz8A/f39zJkzx548SZIkaZyzwNNyOjs7B4u7AX19fXR1ddUoI0mSJGl4EcGVV1454vru7m4igrvuumvEmOuvv56I4Omnnx6LFNeqCbVOQONPW1sbDQ0NQ4q8QqFAa2trDbOSJElSrSzqWcQTS54Ycf3kxslMbZ46Jsd+5JFHOOecc7j66qt56KGH2GKLLdh999358Ic/zBve8AYWL17MpptuOibHfjmywNNyisUi7e3tzJkzh76+PgqFAnPnzqVYLNY6NUmSJK1li3oWseM3dmTJC0tGjGmc2MiCUxZUvcjr7u5m//33Z9KkSZx//vnsuuuuvPDCC/zqV7/ilFNO4d5772Wrrbaq6jFX1/PPP896661X6zQcoqnhzZo1i+7ububNm0d3dzezZs2qdUqSJEmqgSeWPMGSF5bwvbd/j9tn377c8r23f48lLyxZYQ/f6jr55JOJCG655RaOPvpodthhB3beeWc+8pGP8Mc//hFYfojmLbfcwh577MEGG2zAXnvtxZ133rncfq+55hp22GEHNtxwQw4++GC6u7uXi/npT3/KzjvvzPrrr892223HBRdcMGT9dtttx+c+9zlOPPFEmpubed/73lfdJ7+a7MHTiIrFor12kiRJAmDHzXdkxpQZa+14Tz75JL/85S8555xz2GijjZZbP2nSpOXannvuOY444ghmzpzJ9773PRYuXMiHPvShITF///vfecc73sH73/9+TjrpJG677TZOO+20ITG33347xxxzDGeddRbHHnssN954IyeffDKbbbYZJ5544mDcF77wBT75yU/yiU98ojpPugos8CRJkiSNO11dXaSUeNWrXjXqbb7//e/T19fHxRdfTGNjIzvvvDOlUomTTjppMOab3/wm22+/PV/60peICKZPn87dd9/NeeedNxhz4YUX8oY3vIFPfvKTAOywww7cc889fOELXxhS4M2cOZPTTz99zZ9sFTlEU5IkSdK4k1ICsiGYo7VgwQJ22203GhsbB9v222+/5WL23XffIfsdLmb//fcf0rb//vvT2dlJX1/fYNtee+016tzWFgs8SZIkSeNOW1sbEcGCBQtGvc1AUViNmMrCcrjthhs6WmsWeJIkSZLGnVe84hUcdthhfOMb3+C5555bbv1w96zbaaed+NOf/sQ///nPwbaByVjKYyrbhou54YYbhrTdeOON7LDDDhQKhVV+LmuTBZ4kSZKklVrw+ALuWHzHcsuCx0ffw7aqLrroIvr6+th777356U9/SmdnJwsWLOCrX/3qcsMqAY477jgaGhqYNWsW99xzD9dccw1f/OIXh8S8//3v54EHHuAjH/kI9913Hz/4wQ+49NJLh8ScdtppXHfddZx99tncf//9fOc73+HrX//6uLvebjhOsiJJkiRpRJMbJ9M4sZETfnbCiDGNExuZ3Di56seeNm0ad9xxB+eccw6nnXYaixcvZvPNN2fPPffkm9/85nLxG2+8Mb/4xS94//vfzx577MFOO+3Eeeedx1FHHTUYM3XqVH76059y6qmnctFFF7H33ntz7rnn8t73vncwZsaMGfz4xz/mU5/6FGeffTZTpkzhs5/97JAJVsarGM0YVK0dEdEE9PT09NDU1FTrdCRJklQHli5dysKFC5k2bRobbLDBau1jUc+iFd7nbnLj5Krf5HxdsKLXpre3l+bmZoDmlFLvaPdpD54kSZKkFZraPNUC7mXCa/AkSZIkqU5Y4EmSJElSnbDAkyRJkqQ6YYEnSZIkSXXCAk+SJEmS6oQFniRJkiTVCQs8SZIkSaoTFniSJEmSVCcs8CRJkiSpTljgSZIkSRqdvj64/nr44Q+zx76+MT3ciSeeyJFHHjmk7cYbb6RQKHD44YcvF3/99dcTETz99NPLrdt9990566yzxirVccMCT5IkSdLKXXEFtLbCwQfDccdlj62tWftadPHFF/OBD3yAG264gUWLFq3VY78cWOBJkiRJWrErroCjj4ZddoGbboJnnsked9kla19LRd5zzz3Hj3/8Y0466SSOOOIILr300rVy3JcTCzyNWqlUYt68eZRKpVqnIkmSpLWlrw9OOw2OOAKuvBL23Rc23jh7vPLKrP3008d8uCbA5ZdfzvTp05k+fTonnHACl1xyCSmlMT/uy4kFnkalo6ODlpYWZs6cSUtLCx0dHbVOSZIkSWvD/PnQ3Q0f/zg0VJQPDQ1w5pmwcGEWN8Y6Ojo44YQTADj88MN59tlnue6668b8uC8nFnhaqVKpxOzZs+nv7wegv7+fOXPm2JMnSZK0Lli8OHt89auHXz/QPhA3Ru677z5uueUW3vnOdwIwYcIEjj32WC6++OIxPe7LzYRaJ6Dxr7Ozc7C4G9DX10dXVxfFYrFGWUmSJGmtmDIle/zLX7JhmZX+8pehcWOko6ODF198kW222WawLaXExIkTeeqpp9h0001pamoCoKenh0mTJg3Z/umnn6a5uXlMcxwP7MHTSrW1tdFQ0R1fKBRobW2tUUaSJElaaw44ALbbDs49Fyr+6U9/P3z+8zBtWhY3Rl588UW++93vcsEFF3DXXXcNLn/6059oaWnh+9//PvDS99Zbb711yPaLFy/moYceYvr06WOW43hhgaeVKhaLtLe3UygUgKy4mzt3rr13kiRJ64JCAS64AK66Co48cugsmkcembV/8YtZ3Bi56qqreOqpp5g1axavfvWrhyxHH3304PwQm2yyCXPmzOG0007jyiuvZOHChfzhD3/gXe96FzvuuCOHHnromOU4XoSzzowfEdEE9PT09Ax2L48npVKJrq4uWltbLe4kSZJeJpYuXcrChQuZNm0aG2ywwerv6Iorstk0u7tfaps2LSvu3vGONc5zOCeeeCJPP/00fX199Pf3c/XVVy8Xc8cdd7Dnnnty++23M2PGDJYtW8Zqt5CKAAAgAElEQVT555/PD3/4Q7q7u9liiy04+OCD+fznP89WW201JnmurhW9Nr29vQNDSptTSr2j3acF3jgy3gs8SZIkvfxUrcCD7FYI8+dnE6pMmZINyxzDnrt6NxYFnpOsSJIkSRqdQgEOOqjWWWgFvAZPkiRJkuqEBZ4kSZIk1QkLPEmSJEmqExZ4kiRJ0jrAyRXHn7F4TSzwJEmSpDo2ceJEAJYsWVLjTFTp+eefBxi833Q1OIumJEmSVMcKhQKTJk3iscceA6CxsZGIqHFW6u/v5/HHH6exsZEJE6pXllngSZIkSXVu4AbfA0WexoeGhgamTp1a1YLbAk+SJEmqcxHBlClT2GKLLXjhhRdqnY5y6623Hg0N1b1qzgJPkiRJWkcUCoWqXu+l8cdJViRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwtNpKpRLz5s2jVCrVOhVJkiRJWOBpNXV0dNDS0sLMmTNpaWmho6Oj1ilJkiRJ67xIKdU6B+Uiogno6enpoampqdbpjKhUKtHS0kJ/f/9gW6FQoLu7m2KxWMPMJEmSpPrQ29tLc3MzQHNKqXe029mDp1XW2dk5pLgD6Ovro6urq0YZSZIkSQILPK2GtrY2GhqGvnUKhQKtra01ykiSJEkSWOBpNRSLRdrb2ykUCkBW3M2dO9fhmZIkSVKNeQ3eOPJyuQZvQKlUoquri9bWVos7SZIkqYpW9xq8CWOXkupdsVi0sJMkSZLGEYdoSpIkSVKdsMCTJEmSpDphgSdJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwJEmSJKlOWOBJkiRJUp0YlwVeRJwcEQsjYmlE3B4RB6wk/qiIuCciluWPb69YHxFxVkQ8HBH/jIjrI2LniphNI+KyiOjJl8siYlLZ+ukRMS8iHs3zejAiPhcRE8ti3hERt0XE0xHxXETcFRH/Wq3zIkmSJEkrMu4KvIg4FvgycA6wBzAf+L+ImDpC/H7A5cBlwG75448jYp+ysI8BHwH+H/Aa4BHgNxGxSVnMD4DdgcPzZfd8XwNeAL4LHApMBz4MvA/4TFnMk3ne+wG7ApcAl0TEYat0EiRJkiRpNURKqdY5DBERNwN3pJROKmtbAFyZUjpzmPjLgaaU0r+Utf0SeCql9K6ICOBh4MsppfPy9esDjwJnpJTmRsSOwD3Avimlm/OYfYGbgFellO4bIdcLgdeklEbsYYyIO4CrU0qfHMVzbwJ6enp6aGpqWlm4JEmSpDrV29tLc3MzQHNKqXe0242rHryIWA/YE/h1xapfA68dYbP9hon/VVn8NGCr8piU0jLgd2Ux+wE9A8VdHvNHoGek40ZEK1lP3+9GWB8R8Qay3r7fjxCzfkQ0DSzAJsPFSZIkSdJojKsCD5gMFMh618o9SlakDWerlcRvVda2opjHhtn3Y5XHjYgbI2Ip0Ek2fPRTFeubI+JZ4HngauADKaXfjJD7mWRF5MBSGiFOkiRJklZqvBV4AyrHjcYwbasav7KY4fY/3H6OBWYAxwFvBk6vWP8M2fV7rwH+E7gwIg4aIe/PA81lS3GEOEmSJElaqQm1TqDCE0Afy/fWbcHyPXADHllJ/CP541bA4hXEbDnMvjevPG5K6e/5j/dERAFoj4gLUkp9+fp+oCuPuSu/vu9M4PrKnedDRZcN/J5dLihJkiRJq2dc9eCllJ4HbgcOqVh1CHDjCJvdNEz8oWXxC8kKuMGY/Fq/A8tibgKaI2Lvsph9yHrVRjouZD18E/PHFcWsv4L1kiRJklQV460HD+BC4LKIuI2s8JoNTAW+BRAR3wUeKptR8yvA7yPiDOB/gbcBbwReB5BSShHxZeDjEdFJdu3cx4ElZLdGIKW0IJ9589sRMSffbztw1cAMmhFxPNmtEu4m63Xbk2yI5eUppRfzmDOB24AHgPWANwH/BgzOCFrPSqUSnZ2dtLW1USw62lSSJEla28ZdgZdSujwiNiObvGQK8BfgTSmlv+UhU4H+svgbI+KdwOeAs8mKq2PLZ8QEzgc2BC4CNgVuBg5NKT1TFnM88FVemm3z52T3zRvwInAGsANZr9zfgG8AXyqL2Sg/RhH4J3AvcEJK6fJVPxMvLx0dHcyePZv+/n4aGhpob29n1qxZtU5LkiRJWqeMu/vgrctervfBK5VKtLS00N8/WHdTKBTo7u62J0+SJElaDXVxHzy9PHV2dg4p7gD6+vro6uoaYQtJkiRJY8ECT2usra2Nhoahb6VCoUBra2uNMpIkSZLWTRZ4WmPFYpH29nYKhQKQFXdz5851eKYkSZK0lnkN3jjycr0Gb0CpVKKrq4vW1laLO0mSJGkNrO41eONuFk29fBWLRQs7SZIkqYYcoilJkiRJdcICT5IkSZLqhAWeJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwJEmSJKlOWOBJkiRJUp2wwJMkSZKkOmGBJ0mSJEl1wgJPkiRJkuqEBZ4kSZIk1QkLPEmSJEmqExZ4kiRJklQnLPAkSZIkqU5Y4EmSJElSnbDA05gplUrMmzePUqlU61QkSZKkdYIFnsZER0cHLS0tzJw5k5aWFjo6OmqdkiRJklT3IqVU6xyUi4gmoKenp4empqZap7PaSqUSLS0t9Pf3D7YVCgW6u7spFos1zEySJEl6eejt7aW5uRmgOaXUO9rt7MFT1XV2dg4p7gD6+vro6uqqUUaSJEnSusECT1XX1tZGQ8PQt1ahUKC1tbVGGUmSJEnrBgs8VV2xWKS9vZ1CoQBkxd3cuXMdnilJkiSNMa/BG0fq5Rq8AaVSia6uLlpbWy3uJEmSpFWwutfgTRi7lLSuKxaLFnaSJEnSWuQQTUmSJEmqExZ4kiRJklQnLPAkSZIkqU5Y4EmSJElSnbDAkyRJkqQ6YYEnSZIkSXXCAk+SJEmS6oQFniRJkiTVCQs8SZIkSaoTFniSJEmSVCcs8CRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT2tNqVRi3rx5lEqlWqciSZIk1SULPK0VHR0dtLS0MHPmTFpaWujo6Kh1SpIkSVLdiZRSrXNQLiKagJ6enh6amppqnU7VlEolWlpa6O/vH2wrFAp0d3dTLBZrmJkkSZI0PvX29tLc3AzQnFLqHe129uBpzHV2dg4p7gD6+vro6uqqUUaSJElSfbLA05hra2ujoWHoW61QKNDa2lqjjCRJkqT6ZIGnMVcsFmlvb6dQKABZcTd37lyHZ0qSJElV5jV440i9XoM3oFQq0dXVRWtrq8WdJEmStAKrew3ehLFLSRqqWCxa2EmSJEljyCGakiRJklQnLPAkSZIkqU5Y4EmSJElSnbDAkyRJkqQ64SQrGl5fH8yfD4sXw5QpcMABkN/mQJIkSdL4ZA+elnfFFdDaCgcfDMcdlz22tmbtkiRJksYtCzwNdcUVcPTRsMsucNNN8Mwz2eMuu2TtFnmSJEnSuOWNzseRmt/ovK+PF7ffjmenb8+Dl1wADWX1f38/27/nNDa+fyETHljocE1JkiRpDHmjc62xR//vJ2y5qMThh5S4+b9fs9z6fafCTb/J4444tgYZSpIkSVoRCzwNWrLoAQBO/ff/pq1lj+XWd3bfAR3vG4yTJEmSNL5Y4GnQC1tOBmC3Jybwqn1nLLd+o9v+PCROkiRJ0vjiJCsa9Ow+e7BwEmz11Yuhv3/oyv5+tvzaJTw4KYuTJEmSNP5Y4OklhQKnHQrN186HI48cOovmkUfSfO18Tj8UJ1iRJEmSxikLPA3xs51g4bfPh7vvhte+Fpqasse//IWF3z6fn+1U3eOVSiXmzZtHqVSq7o4lSZKkdZAFnpbz9JtmQlcXzJsHP/hB9tjZmbVXUUdHBy0tLcycOZOWlhY6Ojqqun9JkiRpXeMkK1rOgscXZD9Mb8oWgMf+9FJ7FZRKJWbPnk1/fq1ff38/c+bM4bDDDqNYLFbtOJIkSdK6xAJPgyY3TqZxYiMn/OyEEWMaJzYyuXHNZ9Hs7OwcLO4G9PX10dXVZYEnSZIkrSYLPA2a2jyVBacs4IklT4wYM7lxMlObp67xsdra2mhoaBhS5BUKBVpbW9d435IkSdK6ygJPQ0xtnlqVAm5lisUi7e3tzJkzh76+PgqFAnPnzrX3TpIkSVoDkVKqdQ7KRUQT0NPT00NTU1Ot01krSqUSXV1dtLa2WtxJkiRJud7eXpqbmwGaU0q9o93OHjzVVLFYtLCTJEmSqsTbJEiSJElSnbDAkyRJkqQ6YYEnSZIkSXXCAk+SJEmS6oQFniRJkiTVCQs8SZIkSaoTFniSJEmSVCcs8CRJkiSpTljgSZIkSVKdsMCTJEmSpDphgSdJkiRJdcICT+NKqVRi3rx5lEqlWqciSZIkvexY4Gnc6OjooKWlhZkzZ9LS0kJHR0etU5IkSZJeViKlVOsclIuIJqCnp6eHpqamWqezVpVKJVpaWujv7x9sKxQKdHd3UywWa5iZJEmStPb19vbS3NwM0JxS6h3tdvbgaVzo7OwcUtwB9PX10dXVVaOMJEmSpJcfCzyNC21tbTQ0DH07FgoFWltba5SRJEmS9PJjgadxoVgs0t7eTqFQALLibu7cuQ7PlCRJklaB1+CNI+vyNXgDSqUSXV1dtLa2WtxJkiRpnbW61+BNGLuUVFf6+mD+fFi8GKZMgQMOgLy3rZqKxaKFnSRJkrSaHKKplbviCmhthYMPhuOOyx5bW7N2SZIkSeOGBZ5W6PHL5pKOPpqn26Zy7y8u5a7O+dz7i0t5um0q6eijefyyubVOUZIkSVLOa/DGkfF2Dd6iJxfS3/pK/rx54sh3Qir7d0D0w5U/gl0eDwpdDzD1FdNql6gkSZJUZ9bKNXgR8dZVTQz4TUrpn6uxnWps6bzfsMNTiXu/eha3veEty61/vPXnTPu3z3D/vN/AUbNrkKEkSZKkcqs6ycqVqxifgDbgwVXcTuPAxEefAGCrfd/A7lNmLLf+rn2fAz4zGCdJkiSptlbnGrytUkoNo1mAJdVOWGvPC1tOBmCDex8Ydv2GeftAnCRJkqTaWtUC7zvAqgy3/B4w6vGiAyLi5IhYGBFLI+L2iDhgJfFHRcQ9EbEsf3x7xfqIiLMi4uGI+GdEXB8RO1fEbBoRl0VET75cFhGTytZPj4h5EfFonteDEfG5iJhYFvO+iJgfEU/ly7URsfeqPv/x4tl99mDhJNjqqxdDf//Qlf39bPm1S3hwUhYnSZIkqfZWqcBLKb0npfTMKsSflFJapfF7EXEs8GXgHGAPYD7wfxExdYT4/YDLgcuA3fLHH0fEPmVhHwM+Avw/4DXAI8BvImKTspgfALsDh+fL7vm+BrwAfBc4FJgOfBh4H/CZspiDgB8CBwP7AYuAX0fENqtyDsaNQoHTDoXma+fDkUfCTTfBM89kj0ceSfO18zn9UMbkfniSJEmSVt24m0UzIm4G7kgpnVTWtgC4MqV05jDxlwNNKaV/KWv7JfBUSuldERHAw8CXU0rn5evXBx4FzkgpzY2IHYF7gH1TSjfnMfsCNwGvSindN0KuFwKvSSkN28MYEQXgKeD/pZS+O4rnPq5m0bxj8R3s2b4nDxS/wPaf+wZ0d7+0cto0HvzPk3ll6aPcPvt2ZgxzjZ4kSZKk1bNWZtEcjYjYFvhMSum9q7HtesCewH9VrPo18NoRNtsP+FJF26/IetgApgFb5fsAIKW0LCJ+l+9zbr6PnoHiLo/5Y0T05DHLFXgR0UrW07eiu303AhOBJ4dbmRea65c1bTJcXK3d9JopPD3/x2x8851MfPQJXthyMs/uswcLnrwfSrXOTpIkSdKAqhd4wCuAdwOrXOABk4ECWe9auUfJirThbLWS+K3K2ipjWspiHhtm349VHjcibgRmkBVm7cCnRsgLskL1IeDaEdafCXx6BdvX1OTGyTRObOSEn50wdMXjwF+yHxsnNjK50UlWJEmSpPFglQu8UdwLb/vVzKVc5bjRGKZtVeNXFjPc/ofbz7FkPW27AV8ATgfOX27DiI8B7wIOSiktHSHvzwMXlv2+CeOoT2xq81QWnLKAJ5aMfBnl5MbJTG0e9vLIqiiVSnR2dtLW1kaxWByz40iSJEn1YHV68K4kK3piBTGre2HfE0Afy/fWbcHyPXADHllJ/CP541bA4hXEbDnMvjevPG5K6e/5j/fk19i1R8QFKaW+gZiIOB34OPDGlNKfR8iblNIyYFnZdiOF1szU5qljWsCtSEdHB7Nnz6a/v5+Ghgba29uZNWtWTXKRJEmSXg5W5z54i4GjVnDvu9WebSOl9DxwO3BIxapDgBtH2OymYeIPLYtfSFbADcbk1/odWBZzE9BcfkuDfBbO5hUcF7IidyJlxW5EfBT4JHB4Sum2FWyrFSiVSoPFHUB/fz9z5syhVBo3HZySJEnSuLM6PXi3kxVxV46wfmW9eytzIXBZRNxGVnjNBqYC3wKIiO8CD5XNqPkV4PcRcQbwv8DbgDcCrwNIKaWI+DLw8YjoBDrJeteWkN0agZTSgnzmzW9HxJx8v+3AVQMzaEbE8WS3SribrNdtT7IhlpenlF7MYz4GnA0cB3RHxEDP4rMppWfX4Jysczo7OweLuwF9fX10dXU5VFOSJEkaweoUeF8ANlrB+i6y+8CtlpTS5RGxGdnkJVPIpvN4U0rpb3nIVKC/LP7GiHgn8Dmy4uoB4NjyGTHJrpHbELgI2BS4GTi04p5+xwNf5aXZNn9Odt+8AS8CZwA7kBWwfwO+wdAZPE8G1gN+UvG0PgOcNbozIIC2tjYaGhqGFHmFQoHW1tYaZiVJkiSNb+PuPnjrsvF2H7xa6+joYM6cOfT19VEoFJg7d67X4EmSJGmdsLr3wbPAG0cs8JZXKpXo6uqitbXVoZmSJElaZ4ybG51L1VQsFi3sJEmSpFFanVk0JUmSJEnjUFUKvIiYkd96QJIkSZJUI9XqwbsV2K5K+5IkSZIkrYZqFXhrct87SZIkSVIVeA2eJEmSJNUJCzxJkiRJqhMWeJIkSZJUJyzwJEmSJKlOWOBJkiRJUp2wwNPLSqlUYt68eZRKpVqnIkmSJI071SrwPgM8UaV9ScPq6OigpaWFmTNn0tLSQkdHR61TkiRJksaVSCnVOgflIqIJ6Onp6aGpqanW6YwrpVKJlpYW+vv7B9sKhQLd3d0Ui8UaZiZJkiRVX29vL83NzQDNKaXe0W43YexSUl3r64P582HxYpgyBQ44AAqFMTtcZ2fnkOIuS6GPrq4uCzxJkiQpZ4GnVbKoZxEv/uTHbPOZL7H+3x8ebF+27dY89OlTmXD0MUxtnlr147a1tdHQ0LBcD15ra2vVjyVJkiS9XFVtkpWImFitfWl8WtSziDNObmO7f/8ov9rwYfadBRufCfvOgl9t+DDb/ftHOePkNhb1LKr6sYvFIu3t7RTyXsJCocDcuXPtvZMkSZLKVOUavIhoAO5IKe2+5imtu8b7NXh3lG5l0132ZuJue/DY99uhoez/A/39bHH8bJ7/0508ffctzCi+ZkxyKJVKdHV10draanEnSZKkulXTa/BSSv0RcUtE7JxS+ms19qnxZ+Ob72Ta03Dv6R9ixjZ7Lbf+vtM+yPS3vof7b74TxqjAKxaLFnaSJEnSCKp5Dd7ewJ0RcT+wBAggpZT2ruIxVEMTH83uhLH0Va8cdv0/8/aBOEmSJElrVzULvLdVcV8ah17YcjIAG9z7ALS+brn1G977wJA4SZIkSWtX1Qq8lNLfqrUvjU/P7rMHCyfBVl+9GN70r8tdg7fl1y7hwUlZnCRJkqS1b41n0YyIy/LHW/Pr8AaWWyPiljVPUeNGocBph0LztfPhyCPhppvgmWeyxyOPpPna+Zx+KGN6PzxJkiRJI6tGD97H8sejq7AvjXM/2wnmf/GD7PPl/2H91752sH3Z1G24+Ysf5GfPfIVP1DA/SZIkaV22xgVeSmlx/vg3gIjYElh/Tfer8Wdy42QaJzZy4DNfoeE9cMDfYMqzsHhjmN/yEP3PfIXGiY1MbvQaPEmSJKkWqnYNXkQcCXwe2Bb4O7AD8GfAC7LqxNTmqSw4ZQFPLBl5lszJjZOZ2jx1LWYlSZIkaUA1Z9H8LLAP8PuU0u4RsTdwUhX3r3FgavNUCzhJkiRpnFrjSVbKLBu4w3pErJdSugXYrYr7l5ZTKpWYN28epVKp1qlIkiRJNVfNAm9xREwCfgFcExGXA49Xcf/SEB0dHbS0tDBz5kxaWlro6OiodUqSJElSTUVKqfo7jTgIaAJ+lVJaVvUD1KmIaAJ6enp6aGpqqnU641qpVKKlpYX+/v7BtkKhQHd3N8VisYaZSZIkSWuut7eX5uZmgOaBkZKjUc1r8AallK4fi/1KAzo7O4cUdwB9fX10dXVZ4EmSJGmdVZUCLyImANOBVw8sKaW3V2Pf0nDa2tpoaGhYrgevtbW1hllJkiRJtbXK1+BFxPYR8baI+M+I+GFE3A08R3ZLhEuBNwOj7kKUVkexWKS9vZ1CoQBkxd3cuXPtvZMkSdI6bZWuwYuI7wHvAhKwBNgIuBq4DLgb6Ewp9Y1BnusEr8FbdaVSia6uLlpbWy3uJEmSVDfW1jV4RwMfAC7Otz0HmAPcC1xlcae1rVgsWthJkiRJuVUdovkF4LsppaUppWdTSh8C9gcOBu6JiMOrnqEkSZIkaVRWqcBLKX0ypfRsRdvtwN7Al4HLI+IHEbF5FXOUJEmSJI1CVW50njJfAXYC1icbsilJkiRJWotWZxbNcyNi7+HWpZQeSikdBfzbGmcmSZIkSVolq9ODNwW4KiIWR0R7RLw5ItYvD0gpXV2d9CRJkiRJo7XKBV5K6T3AlsAxwNPABcATEXFFRJwYEZOrnKMkSZIkaRRW6xq8/Jq7+Smlj6WUXkU2ycofgfcBD0XE7yPi9IjYpprJSpIkSZJGtqr3wRtWSmkBsAA4PyK2AN4CvDVf/cVqHEOSJEmStGJVKfDKpZQeAzryReuKvj6YPx8WL4YpU+CAA6BQWOtplEolOjs7aWtr8wbokiRJWudUrcCLiFcCHwBagMFv9imlt464kV72FvUs4sWf/JhtPvMl1v/7w4Pty7bdmoc+fSoTjj6Gqc1T10ouHR0dzJ49m/7+fhoaGmhvb2fWrFlr5diSJEnSeBAppersKOJu4OvAn4H+gfaU0s1VOcA6ICKagJ6enh6amppqnc5KLepZxBknt/H9HzzPVTvAuQfAX7aAVz8GH58PR9wPxx+3Hudd1DnmRV6pVKKlpYX+/sG3HoVCge7ubnvyJEmS9LLT29tLc3MzQHNKqXe021VziOZzKaW5VdyfxrknnnmUc695nocP3IPi99u5qKFszp7+fh4+fjbnXHMnTzzz6JgXeJ2dnUOKO4C+vj66uros8CRJkrTOqGaB9/mIOA+4Flg20JhS+n0Vj6FxZOOb72Ta03Dv6R9ixjZ7Lbf+vtM+yPS3vof7b74Tiq8Z01za2tpoaGhYrgevtbV1TI8rSZIkjSfVLPAOAw4CWnlpiGYCLPDq1MRHnwBg6ateOez6f+btA3FjqVgs0t7ezpw5c+jr66NQKDB37lx77yRJkrROqWaBdyCwc6rWRX0a917YMrun/Qb3PgCtr1tu/Yb3PjAkbqzNmjWLww47jK6uLlpbWy3uJEmStM5ZrRudj+AWYPiuHNWlZ/fZg4WTYKuvXgwV17/R38+WX7uEBydlcWtLsVjkoIMOsriTJEn/P3v3Hx31dd/5//meqWyQCRLNJML2LFOMFMCJ7WAvBqdAkEwQ9X7rxoe4btP4uwElKI3XbGto3LhO0jZpc5KCY3DcLUrG5ht328aUJin9YVi2qlFrKuMYk2SNsATI6sfBcmbjkU0HHHnmfv/4zMBoEEKaGWlGmtfjnDkafe7VnTcc7MObe+/7LVKRipngLQJ+ZGZHzOxZMztkZs8WcX0pN8Egm1ZDzf4O+PCH4eBBePNN/+uHP0zN/g42r6Yk/fBERERERCpRMY9o/koR15JJ4jvXQseWjSx5eBeXf+AD556/NedqOrds5DtvbuPBEsYnIiIiIlJJin0HbzjfKuJnSBkJVYeorqrmg29uI7AOlr8MV56GUzOgI/IKqTe3UV1VTah6Yu7giYiIiIhUumImeNdlvb8c+BB+03MleFPUnJo5HL3nKLHExatkhqpD494DT0REREREfEVL8Jxzv5P9vZnNAP6qWOtLeZpTM0cJnIiIiIhImShmkZVcDnjPOK4vIiIiIiIiWYq2g2dmh/CTOoAgcCXwJ8VaX0REREREREZWzDt4H8l6/zbwmnNusIjri+TF8zy6u7tpaGhQfzwRERERmdLGtYqmmeGcU5EVKZloNMqGDRtIpVIEAgHa2tpoaWkpdVgiIiIiIuPCnHOXnjWahcyyj2Oeq6LpnLurKB9QAcxsJjAwMDDAzJkzSx3OpOd5HpFIhFQqde5ZMBikt7dXO3kiIiIiUtbeeOMNampqAGqcc2+M9udURVOmrO7u7iHJHUAymaSnp0cJnoiIiIhMSaqiKVNWQ0MDgcDQP+LBYJD6+voSRSQiIiIiMr6KluCZ2SEzezb9+j7QDfxpsdYXGatwOExbWxvBYBDwk7sdO3Zo905EREREpqxi3sGLZH2rKpp50B288eF5Hj09PdTX1yu5ExEREZFJoRzu4L1crLVEiikcDiuxExEREZGKUMwjmn9sZrVZ388ysz8q1voiIiIiIiIysmIWWfkl51w8841z7nXgl4q4voiIiIiIiIygmAleMN0aATh3n6yqiOuLiIiIiIjICIp2Bw94BPhXM/s2YMCvAl8r4voiIiIiIiIygmIWWfmGmXUCH0w/+qhz7v8Ua32ZHPoG+oglYpBMMqPzMFX9MQbrQvQn51AAACAASURBVJxesgiCQULVIebUzCl1mCIiIiIiU1Ixd/Bwzv3AzPqBywHMbI5zrq+YnyHlq2+gj4WPLqT5SIKt+2Bu/PzYyVrYtBr23lDN0XuOKskTERERERkHxayieYeZHQWOA3uBk8D3irW+lL9YIkbzkQS7dxmzFq+ga89OXujuoGvPTmYtXsHuXUbzkYS/w1dCnufR3t6O53kljUNEREREpNiKuYP3B8AS4IBz7v1mdjPwm0VcX8pdMsnWfTCwajm1T7VTG0j/+0H9MrjtbuJrGtmy7wDxZLJkIUajUTZs2EAqlSIQCNDW1kZLS0vJ4hERERERKaZiVtF8K9Nh3cwuc849C9xQxPWlzM3oPMzcOLy6cT0Ecv5oBQL037uOa+L+vFLwPO9ccgeQSqVobW3VTp6IiIiITBnFTPBOpRud7wH+IV1N8ydFXF/KXFW/f/Ty7IJ5w46fST/PzJto3d3d55K7jGQySU9PT0niEREREREptmIe0fwz4LRz7nNmthKYiX8XTyrEYF0IgGldx/1jmTmmdx0fMm+iNTQ0EAgEhiR5wWCQ+vr6ksQjIiIiIlJsxdzB+whwzMx2AtXAPzjn3iri+lLmTi9ZxMlamL39McjZKSOVou6RxzlR688rhXA4TFtbG8FgEPCTux07dhAOh0sSj4iIiIhIsRUtwXPOrQfmA38FrAW6zOzxYq0vk0AwyKbVULO/g/iaRo6lq2ge27OT+JpGavZ3sHm1P69UWlpa6O3tpb29nd7eXhVYEREREZEppdh98N42s2eAdwFXASuLub6Ut1B1iL03VLOWBFv3HWD+7QfOjZ2ohfV3+n3wHq4uzRHNjHA4rF07EREREZmSzDlXnIXMPg7cCcwD/hb463QlTRklM5sJDAwMDDBz5sxSh5OXvoE+v89dMsmMzsNU9ccYrAv5xzKDQULVITU5FxERERG5hDfeeIOamhqAmky3gtEo5g7eQuALzrnnirimTDJzauacT+DCi0sbjIiIiIhIhSlaguecu79Ya4mIiIiIiMjYFSXBM7Ofwy+w8r7Myzl3RzHWFhERERERkdEZc4JnZtcA15GVzAHvAaqAt4CjwA+LGKOIiIiIiIiMwpgSPDP7c+DXAQckgCuAvwf+ED+p63bOJYsdpMh48jyP7u5uGhoaVF1TRERERCa1sfbB+whwLzADvw3C14HVwGLgZSV3MtlEo1EikQhNTU1EIhGi0WipQxIRERERyduY2iSY2ReBrzjnTmc9uwn4MyAE/KZz7qmiR1khpkKbhMnE8zwikQipVOrcs2AwSG9vr3byRERERKSk8m2TMKYdPOfc57KTu/Sz7wM3Aw8D3zazvzCzd41lXZFS6O7uHpLcASSTSXp6ekoUkYiIiIhIYcZ6RHNYzrcNuBa4HOgqxroi46mhoYFAYOh/AsFgkPr6+hJFJCIiIiJSmKIkeBnOuVecc2uB/7eY64qMh3A4TFtbG8FgEPCTux07duh4poiIiIhMWmO9g3c98CPnXOqSk/357wWOOefezjO+iqI7eKXheR49PT3U19cruRMRERGRspDvHbyxJnhJYLZz7iejnP8G8H7n3IlRf0gFU4InIiIiIiKQf4I31kbnBnzRzBKjnH/ZGNcXERERERGRPI01wTsAzB/D/IPAmTF+hkxFySR0dMCpU3DllbB8OaTvvomIiIiISHGMKcFzzq0cpzhkiuob6OPtv36Sq//ga1z+7z8+9/yt/3QVr3zht/m5j/wqc2rmlDBCEREREZGpo6hVNIvBzD5tZifN7KyZfd/Mll9i/loze9HM3kp/vSNn3Mzs983sx2Z2xsz+OV38JXvOLDN7wswG0q8nzKw2a3y+mbWbWX86rhNm9iUzq8qa814z221mvWbmzOy3ivV7Mln1DfRx/6cb+IVP/A57p/+YpS0w47OwtAX2Tv8xv/CJ3+H+TzfQN9BX6lBFRERERKaEsR7RHFdmdhd+w/RPA/8KtAL/aGbXOucuyALM7Bbg28DngO8AdwBPmtky51xnetpngPuAjwMvAQ8C/8vM5jvn3kzP+QsgDKxJf98GPAH8cvr7QeBbwPNAHLgB+AZ+gvxAek41cALYBXytoN+IKSL2Zj9//A8/48cfXET4f7bxp9k951IpfvwbG/ijfzhM7M3+strF8zyP7u5uGhoaVFVTRERERCaVMVXRHG9m1gk875z7zaxnR4HvOuc+O8z8bwMznXO/lPXsKeB159yvm5kBPwYeds59JT1+OdAP3O+c22FmC4EXgaWZpNDMluLfH1zgnDt2kVgfAhY75y7YYTSz3vRnPjzGX/+UqqL50u423vORVrr27GTB//NfLxg/tmcn829fx0t/vYP3rN1QgggvFI1G2bBhA6lUikAgQFtbGy0tLaUOS0REREQqTL5VNMvmiKaZXQbcBOzLGdoHfOAiP3bLMPP3Zs2fC8zOnuOcewt4OmvOLcBA1o4fzrl/AwYu9rlmVo+/2/f0iL+oClfVHwPg7IJ5w46fST/PzCs1z/POJXcAqVSK1tZWPM8rcWQiIiIiIqNTNgkeEAKC+Ltr2frxk7ThzL7E/NlZz0aa89owa7+W+7lm9oyZnQW6gQ7g8xeJa1TM7HIzm5l5Ae8oZL1yM1gXAmBa1/Fhx6enn2fmlVp3d/e55C4jmUzS09NToohERERERMamoDt4ZnYrcCvwbnKSRefc+jyXzT0zasM8G+v8S80Zbv3h1rkLPwm7AfgTYDPw1RFiu5TPAl8o4OfL2uklizhZC7O3Pwa33Q05d/DqHnmcE7X+vHLQ0NBAIBAYkuQFg0Hq6+tLGJWIiIiIyOjlvYNnZl/AP/p4K/7u26yc11jFgCQX7ta9mwt34DJevcT8V9NfLzWnbpi135X7uc65f3fOveic+0vgd4HfN7NCmrl9GajJek2tih7BIJtWQ83+Dvjwh+HgQXjzTf/rhz9Mzf4ONq+mbPrhhcNh2traCKbjCQaD7NixQ4VWRERERGTSKGQH71PAx51zTxQjEOfcz8zs+8CH8CtiZnwI+N5Ffuxgejy7auVq4Jn0+5P4CdyHgMNw7q7fB4H7s9aoMbObnXPPpucswU+4nuHiDKhKf81L+j7gW+cWtLyXKlvfuRY6tmxkycO7uPwD5680vjXnajq3bOQ7b27jwRLGl6ulpYXm5mZ6enqor69XciciIiIik0ohCd5ljJwA5eMh4Akzew4/8doAzAH+DMDMvgW8klVRcxtwwMzux08CfwVYBSwDcM45M3sYeMDMuvHvzj0AJPBbI+CcO5quvPkNM2tNr9sG/F2mgqaZ/QZ+q4Qf4idkN+Hvvn3bOfd2es5lwLVZvzdXm9n7gdPOuYq8xBWqDlFdVc0H39xGYB0sfxmuPA2nZkBH5BVSb26juqqaUHV53MHLCIfDSuxEREREZFIqJMH7JvBR4ItFigXn3LfN7J34xUuuBH4E3Oacezk9ZQ6Qypr/jJn9GvCldBzHgbuyK2Li35GbDvwp/tHRTmB1Vg88gN8AtnO+2ubfAv8ta/xt/B2/9+Dv2L0MPMrQncOrSO8Spm1Ov54GVo76N2EKmVMzh6P3HCWWuHiVzFB1qKx64ImIiIiITGZj6oOX7v2WEQD+K/CD9Gswe65z7r5iBFhJplofPBERERERyU++ffDGuoOXW+7whfTX9+U8L5/u6SIiIiIiIhViTAmec65xvAIRERERERGRwhTSJmGOXaTso5npUpVMGZ7n0d7ejud5pQ5FRERERGREeSd4+C0I3pX7MF0k5WQB64qUjWg0SiQSoampiUgkQjQaLXVIIiIiIiIXNaYiK0N+0CwF1DnnfpLzPAK86Jy7ogjxVRQVWSkvnucRiURIpc4VbiUYDNLb26s2CiIiIiIyriaqyEp2JU0HfNHMElnDQWAJ54uviExa3d3dQ5I7gGQySU9PjxI8ERERESlL+fTBy1TSNOA64GdZYz8DjgBbCoxLpOQaGhoIBAIX7ODV19eXMCoRERERkYsbc4KXqaRpZo8DG3MahotMGeFwmLa2NlpbW0kmkwSDQXbs2KHdOxEREREpW4Xcwfsaw/e7c8BZoAf4nnPup/mHV1l0B688eZ5HT08P9fX1Su5EREREZELkewevkASvHbgR/97dMfwjmw1AEugC5uMne8uccy/m9SEVRgmeiIiIiIjABBZZyfI94KfAuswHphOUKPAvwDeAvwC+BjQX8DkyxfQN9BFLxCCZZEbnYar6YwzWhTi9ZBEEg4SqQ8ypUStFEREREZGxKmQH7xXgQ7m7c2b2XmCfc+5qM7sx/T5UeKhTXyXs4PUN9LHw0YU0H0mwdR/MjZ8fO1kLm1bD3huqOXrPUSV5IiIiIlKx8t3BK6TReQ3w7mGevwvIZCdx4LICPkOmmFgiRvORBLt3GbMWr6Brz05e6O6ga89OZi1ewe5dRvORhL/DJyIiIiIiY1LoEc3HzGwTcAj/vt3N+C0SvpueczPwUkERytSSTLJ1HwysWk7tU+3UBtL/xlC/DG67m/iaRrbsO0A8mSxtnCPwPI/u7m4aGhpUdEVEREREykohO3itwP8G/gp4GehLv//fwKfSc7qATxQSoEwtMzoPMzcOr25cD4GcP36BAP33ruOauD+vHEWjUSKRCE1NTUQiEaLRaKlDEhERERE5J+8Ezzl32jn3SeCd+M3PbwTe6Zzb4Jz7j/ScF5xzLxQnVJkKqvr9o5dnF8wbdvxM+nlmXjnxPI8NGzaca3yeSqVobW3F87wSRyYiIiIi4itkBw84l+j9wDl3xDl3uhhBydQ1WOfX25nWdXzY8enp55l55aS7u/tccpeRTCbp6ekpUUQiIiIiIkMVcgcPM7sVuBW/2MqQZNE5t76QtWVqOr1kESdrYfb2x+C2u4ce00ylqHvkcU7U+vPKTUNDA4FAYEiSFwwGqa+vL2FUIiIiIiLn5b2DZ2ZfAPbhJ3ghYFbOS+RCwSCbVkPN/g7iaxo5lq6ieWzPTuJrGqnZ38Hm1f68chMOh2lrayOYji0YDLJjxw4VWhERERGRslFIH7xTwGecc08UN6TKVel98E7UwuZJ0AfP8zx6enqor69XciciIiIi4yLfPniFJHj/F7jZOTf8ZSoZs0pI8MBP8mKJGCSTzOg8TFV/jMG6kH8sMxgkVB0q2+RORERERGQilCLB+wpw2jn3xbwWkAtUSoInIiIiIiIjyzfBK6TIyjRgg5mtAn4ADGYPOufuK2BtERERERERGaNCErzrgUyPu/fljOW3LSgiIiIiIiJ5yzvBc841FjMQkcnM8zy6u7tpaGhQ4RURERERKZmCG52LVLpoNEokEqGpqYlIJEI0Gi11SCIiIiJSofIusgJgZsuBVmAe8BHn3Ctmdjdw0jn3L0WKsWKoyMrk43kekUjkgubnvb292skTERERkbzlW2SlkEbna4G9wBlgEXB5eugdwAP5risymXR3dw9J7gCSySQ9PT0likhEREREKlkhRzQfBD7lnPskQytoPgPcWFBUIpNEQ0MDgcDQ/4yCwSD19fUlikhEREREKlkhCd584MAwz98AagtYV2TSCIfDtLW1EQwGAT+527Fjh45nioiIiEhJFNIm4RRQD/TmPF8GnChgXZFJpaWlhebmZnp6eqivr1dyJyIiIiIlU0iCtwPYZmbr8fveXWVmtwBbgD8sRnAik0U4HFZiJyIiIiIlV0gfvK+aWQ3QDkzDP675FrDFOff1IsUnFaBvoI9YIgbJJDM6D1PVH2OwLsTpJYsgGCRUHWJOzZxShykiIiIiUvYK2cHDOfd7ZvZHwLX49/ledM6dLkpkUhH6BvpY+OhCmo8k2LoP5sbPj52shU2rYe8N1Ry956iSPBERERGRSyi40blzLuGce84596ySOxmrWCJG85EEu3cZsxavoGvPTl7o7qBrz05mLV7B7l1G85GEv8M3iXieR3t7O57nlToUEREREakgY9rBM7OHRjvXOXff2MORipNMsnUfDKxaTu1T7dRmWg7UL4Pb7ia+ppEt+w4QTyZLG+cYRKNRNmzYQCqVIhAI0NbWRktLS6nDEhEREZEKMNYjmotGOc+NNRCpTDM6DzM3Dl0b159P7jICAfrvXcf82w/wUudhCC8uTZBj4HneueQOIJVK0draSnNzs4qwiIiIiMi4G1OC55xrHK9ApDJV9ftHL88umDfs+Jn088y8ctfd3X0uuctIJpP09PQowRMRERGRcVfQHTwzW25mf25mz5jZ1elnd5vZsuKEJ1PdYF0IgGldx4cdn55+nplX7hoaGgjk7EQGg0Hq6+tLFJGIiIiIVJK8EzwzWwvsBc4ANwKXp4feATxQeGhSCU4vWcTJWpi9/THI2fkilaLukcc5UevPmwzC4TBtbW0Eg0HAT+527Nih3TsRERERmRCF7OA9CHzKOfdJYDDr+TP4CZ/IpQWDbFoNNfs7iK9p5Fi6iuaxPTuJr2mkZn8Hm1f78yaLlpYWent7aW9vp7e3VwVWRERERGTCFNIHbz5+c/NcbwC1BawrFSRUHWLvDdWsJcHWfQeYf/v5P1InamH9nX4fvIerJ8cRzYxwOKxdOxERERGZcIUkeKeAeqA35/ky4EQB60oFmVMzh6P3HCWWiPF6Mslg52Gq+mMM1oU4vWQRDwaDPFwdUpNzEREREZFRKCTB2wFsM7P1+G0RrjKzW4AtwB8WIzipDHNq5pxP4CZBKwQRERERkXKVd4LnnPuqmdUA7cA0/OOabwFbnHNfL1J8IlOC53l0d3fT0NCgo5siIiIiMm4KapPgnPs9IATcDCwF3uWc+1wxAhOZKqLRKJFIhKamJiKRCNFotNQhiYiIiMgUZc65/H7Q7HHgz4F/cvkuIkOY2UxgYGBggJkzZ5Y6HCkCz/OIRCJDmp8Hg0F6e3u1kyciIiIiF/XGG29QU1MDUOOce2O0P1fIDt47gb8HPDPbambvL2AtkSmpu7t7SHIHkEwm6enpKVFEIiIiIjKV5Z3gOeduB2YDfwDcBHzfzF40swfM7BeKE57I5NbQ0EAgMPQ/s2AwSH19fYkiEhEREZGprNA7eHHnXJtzbiUQAR4H7ga0PSGC3w+vra2NYLpRezAYZMeOHTqeKSIiIiLjIu87eEMWMasC/gvwsfTXnzrnri544QqjO3hTl+d59PT0UF9fr+RORERERC4p3zt4hfTBw8wagY8Ca4Eg8DfALwP/VMi6Utn6BvqIJWKQTDIjp/E5wSChSdj4PBwOK7ETERERkXGXd4JnZh5+oZW9QCuwxzl3tliBSWXqG+hj4aMLaT6SYOs+mBs/P3ayFjathr03VHP0nqOTLskTERERERlvhezg/SGwyzn3erGCEYklYjQfSbB7lzGwajldG9dzdsE8pnUdZ/b2x9i9q4O1JIglYpM6wVPjcxEREREZD3kneM65tmIGIgJAMsnWfTCwajm1T7VTm6lAWb8Mbrub+JpGtuw7QDyZLG2cBYhGo2zYsIFUKkUgEKCtrY2WlpZShyUiIiIiU0BBVTQBzOxaM1tjZrdnv4oRnFSeGZ2HmRuHVzeuh5z2AgQC9N+7jmvi/rzJyPO8c8kdQCqVorW1Fc/zShyZiIiIiEwFhdzBuwb4DnAd4ABLD2XKcgYLC00qUVV/DICzC+YNO34m/Twzb7IZqfG5jmqKiIiISKEK2cHbBpwE6oAE8F5gBfAcsLLgyKQiDdaFAJjWdXzY8enp55l5k40an4uIiIjIeCokwbsF+Lxz7idACkg55/4F+CywvRjBSeU5vWQRJ2th9vbHIGeni1SKukce50StP28yUuNzERERERlPhVTRDAKn0+9jwFXAMeBlYH6BcUmlCgbZtBp27+ogvqaR/nvXcWbBPKZ3Hafukcep2d/B+jvhweDkPQHc0tJCc3OzGp+LiIiISNEVkuD9CLgeOAF0Ap8xs58BG9LPRMYsVB1i7w3VrCXB1n0HmH/7gXNjJ2ph/Z1+H7yHqyfnEc0MNT4XERERkfFgzrlLzxruB82agSucc3+TLrjyd8AC4P8Cdznn/ql4YVYGM5sJDAwMDDBz5sxSh1MyfQN9xBIxSCaZ0XmYqv4Yg3Uh/1hmMEioOjSpe+ANR33xRERERCTbG2+8QU1NDUCNc+6N0f5c3gnesIuZ/TzwuivmohVECV5lUl88EREREck1YQmemdU753rGGJ+MghK8yuN5HpFIZEjrhGAwSG9vr3byRERERCpYvglePlU0XzKzfzezb5nZOjP7hTzWEBFG7osnIiIiIjJW+RRZ+WD6tRL4OjDNzPqAfwLagXbn3CtFi1BkCsv0xcvdwVNfPBERERHJx5h38JxzHc65LznnVgG1QCPwODAXaAP6zOxYccMUmZrUF09EREREiqkoRVbMbDqwDGgGPgnMcM5N3kZlJaI7eJXL8zz1xRMRERGRc/K9g5dXHzwzmwZ8AH/3biWwGDgJPA38ZvqriIyS+uKJiIiISDGMOcEzs6fxE7rjwAHgEeBp51x/kWMTqVjqiyciIiIi+chnB+8DwCn8gir/DBxwzsWKGZRItkprfK6+eCIiIiKSr3z64F0BLMc/mtkIvB94Cf9Y5j/j7+b9pKhRVgjdwbtQ30AfCx9dSPORBFv3wdz4+bGTtbBpNey9oZqj9xydEkme+uKJiIiICExgHzzn3H84555yzv2uc24JEAI+AyTSXz0z+9FY1xUZTiwRo/lIgt27jFmLV9C1ZycvdHfQtWcnsxavYPcuo/lIwt/hmwLUF09ERERECpFXkZUc/wH8NP16HXgbWFiEdUUgmWTrPhhYtZzap9qpDaT/TaJ+Gdx2N/E1jWzZd4B4MlnaOItEffFEREREpBBj3sEzs4CZ3WxmnzGzfwTiwDPAp4FXgXuAa4obplSqGZ2HmRuHVzeuh0DOH9dAgP5713FN3J83FagvnoiIiIgUIp8dvDhwBX6hlX8G7gPanXPHixiXCABV/f7Ry7ML5g07fib9PDNvKmhpaaG5uVl98URERERkzPJJ8H4HP6F7qdjBiOQarAsBMK3ruH8sM8f0ruND5k0V6osnIiIiIvnIp8jKDiV3MlFOL1nEyVqYvf0xyCk+QipF3SOPc6LWnzfVeZ5He3s7nueVOhQRERERKVNjTvBEJlQwyKbVULO/g/iaRo6lq2ge27OT+JpGavZ3sHm1P28qi0ajRCIRmpqaiEQiRKPRUockIiIiImVozH3wZPyoD96FRuqDd6IWNk+xPnjDUW88ERERkcqTbx+8YrRJEBk3c2rmcPSeo8QSMV5PJhnsPExVf4zBuhCnlyziwWCQh6tDUza5g5F74ynBExEREZFsSvCk7M2pmXM+gQsvLm0wJaDeeCIiIiIyWgUleGZ2K3Ar8G5y7vM559YXsraI+DK98VpbW0kmk+qNJyIiIiIXlfcdPDP7AvB54Dn8nnhDFnLO3VFwdBVGd/BkJJ7nqTeeiIiISIUoxR28TwEfd849UcAaIjJKub3xPM+ju7ubhoYGJXwiIiIiAhTWJuEy4JliBSIio6e2CSIiIiIynEKOaH4FOO2c+2JxQ6pcOqIpo6G2CSIiIiJTXymOaE4DNpjZKuAHwGD2oHPuvgLWFrmovoE+YokYJJPMyGmbQDBISG0TRERERKRCFZLgXQ+8kH7/vpwxdU+XcTFS4/OTtbCpAhqfq22CiIiIiFxM3gmec66xmIGIjEYsEaP5SILdu4yBVcvp2rieswvmMa3rOLO3P8buXR2sJUEsEZuyCZ7aJoiIiIjIxeR9B0+KT3fwLu157xCzrruZWYtXUPtUOwSy6gSlUsTXNPLTQweI//BZbpziTdHVNkFERERk6pqQO3hm9hDwOefcf6TfX5Tu4Ml4mNF5mLlx6Nq4ntpAThHYQID+e9cx//YDvNR5GKZ4gqe2CSIiIiKSa6xHNBcBVVnvL0bbgjIuqvpjAJxdMG/Y8TPp55l5lSIajbJhwwZSqRSBQIC2tjZaWlpKHZaIiIiITLAxJXjZ9+50B09KYbAuBMC0ruNQv+yC8eldx4fMqwSe551L7gBSqRStra00NzdrJ09ERESkwhTS6Fxkwp1esoiTtTB7+2OQ0yqAVIq6Rx7nRK0/r1KM1DZBRERERCqLEjyZXIJBNq2Gmv0dxNc0cmzPTl7o7uDYnp3E1zRSs7+Dzav9eZUi0zYhm9omiIiIiFSmskzwzOzTZnbSzM6a2ffNbPkl5q81sxfN7K301ztyxs3Mft/MfmxmZ8zsn83svTlzZpnZE2Y2kH49YWa1WePzzazdzPrTcZ0wsy+ZWVXOOiPGIoUJVYfYe0M1a+90vH7oAPNvX8f737OC+bev46eHDrD2TsfeG6oJVVfOEc1M24RgOqlV2wQRERGRylV2bRLM7C7gCeDTwL8CrcAngGudc33DzL8F6AA+B3wHuAP4Q2CZc64zPed+4PeAjwMvAQ8CK4D5zrk303P+EQgDG9JLtwG9zrlfTo9fA3wQeB6IAzcA3wCizrkHRhvLJX7tapMwCn0DfcQSMUgmmdF5mKr+GIN1If9YZjBIqDo0ZXvgjURtE0RERESmjnzbJJRjgtcJPO+c+82sZ0eB7zrnPjvM/G8DM51zv5T17Cngdefcr5uZAT8GHnbOfSU9fjnQD9zvnNthZguBF4GlWUnhUuAgsMA5d+wisT4ELHbOLR9NLKP4tSvBk6JR2wQRERGRySvfBK+gI5pmttzM/tzMDprZ1elnd5vZheUNR7feZcBNwL6coX3ABy7yY7cMM39v1vy5wOzsOc65t4Cns+bcAgxk77I55/4NGLjY55pZPbAmvc5oYxGZENFolEgkQlNTE5FIhGg0WuqQRERERGQC5J3gmdla/OTlDH5PvMvTQ+8AHshz2RAQxN9dy9aPn6QNZ/Yl5s/OejbSnNeGWfu13M81s2fM7CzQjX8c8/NjiGUIM7vczGZmXvi/dyIFuVjbBM/z5TvpKwAAIABJREFUShyZiIiIiIy3QnbwHgQ+5Zz7JDCY9fwZ4MaCorqwUboN82ys8y81Z7j1h1vnLvxf30eB/wJsziOWjM/i7xJmXvobuBRMbRNEREREKteYGp3nmA8cGOb5G0DtMM9HIwYkuXDH691cuDOW8eol5r+a/jobODXCnLph1n5X7uc65/49/fZFMwsCbWa21TmXHEUsub4MPJT1/TtQkicFyrRNyE7y1DZBREREpDIUsoN3Chjub4zLgBP5LOic+xnwfeBDOUMfwt8ZHM7BYeavzpp/Ej/xOjcnfdfvg1lzDgI1ZnZz1pwlQM0Inwv+7lxV+utoYhnCOfeWc+6NzAt4c4TPkovoG+jj+VPP87x3iJd2t3HyT/+Yl3a38bx3iOdPPU/fwAXFV6c0tU0QERERqVyF7ODtALaZ2Xr8I4hXpdsEbMFvDZCvh4AnzOw5/IRpAzAH+DMAM/sW8EpWRc1twIF0K4TvAb8CrMJPNHHOOTN7GHjAzLrx7849ACSAv0jPOZqudvkNM2tNr9sG/F2mgqaZ/Qb+UdQfAm/hF4P5MvBt59zbo4lFiq9voI+Fjy6k+UiCrftgbvz82Mla2LQa9t5QzdF7jlZU64SWlhaam5uHtE1QVU0RERGRqS/vBM8591UzqwHagWn4xzXfArY4575ewLrfNrN34hcvuRL4EXCbc+7l9JQ5QCpr/jNm9mvAl4AvAseBu3L6zn0VmA78KTAL6ARWZ3rgpf0GsJ3zVTD/FvhvWeNvA/cD78HfsXsZeBT42hhjkSKKJWI0H0mwe5cxsGo5XRvXc3bBPKZ1HWf29sfYvauDtSSIJWIVleCBv5OXSeSi0ei5wiuBQIC2tjZaWlpKHKGIiIiIFFvBffDMrBq4Fv+454vOudPFCKwSqQ/e2D3vHWLWdTcza/EKap9qh0DWqeNUiviaRn566ADxHz7LjeHFpQu0hDzPIxKJXHAnr7e3Vzt5IiIiImUq3z54ee/gpZt8D/fcAWeBHuB7zrmf5vsZIpcyo/Mwc+PQtXE9tYGcK6WBAP33rmP+7Qd4qfMwVGiCN1JVTSV4IiIiIlNLIXfwFuG3CwgCx/CPLTbgV8HsAj4NbDWzZc65FwsNVGQ4Vf0xAM4umDfs+Jn088y8SqSqmiIiIiKVo5Aqmt8D9gNXOeducs7dCFwN/C/gL9PvD5B1R02k2AbrQgBM6zo+7Pj09PPMvEqkqpoiIiIilSPvO3hm9grwodzdOTN7L7DPOXe1md2Yfl+5f7seA93BGzvdwRs9z/NUVVNERERkksj3Dl4hO3g1+E28c70LyGQnceCyAj5DZGTBIJtWQ83+DuJrGjm2ZycvdHdwbM9O4msaqdnfwebV/rxKFw6HWblyJeFwmGg0SiQSoampiUgkQjQaLXV4IiIiIlIEhezg/U/gFmATcAi/F97N+H3wnnHO3Z1uGbDZOfefixTvlKYdvLEbqQ/eiVrYXKF98EaiqpoiIiIi5W/Cq2gCrfj36/4qa523gf8P+O30913AJwr4DJERzamZw9F7jhJLxHg9mWSw8zBV/TEG60KcXrKIB4NBHq4OKbnLoqqaIiIiIlNXMfrgzQCuwa+ieVx98PKnHTyZCNrBExERESl/pbiDB4Bz7rRz7gfOuSNK7kTKn6pqioiIiExdBe3gmdmtwK34xVaGJIvOufWFhVZ5tIMnEym3qmbmmSprioiIiJTehO/gmdkXgH34CV4ImJXzEpEyll1VE1BlTREREZEpoJAqmqeAzzjnnihuSJVLO3jF0zfQRywRg2SSGTmFVwgGCanwyhC6lyciIiJSXkpRRfMy4JkCfl5kXIzUOuFkLWxS64QLqLKmiIiIyNRQSJGVbwIfLVYgIsUSS8RoPpJg9y5j1uIVdKWbn3ft2cmsxSvYvctoPpLwd/gEgIaGBgKBof87CAaD1NfXlygiEREREclHITt404ANZrYK+AEwmD3onLuvkMBE8pZMsnUfDKxaTu1T7dRmEpf6ZXDb3cTXNLJl3wHiyWRp4ywjmcqara2tJJPJc5U1Adrb21V0RURERGSSKGQH73rgBSAFvA9YlPV6f+GhieRnRudh5sbh1Y3rIWdXikCA/nvXcU3cnyfntbS00NvbS3t7O729vQAquiIiIiIyyeS9g+ecayxmICLFUtXvH708u2DesONn0s8z8+S8cDhMOBzG8zw2bNhw7l5eKpWitbWV5uZm7eSJiIiIlLGCG52LlJvBuhAA07qODzs+Pf08M08uNFLRFREREREpX4XcwQPAzK4F5uBX1TzHOfe3ha4tko/TSxZxshZmb38Mbrt76DHNVIq6Rx7nRK0/T4aXKbqS2zZBRVdEREREylshjc6vMbMjwI+Avwe+m359J/0SKY1gkE2roWZ/B/E1jRxLV9E8tmcn8TWN1OzvYPNqf54ML1N0JZj+PcoUXdHxTBEREZHyVkij8z1AEvgkcAK4GXgnsBXY7JzrKFaQlUKNzotjpD54J2phs/rgjZrnefT09FBfX3/ubl53d7eqaoqIiIiMs3wbnReS4MWAJufcD8xsALjZOXfMzJqArc45nX8bIyV4xdM30Of3uUsmmdF5mKr+GIN1If9YZjBIqDqk5G6MotHoucIrgUCAtrY2WlpaSh2WiIiIyJRUigTvdeAm59wJMzsOfMI5125m84AfOueq81q4ginBk3LleR6RSOSCO3m9vb3ayRMREREZB/kmeIVU0fwRfi88gE7gM2b2i8Dn8Y9sisgUoaqaIiIiIpNDIQnel7J+/kEgAnQAtwEbC4xLRMpIpqpmtmAwyBVXXEF7ezue55UoMhERERHJVkij871Z708A15rZzwOvu3zPfYqME93JK0ymqmZrayvJZJJgMMjHPvYxli5dqjt5IiIiImUk7zt4Uny6gzc+RqqqebIWNqmq5qhlqmpeccUV55K7DN3JExERESmefO/gFdTo3MxuBW4F3k3OcU/n3PpC1hYpllgiRvORBLt3GQOrltO1cT1nF8xjWtdxZm9/jN27OlhLglgipgTvEsLhMOFwmPb29oveyVOCJyIiIlI6eSd4ZvYF/IIqzwGnAG0FSnlKJtm6DwZWLaf2qXZqM3fJ6pfBbXcTX9PIln0HiCeTpY1zEsncycvdwauvry9hVCIiIiJSSJGVTwEfd84tcc592Dl3R/arWAGKFGpG52HmxuHVjeshp1AIgQD9967jmrg/T0YncycvGAwCfnK3Y8cOABVdERERESmhQhK8y4BnihWIyHip6o8BcHbBvGHHz6SfZ+bJ6LS0tNDb20t7ezu9vb0ARCIRmpqaiEQiRKPR0gYoIiIiUoEKSfC+CXy0WIGIjJfBuhAA07qODzs+Pf08M09GLxwOs3LlSgA2bNhw7shmKpWitbVVO3kiIiIiE2xMd/DM7KGsbwPABjNbBfwAGMye65y7r/DwRAp3eskiTtbC7O2PwW13Dz2mmUpR98jjnKj150l+RmqErqIrIiIiIhNnrEVWcv8G/EL66/tynqvgipSPYJBNq2H3rg7iaxrpv3cdZxbMY3rXceoeeZya/R2svxMeTN8nk7FT0RURERGR8jCmBM851zhegYiMl1B1iL03VLOWBFv3HWD+7QfOjZ2ohfV3+n3wHq7WEc18DdcIPbvoSkNDg3byRERERCbAmBudm1kT8HVgaW7DPTOrwS+88innXEfRoqwQanQ+fvoG+oglYpBMMqPzMFX9MQbrQv6xzGCQUHVIPfCKINMIvb6+nr179567lxcIBGhra6OlpaXUIYqIiIhMCvk2Os8nwftboN0597WLjG8EGtUqYeyU4MlU4XkekUjkgiObvb292skTERERGYV8E7x8qmjeADw1wvg+4KY81hWRKWKkoisiIiIiMn7GWmQFoI6cipk53gbelV84IhPj3JHNi9CRzcKMVHTF8zy6u7t1L09ERERkHOST4L0CXAdc7J/irwdO5R2RyDjrG+hj4aMLSQwmCKRg+ctw5Wk4NQM6IpAKQHVVNUfvOaokL08XK7qie3kiIiIi4yufO3iPACuBxc65szlj04Fn8e/obSxWkJVCd/AmxvOnnuemtpt4+h3/nSUP7+Lyf//xubG3/tNVdP7WnXzwzW18f8P3ufHKG0sY6eSXXXQF0L08ERERkVGayDt4XwJ+HnjJzD5jZr9iZreb2f3AsfTYH+WxrsiEueNFWL55O5e//yY4eBDefBMOHuTy99/E8s3buePFUkc4NYTDYVauXEk4HNa9PBEREZEJMOYjms65fjP7APA/gC8DlhkC9gKfds71Fy9EkSJLJtm6DwZWLaf2u9+FQPrfOZYuhe9+l4E1jWzZd4B4MlnaOKeYi93Lu+KKK9QrT0RERKRI8tnBwzn3snPuNiAELAGWAiHn3G3Oud4ixidSdDM6DzM3Dq9uXH8+ucsIBOi/dx3XxP15UjyZe3nBYBDwk7uPfexjLF26lKamJiKRCNFotMRRioiIiExu+RRZOcc59zpwqEixiEyIqn6/eubZBfOGHT+Tfp6ZJ8XT0tJCc3MzPT09XHHFFSxduvTcjl4qlaK1tZXm5mbt5ImIiIjkKa8dPJHJbLAuBMC0ruPDjk9PP8/Mk+LK3Ms7ffq07uSJiIiIFFlBO3gik9HpJYs4WQsztmzj+UXvHXpMM5Xi3Vu3c6LWnyfjR3fyRERERIpPO3hScULvqOOB2y7jqqcP4zUt5p7P3cQHH7mJez53E17TYq56+jC/d9tlhN5RV+pQpzTdyRMREREpvjH3wZPxoz54E6dvoI+3//pJrv6Drw3tgzfnal75/G/xcx/5VTU5nyCZXnm5d/JAffJERESkcuXbB08JXhlRglcCySR0dMCpU3DllbB8OaR3lGRitbe309TUdMHzJ598klAopCObIiIiUlEmJMEzs4dGO9c5d9+oFxZACZ5UNs/ziEQiQ3bwzAwzI5VKEQgEaGtro6WlpYRRioiIiEyMiUrw2kc51TnnLvyneBmRErzS6RvoI5aIQTLJjM7DVPXHGKwL+YVWgkFC1SEd2ZwA0WiU1tZWkskkgUAA5xzZ/4/SkU0RERGpFDqiOQUowSuNvoE+Fj66kOYjCbbug7nx82Mna2HTath7QzVH7zmqJG8CZO7kvfbaa9x1110XjLe3t7Ny5cqJD0xERERkAuWb4BXcJsHMrgXmAJdlPXbOuT2Fri0yEWKJGM1HEuzeZQysWk7XxvWcXTCPaV3Hmb39MXbv6mAtCWKJmBK8CRAOhwmHw3iepzYKIiIiImOUd4JnZtcA3wGuAxxg6aHMlqAqVcjkkEyydR8MrFpO7VPt1Gb64tUvg9vuJr6mkS37DhBPJksbZ4XJtFHIHNnMbqOgO3kiIiIiwyukD9424CRQBySA9wIrgOeAlQVHJjJBZnQeZm4cXt24fmjTc4BAgP5713FN3J8nE6ulpYXe3l7a29s5ePAgTzzxxLkdvVQqRWtrK57nlThKERERkfJRSIJ3C/B559xPgBSQcs79C/BZYHsxghOZCFX9MQDOLpg37PiZ9PPMPJlY4XCYlStXcvr06SHHNQGSySQHDx6kvb1diZ6IiIgIhSV4QeB0+n0MuCr9/mVgfiFBiUykwboQANO6jg87Pj39PDNPSqOhoYFAzg6rmfFrv/ZrNDU1EYlEiEajJYpOREREpDwUkuD9CLg+/b4T+IyZ/SLweeBEoYGJTJTTSxZxshZmb38McnaISKWoe+RxTtT686R0MnfygulG9JlkT0c2RURERM4rJMH7UtbPPwhEgA7gNmBjgXGJTJxgkE2roWZ/B/E1jRzbs5MXujs4tmcn8TWN1OzvYPNqf56UVvadvL/8y78kt81LMpmkp6cHz/N0bFNEREQqUt5VNJ1ze7PenwCuNbOfB153aq4nk0ioOsTeG6pZS4Kt+w4w//YD58ZO1ML6O/0+eA9X64hmObhUG4XnnnuOW2+9VZU2RUREpCKp0XkZUaPz0ukb6COWiEEyyYzOw1T1xxisC/nHMoNBQtUh9cArQ9FodEgbhS9/+cv87u/+7gVJX29vr3rmiYiIyKSSb6PzghI8M7sVuBV4NznHPZ1z6/NeuEIpwRMZO8/z6Onpob6+nu7ubpqami6Y8+STTxIKhdQcXURERCaNfBO8QhqdfwG/oMpzwCnONzgXmfS0ozd5ZI5sZuQe28xU2tSRTREREakEee/gmdkp4DPOuSeKG1Ll0g5eeegb6GPhowtpPpJg6z6YGz8/drIWNq327+QdveeokrwylH1sMxAI4JwbUoxFRzZFRERkMsh3B6+QKpqXAc8U8PMiZSmWiNF8JMHuXcasxSvoSlfV7Nqzk1mLV7B7l9F8JOHv8EnZGU2lTTVHFxERkamqkB28rwCnnXNfLG5IlUs7eOXhee8Qs667mVmLV1D7VDtkN9dOpYivaeSnhw4Q/+Gz3BheXLpA5ZI8zyMSiVxwZNPMdGRTREREylopdvCmAfeZ2dNm9oiZPZT9KmBdkZKa0XmYuXF4deP6ockdQCBA/73ruCbuz5PypuboIiIiUmnyLrICXA+8kH7/vpwxFVyRSauq3z96eXbBvGHHz6SfZ+ZJeWtpaaG5uZmenh5ee+017rrrriHjmSObqrIpIiIiU0Ehjc4bixmISLkYrPMbmk/rOg71yy4Yn951fMg8KX8jNUdXlU0RERGZSgo5oomZ1ZrZJjP7ppl9w8x+28xqihWcSCmcXrKIk7Uwe/tjkJUIAJBKUffI45yo9efJ5DLaI5uHDh1SERYRERGZlPJO8MzsPwPHgd8Gfh4IAfcBx83sxuKEJ1ICwSCbVkPN/g7iaxo5lq6ieWzPTuJrGqnZ38Hm1f48mXxGU2Vz6dKlNDU1EYlEiEajJYpUREREZOwKqaLZAfQAn3TOvZ1+9nPAN4FrnHMrihZlhVAVzfIwUh+8E7WwWX3wpozhqmzmUt88ERERKYV8q2gWkuCdARY557pynl8LPOecq85r4QqmBK989A30+X3ukklmdB6mqj/GYF3IP5YZDBKqDim5myJyG6MPl+w9+eSTKsIiIiIiE6oUCV4/cLdzbl/O82bgW865urwWrmBK8MqXEr6pzfM8enp6uOKKK1i6dKn65omIiEjJlSLB2w7cAWwGnsFvjbAM+BNgt3Put/JauIIpwStPIx3ZPFkLm3Rkc0rJ3dFzzg25p5c5sgnQ3d2tXT0REREZF6VodL4Z+BvgW0Av8DKwE/hr4P4C1hUpK7FEjOYjCXbvMmYtXkFXuuhK156dzFq8gt27jOYjCX+HTya90RRh2bZtG5FIRIVYREREpOzkvYN3bgGzamAeYECPcy5RjMAqkXbwytPz3iFmXXczsxavoPapdghk/btIKkV8TSM/PXSA+A+f5cbw4tIFKkU3XBGW3NYK4O/qHTx4kNOnT2tHT0RERIqiFDt4ADjnEs65HzrnfqDkTqaiGZ2HmRuHVzeuH5rcAQQC9N+7jmvi/jyZWnL75gWDQe67774LCrGotYKIiIiUi58by2Qzewj4nHPuP9LvL8o5d19BkYmUiap+/+jl2QXzhh0/k36emSdTS0tLC83NzfT09FBfXw/AQw89dEGSl9ss/frrr9eOnoiIiEy4MSV4wCKgKuv9xRR27lOkjAzWhQCY1nUc6pddMD696/iQeTL1hMPhIUlaW1vbiK0VMjt6qrwpIiIiE63gO3hSPLqDV550B0+GM1JrhVy6oyciIiJjNeF38MxsjpnZxcbyXVek7ASDbFoNNfs7iK9p5Fi6iuaxPTuJr2mkZn8Hm1f786RyhMNhVq5cyeLFi4fc0wvk3tNEd/RERERk4hTSBy8JXOmcey3n+TuB15xz+tvuGGkHrzyN1AfvRC1sVh88QTt6IiIiUlylaHSeAuqccz/JeR4BXnTOXZHXwhVMCV756hvo8/vcJZPM6DxMVX+MV2caJ9/n/8V87o88Zr/hGKwLcXrJIggGCVWHlPBVqNxm6cMle5nnuqMnIiIiw5mwBC+reuZ/B74BZLdGCAJLgKRz7hfHtLAowZtERtrVO1kLm7SrV/G0oyciIiKFyDfBG2sVTThfPdOA64CfZY39DDgCbMljXZFJI5aI0Xwkwe5dxsCq5XRtXM/ZBfOY1nWc2dsfY/euDtaSIJaIKcGrUNmVN1V1U0RERCZKIUc0Hwc2OufeLG5IlUs7eJOHKmvKWI11R6+3txeA7u5u7eqJiIhUoAmvogl0A3fmPjSz9WZ2fwHripS9GZ2HmRuHVzeuH5rcAQQC9N+7jmvi/jwRGHvVzW3bthGJRFR5U0RERMakkARvA9A1zPP/A3yqgHVFyl5VfwyAswvmDTt+Jv08M08kW0tLC729vbS3t/Nv//ZvFyR5gUCAhx566NwuXyqVorW1lUOHDtHe3o7neaUIW0RERCaBQhK82cCpYZ7/BLiygHVFyt5gXQiAaV3Hhx2fnn6emSeS62I7esFgkPvuu++i9/Syd/Q8z1PCJyIiIkMUcgevG/gD59yf5zy/O/38miLEV1F0B2/y0B08KbbMHb36+noAIpHIiPf0zAwzU2EWERGRKWoiq2hmfBN42MyqgH9KP7sV+CqwtYB1RcpfMMim/5+9O4+Pqrr/P/46CREMSIKE1TQKKksVCVBAVBCUrRZRRLStWlREWm2tC24o7gutG9pqK4siWL8/WSpIVTYNJC6sSXAjBCESEAhEyCAEIYTz++POJJPJJJMJIZmZvJ+PxzzinXvm3puowJtzzuczGObNSaNg6ADy/nIThzqdyclZm2n1jzeJW5bGzaPgYfesjEgg3lU3IXDlTWstnr+g8yzhPO+889RqQUREpJ47nhk8A0wC7gBOcr/9M/A3a+0TNfN49Ytm8MJHZX3wtsTDePXBkxoQTOVNKN88fciQIarCKSIiEqZqrdF5uQsY0wToDBwCNllrDx/XBesxBbzwkuvKJb8wH4qLabIqg4O535EfF0N+1w4krM8mwVVE46SzONC7G0RHkxCboLAn1TZ9+vQyM3reM3j++FvCqcAnIiISPuos4EnNUcALX5XN6OXEwz2a0ZMa4L1Pb/HixZUu4fSlPXsiIiLhpS764AFgjPmlMWaoMWa49+s4rnebMSbHGPOzMWadMaZvgPEjjTHfGmMOu7+O8DlvjDGPGWN2GGMOGWOWG2PO8RnTzBgzyxjjcr9mGWPivc73N8YsMMbsNMYcNMZkGmOu87lGjDHmEWPMZvezrzfGDK3uz0HCS35hPkPWFzJvjqFZz35kLZxB5qY0shbOoFnPfsybYxiyvtCZ8ROpJk/lzcTExICtFnxZa8u1Xdi+fbsqcYqIiESYahdZMca0B94DugAWMO5TninBoKtLGGOuBSYDtwGfAeOAj4wxv7TW5voZ3wd4F5jofpYRwGxjzEXW2lXuYfcBdwM3AtnAw8BSY0xHa+1P7jHvAImAJ5BNAWYBl7uPLwC+BP4G5AG/AWYaY/Zbaxe6xzwFXA+MxekPOAR4zxhzgbVW3a4jXXExLywB18C+xC9KId7zh+2zLoLLbqBg6ACeX5JKQXFx3T6nRBTvwiy+RVkCLeH0NFP39NvTMk4REZHIcDxFVhYCxTiBZgvQC2iOU0FzvLU2rRrXXAWkW2v/5PXeBmC+tfZBP+PfBZpaa3/t9d4iYJ+19nfuQjA7gMnW2r+5zzfECWn3W2tfN8Z0Br4FzveEQmPM+cAXQCdr7cYKnvUDIM9ae7P7eAfwtLX2Va8x84ED1trrq/j9a4lmmMqeN4UOV48ja+EMOg0bXe78xoUz6Dj8JrLnvk6HkbfWwRNKfVDZEk7fwOeZ8fNe2ql9eyIiIqGjLpZo9gEesdbuAY4Bx6y1nwIPAq8EezFjzElAD2CJz6klODNoFT2D7/jFXuPb4TRkLxnjLgKzwmtMH8DlNeOHtXYl4KrkvgBxwF6v44Y4VUS9HQIuquQaEiFi8pyllz93OtPv+UPu9z3jRE6EipZwbt26lalTpwZspu67jHPs2LGcfvrpaq4uIiISRo6nD140cMD9z/lAW2AjsBXoWI3rJbivmefzfh5OSPOndYDxrb3e8x1zuteY3X6uvbui+xpjrgZ64iwh9VgM3G2MSQU24/QEvIJKlqq6ZxMber11SkVjJbQVtUoAoFHWZmdZpo+TszaXGSdSG7yXcI4ZM4YhQ4aUaabuWZ5ZEd9ee2PHjtUMn4iISIg7nhm8r4Hz3P+8CrjPGHMh8AjOks3q8l0zavy8F+z4QGP8Xd/vfY0x/YEZwFhr7Tdep/4KbMLZf3cE+CfwJs4y1oo8iDNT6Hnpr8TD1IHe3ciJh9avvAG+f2A+doxW/3iTLfHOOJG64j3Dl5iYyJQpU0pm9aKionBWtVesKjN8IiIiUreOJ+A95fX5h3FmxNKAy3CanwcrHycM+c6ataT8DJzHrgDjd7m/BhrTys+1W/je1xhzMbAQuNtaO9P7nLV2j7X2SqAxzs+iE84MZ04Fzw7wLM5ST89Lf/0drqKjuWcwxC1Lo2DoADa6q2huXDiDgqEDiFuWxvjBzjiRUFHZMs7qBL5x48axZs0aLeEUERGpQzXaB88YcypOgZNqXdRdZGWdtfY2r/e+BRZUUmTlFGvtZV7vfQQU+BRZecla+3f3+ZNwll/6Flnpba1d7R7TG1iJV5EV98zd/9yfKymkUsn3EgNsAGZbaydU8ftXkZUwVVkfvC3xMF598CRMBFOoxR9PTz7vXnvbt28vs4zT91hERETKq9VG5+7wsgQYZ63NDvoCFV/3Wpz2BH/EqWJ5K06VznOstVuNMTOBHzxhzxhzAZAKPAQswNnz9hRQ0ibBGHM/zlLIm3CWUE4A+gMlbRLcobAtpXvqpgBbrbWXu8/3Bz4AXqZsAZkj1tq97jG9gdOATPfXx3CKvHS31nr9cb/S718BL4zlunKdPnfFxTRZlcHB3O/Ij4shv2sHEtZnk+Djqoo1AAAgAElEQVQqonHSWc4yzehoEmITFPYk5B1P4IuOjmbSpEncf//9JaHvhhtuYNasWdrHJyIiEkCtBjwAY8we4AJr7aZqXaDi696G07uuDc4+v7ustanuc8uB7621N3qNvxon1LXHKW7ykLX2v17nDfAoTnhrhrNf8HZr7ddeY07FCW6eBu3vA3/2BDNjzAygfO17WGGt7e8eczHwL/dzHAA+BB6w1u4I4ntXwIsQlc3o5cTDPZrRkzBVWeDzV7Clovc91JpBRETEv7oIeC8ARdbaB6p1ASlHAS9ypO9M56k7ezBvjsE1sC+77riZnzudSaOszbR+5Q3ilqUxcpTl4cnr6N6me10/rki1eQJf48aNOf/888uEuUDhzh8FPhEREUddBLx/AH8AvgPWAge9z1tr767WhesxBbzIkb59Dc269KJZz37EL0qBKK96RseOUTB0AHvXpFLw1Wq6J/asuwcVqUHTp08vmdGLjo7m2Wef5YEHHgg65HlT4BMRkfqqLhqdnwukA/uBDkA3r1fycVxXJOw1WZVBuwLYdcfNZcMdQFQUeX+5ifYFzjiRSOFdlfP777/n3nvvLdOKITo6mtGjR5+Q1gy+DdjVkF1EROqroBudG2PaAznW2gEn4HlEIkJMXj4AP3c60+/5Q+73PeNEIoV3c3Uo32A9MTGRp556qtqFW3ybr48bN459+/apkIuIiIhb0Es0jTHFQBtr7W738bvAHdbainrVSRVpiWbkyJ43hQ5XjyNr4Qw6DStfn2fjwhl0HH4T2XNfp8PIW+vgCUVCR021ZqhIVZZ5qnWDiIiEmlrbg2eMOQa09gp4PwFdrbVbgrqQlKOAFzm0B0+k+oIJfDVRyMXfjJ/694mISF2riz14IlKR6GjuGQxxy9IoGDqAjQtnkLkpjY0LZ1AwdABxy9IYP9gZJyJlJSYm0r9/fxITE8vs69u6dStTp04ts6dv0qRJRPnucw3Ad1/fW2+9VeZ43LhxPP/882X2+t14443l9v5p35+IiISi6i7RbG2t3eM+/gk4z1qbcwKer17RDF7kqKwP3pY4eLMb5LaI4Y/DH6dh/4FqfC4SBO8ZvsTExHLVO6+//nrefvvtoJZ5+gp22WdV9v1pBlBERIJR20s0PwIOu9+6HPiE8m0SrgrqwqKAF2FyXbnkF+ZDcTGHly/j3+8/StKeIm7OVONzkZrmG/qOZ19fdZZ9+tIyUBEROV61GfDerMo4a+1NQV1YFPAimBqfi9StigKf74xfTfXvC8SzvDTY6p8KhCIi9UetNzqXmqeAF7lUdEUktFQ243eiln36Ot5loFVtB6FQKCISnhTwIoACXuRS2wSR8FPVZZ/VCYA1sQzUl792EAC33nqrZglFRMKQAl4EUMCLXDmvPUO72x8ic1MayWddVO585qY0kjv0I+fVp2l324Q6eEIRCVZ1A2BtLQP1VBcNhVlChUQRkeAp4EUABbzIpRk8kfonFJaB1rTqzBLW1KyhQqOI1DcKeBFAAS9yaQ+eiPhzPLOAgQJhVWbwjld17lGdWUOo+aWm1QmRCpUiUpsU8CKAAl7k8q2imfeXm8hJbIz55hvOmbqA01Izeel86DJ2As0HX6m+eCICBJ4FrCwQvv766wBhN0vo60QsNa1OiKytmcjjPfZ3DxEJT9UNeCW/uOtV9y+gKWBdLpeVyLK1YKuNfTrWjrgGuyUeayl9HYkqe7wlHjviGmzs07F2a8HWun50EQkj27ZtsykpKXbbtm0Vvud9PG3aNBsdHW0BGx0dbUePHl3hcVRUlDXGWKDkFRUVZaOiosq8F46v6nwfxpiSz0RFRdnRo0dXejxt2jQ7bdq0oD4T7LG/e0ybNs1u27bNfvLJJ2X+Gzie45q4RrjcQ6QuuVwuz685TW0wmSKYwXop4En1bS3YatftWGfXbVttl0yfYF84H3vMYLf162Y/mvWY/Shjjt2wcIbdN6ifPWaMHXENdt2OdXX92CIS4SoLgL7HvoHQEyiOJySeiPAViq/a+D783SPYIBqqQbUu7lET4bg6nwmX8Ftf7lGXFPAi4KWAV3+s27babonH7hvUz9ri4rIni4vtvkH97OZ47Lptq+vmAUVEKhDsLKHvcTCBsCohsjqhMVJDZG286iqo1sU9jjccn4igGirht77cY9q0aXXy66yHAl4EvFDAqzc2zn3dWrAbFs7wez7r/TetBWeciEiECSYQVuUzwYbGYENkuMxEKqiG1utE/PuIlP+OwuUe0dHRdTqTp4AXAS8U8OqNLa8+bS3YjE1pfs9nZKdaC844EREJKNjQGGozkTVx7HuPmpjdDNc/mIfCPfSKjFdKSkot/kpWlgJeBLxQwKs3NIMnIhL+TnSIrIl71HSorIugWhf3CNWlv5ESfsPlHprB00sBT6pMe/BERKS2nOgQGan3qO2lv+ESfuvTPcJ1D5764IUQ9cGrP9QXT0REJPQF04vS33FNXKM2rql7VH6NuqJG5xFAAa/+yHXl0vnVzgxZX8gLS6BdQem5oiiI8ernmxMP9wyGxV1j2XD7BoU8ERERkXqgugGvwYl7JBGpSFJcEhtu30B+YT77iov5bsl8vpr6DHetgryLuvH12Cvg3HM4Y/tBWr/yBvPmpDGSQvIL8xXwRERERKRCmsELIZrBq7/St6+hWZdeNOvZj/hFKRAVVXry2DEKhg5g75pUCr5aTffEnnX3oCIiIiJSK6o7gxcVeIiInGhNVmXQrgB23XFz2XAHEBVF3l9uon2BM05EREREpCIKeCIhICYvH4CfO53p9/wh9/uecSIiIiIi/ijgiYSAolYJADTK2uz3/Mnu9z3jRERERET8UZEVkRBwoHc3cuKh9StvwGU3lCzTzHXlkn9gNy2ff5kdjWFPdibMm8KB3t3UOkFEREREylHAEwkF0dHcMxjmzUmjYOiAkr54k/59Pc8tPMJpO8EAbSf8C1DrBBERERHxTwFPJAQkxCawuGssIynkhSWpdByeSkdgKGCBtW1h/OUn8eAf/6PWCSIiIiJSIbVJCCFqk1C/5bpyyS/Mh+JimqzKYHd2Bmc+82+Ku3dj9ztTSGjSsjTIqXWCiIiISERTo3ORMJcUl1Qa4BJ7wrwptDkAWff+le6n/arsYHfrhI7DU8leleGMFxEREZF6T1U0RUKUWieIiIiISLAU8ERClFoniIiIiEiwtERTJET5a51Qsk+vqIhfTHyavFjI3fc9B7avUdsEEREREVHAEwlZPq0Tvrnlcq78+mHGfH6YiSug8VFnWKuxz5IT/6zaJoiIiIiIAp5IqPJtnXDh0lT2uM8dbAAPXArTLmjIgi5Pc87U99U2QURERETUJiGUqE2C+PJunfDjov/S9a+TMGefzbb3Z0FMTOmSTLVNEBEREYkoapMgEoG8WydkN8ugZSFkPfUQ3ZN6lx2otgkiIiIigqpoioQNtU0QERERkUAU8ETChNomiIiIiEggWqIpEibUNkFEREREAlHAEwkXapsgIiIiIgEo4ImECbVNEBEREZFA1CYhhKhNggSitgkiIiIi9YPaJIjUA2qbICIiIiKVURVNkTCltgkiIiIi4ksBTyRMqW2CiIiIiPjSEk2RMKW2CSIiIiLiSwFPJFypbYKIiIiI+FDAEwlTapsgIiIiIr7UJiGEqE2CBEttE0REREQik9okiNRDapsgIiIiIt5URVMkQqhtgoiIiIhoBk8kQpRpm3DWRUDZJZxHZ0wH4Mfvv2WfqmqKiIiIRCTtwQsh2oMnxyN9+xqadelFs579iF+UQu5P2+n8ameGrC/khSXQrqB0bE48qqopIiIiEsKquwdPSzRFIoW7bULcMqdtwoaFb3DlukLmzYHW0U2xwO9HwKJZj9GsZz/mzTEMWe9U1RQRERGRyKCAJxIhStomjLLsW5PKkBse5z//BWNh59H9jLwGFvwqll9efhPxi1JwDezL80uA4uK6fnQRERERqSEKeCIRIikuiQ23b+DhyevY99Vq1t57HQCrJ4ym4OvVPDx5XelyTHdVzfYF0GRVRh0/uYiIiIjUFBVZEYkg3m0Tcs74JQAn3XQLye62CLmuXNJ3pkNxMQXbvqEjcHjxh6T37qaiKyIiIiIRQAFPJEL5VtXMdeWWKbrS3V10pcvUBeTMWaCiKyIiIiIRQEs0RSLUgd7dyImH1q+8AceOkV+Yz5D1hcybY2jWsy+7u3UgJw4Wv/WIiq6IiIiIRAgFPJFI5VNVc8/S+by4GPYknw0WWmRu4p4h0GLQFSq6IiIiIhIhFPBEIlS5qpqjn+QMF7TMyGbv2jRGjrIs7hpLQmyCiq6IiIiIRAjtwROJUJ6qmvmF+ewrLubAk0/TZcoCPnl1PPHDr+Hh6GgmexVVOdTpTABi8rREU0RERCRcKeCJRDDvqprZgy+DKQtom3QundxVNcGprJlfmM+eL5YCcGD9arLnTeGAKmuKiIiIhB1jra3rZxA3Y0xTwOVyuWjatGldP45EmPTta2jWpRfNevYjflEKREWVVNYcmlnIzPeg8dHS8TnxqLKmiIiISB3Zv38/cXFxAHHW2v1V/Zz24InUFz5FVzYunMEXG5bwl08KmTsHYo/CA5fCuyunkbVwhiprioiIiIQhzeCFEM3gyYnk2wevXUHpuYMN4A8jYFGy12zdsWMUDB3A3jWpFHy1mu5eyzpFRERE5MSq7gye9uCJ1BO+RVeKVmVwePGHdJm6gE+nP8JDg67gJe/9du7Kmh2Hp5K9KgMU8ERERERCngKeSD3iXXSFxJ7k5OUDC2h1wSCS23QHSouuUFxMwbZv6AgcXvwh6Sq6IiIiIhLyFPBE6rGiVgkANMraDGddVG4ZZ3f3Ms4uUxeQM2eBiq6IiIiIhDgVWRGpxw707kZOPLR+5Q04doz8wnyGrC9k3hxDs5592d2tAzlxsPitR1R0RURERCQMKOCJ1Gc+lTX3LJ3Pi4thT/LZYKFF5ibuGQItBl1B/KIUXAP78vwSoLi4rp9cRERERPxQwBOpxxJiE1jcNZaRoyz71qQyZPSTnOGClhnZ7F2bxshRlsVdY0mITSgputK+AJqsyqjrRxcRERERP7QHT6Qe862seeDJp+kyZQGfvDqe+OHX8HB0NPcePUx+YT75P+Wp6IqIiIhIiFMfvBCiPnhS17LnTaHD1ePIWjiDTsNGV9o7LyceFV0REREROUGq2wdPSzRFpISKroiIiIiENwU8ESmloisiIiIiYU178ESkREnRFQp5YUkqQ5amOicystkSn83No+Cj8xox5sBO0oE9fxjAkKWpLF0yn/RfR5dcQ8s1RUREROqG9uCFEO3Bk1CQ68p1llwWFxPjU3Rl56HdjJo9ikNHDxF1DAZ/Bx+9A0/0g8f7w7EoiI3RnjwRERGR46U9eCJSI5LikujepjvdE3vScPBlALRNOpfuiT1p06QNh44eYsUpf6XwzbZ89I7zmUdSofDNts77RdqTJyIiIlJXFPBEpEK+RVcARnwLfce/QsOu3fmpZzI5cZC1YDoNk3vQd/wrjPi2jh9aREREpB5TwBORilVSdKXgZxdN1q7nniFQ2DMZ5s9X0RURERGROqaAJyIVKim6Msqyb00qQ0Y/yRkuaJmRzd61aYwcZfnovEbsPLCT9B3ryO7ZjvYFcOyVl0nfvob0nenkunLr+tsQERERqTdUZCWEqMiKhKKqFF0Z+uUhNUIXERERqUEqsiIiJ0SgoitDvzzkboTej5WPjgFg9YTRaoQuIiIiUgcU8ESkyjxFV5o8/zLpP6wlK+8bXlgCP/RLZsv050hcns6WeGjwp9vVCF1ERESkDijgiUiVJZzSigmXnUTbFRlsv6Qnnz70B9oVwGNNM9g+sDdtV2Qw4dcx7Dy0W3vyREREROqA9uCFEO3Bk3CQ68rl6NzZnPb4SzTctqPk/cNJp/H1vaPp63pJe/JEREREjpP24IlIrUiKS6L9mPE0zMll22N3A5D7zP003LIVM3Kk9uSJiIiI1CEFPBGpnuho9oz5LTnx0DTlCzAGiot5YQm4BvYl/sOP6fT5Ju3JExEREalFCngiUn0+jdCP/utV2hVA1gVnU3DZpcQtS2P8YJw9eXmZrLr+YtoXQMyTT5M9b4r25YmIiIjUMO3BCyHagyfhJteVS+dXOzNkfWG5PXdb4mH8YPjovEYYDEO/PMSLi+EMV+kY7csTERER8S9i9uAZY24zxuQYY342xqwzxvQNMH6kMeZbY8xh99cRPueNMeYxY8wOY8whY8xyY8w5PmOaGWNmGWNc7tcsY0y81/n+xpgFxpidxpiDxphMY8x1fp7lTmPMRvd9thljXjLGNDren4lIqEqKS2LD7Rt4ePI69n21mrX3Ov9brJ4wmoKvVvPw5HXMvWZuyb682PYdAPjk1fFkLZyhfXkiIiIiNSykAp4x5lpgMvA00A1IAz4yxvj9a31jTB/gXWAW0NX9dbYxprfXsPuAu4E/Az2BXcBSY8wpXmPeAZKBoe5XsvtaHhcAXwIjgfOAN4CZxpjLvZ7lOmAS8DjQGRgDXAs8G+zPQSSceDdCj7rjr+TEQ4c1OXRv24PubbrT5uSW7n15F3FS81ZsiYf44dfQadho7csTERERqWEhFfBwgth0a+00a+0Ga+2dwDbgTxWMvxNYaq191lqbZa19FvjY/T7GGOP+56ettf+11n4NjAZigd+7x3TGCXW3WGu/sNZ+AYwFhhljOgJYa5+x1k601n5urd1srX0FWAR4zxb2AT6z1r5jrf3eWrsE+D/gVzX34xEJcT578jYunEHB+7NpVwBH8vOI+/jT0j15O9PVK09ERESkhoVMwDPGnAT0AJb4nFqCM4PmTx8/4xd7jW8HtPYeY609DKzwGtMHcFlrV3mNWQm4KrkvQByw1+v4U6CHMaaX+/tpD1wGfFDJNUQiSkJsAou7xjJylGXfmlQ6Dr+JS25/HoCDW7IZOcry0XmNGDV7FE/d2YNmXXrR65m3APjVc/+hWZdePHVnDzq/2lkhT0RERKQaGtT1A3hJAKKBPJ/383BCmj+tA4xv7fWe75jTvcbs9nPt3RXd1xhzNc5yz3Ge96y1/88Y0wL41D1z2AD4l7V2UgXPjjGmIdDQ661TKhorEg48e/LyC/PZV1xM0aoMDi/+kC5TF5D9yiM8POgKxhzYyfSHhzFvjsE1sC8rLzib8x+fzuoJo+mwJod5c9IYibMnT0VXRERERIITMjN4XnzLeho/7wU7PtAYf9f3e19jTH9gBjDWWvuNz/sPAbcB3YGrcJZ5Tqzk2R/EmSn0vLZXMlYkLHjvyesw8laKHnmInHjo/fZyurdK9tqTp155IiIiIjUtlAJePlBM+VmzlpSfgfPYFWD8LvfXQGNa+bl2C9/7GmMuBhYCd1trZ/qMfxKY5d4/+JW19j1gAvCgMaain/OzOEs9Pa/ECsaJhK8q9srbsC9be/JEREREjlPIBDxr7RFgHTDI59Qg4PMKPvaFn/GDvcbn4AS4kjHuvX4Xe435Aojz7J1zj+mNE7g+93qvP85+ugestVP8PEsscMznvWKcmUDj7+GttYettfs9L+CnCr5PkbDluy/Ps+fu/Mens3dNKiNHWd77Jcx76nrtyRMRERE5TiET8NxeBG4xxtxsjOlsjHkJSAL+DWCMmWmM8W478DIw2BhzvzGmkzHmfmAgTqsFrNPFfTIwwRgzwhhzLs7yykKc1ghYazfgVMScaow53xhzPjAV+J+1dqP7vv1xwt0rwDxjTGv361SvZ1kI/MkY81tjTDtjzCCcWb33rbVaayb1VqBeeSMffpsR38K8OYZmPfux8tExJefVJ09EREQkOMbJQKHDGHMbTu+6NsDXwF3W2lT3ueXA99baG73GXw08BbQHNgMPWWv/63XeAI/iFERpBqwCbne3TPCMORUnvA13v/U+8GdrbYH7/Ayc9gq+Vlhr+7vHNMDZg3cDcBqwByf0PeS5ThW+96aAy+Vy0bRp06p8RCTspG9fQ7MuvWjWsx/xi1JI37Gu9PjDjym47FL2rkllZcpMOp3agV8Mv55jm77jq5cf5NShIyA6moTYBBVgERERkYi2f/9+4uLiAOLcq/2qJOQCXn2mgCf1QfrOdJ66s0dJFc3snu3o9cxbrHx0DJ0+30TcsjRGjnJ+XXphCbTz+uuRnHi4ZzAs7hrLhts3KOSJiIhIxKpuwAu1JZoiEuGqsicPSpdsLpv6AADrb7tKSzZFREREAlDAE5FaFWhP3tUPzixto7AohV+06gjA7h6d2DLt7+Sfdyb/+h/s/WCuqmyKiIiI+NASzRCiJZpSH/nuyct+bxodrh5H1sIZdLrsBvIG9eFg+mruGwTPLdWSTREREakftERTRMKTT5+8Q58sBmD7ro0UDB1Ay5Q1zPklzJmrJZsiIiIigSjgiUid8t2T1/U1pwjuwLHPsndNKqNGWq75FnYP6KklmyIiIiIBaIlmCNESTamvcl25zgxccTE/LvovXf86CXP22Wx7fxY/LnufQWOe0ZJNERERqVe0RFNEwlZSXBLd23Sne2JPmv9mFH8cBglffkf7W+6j5bosQEs2RURERKqiQV0/gIiIt5IlmxTywpJUui513h849lm2xMMtI+G5Zc6SzVaLUvjFBzMBKOzzK7ZMGETL34/lnx9kkpM8jewOyRzo3U3N0UVERKTe0BLNEKIlmiKOYJZsFgwdwN41qXS5uyFDvj7MPz+EtgdKr6VlmyIiIhKOtERTRCJGMEs245alMX4wDPn6MPPmGGxyVwA+f3wsWQtnaNmmiIiI1CsKeCIS0gJV2Rw5yrL43IYlzdEPjL8DANO+HYU9uqjSpoiIiNQrWqIZQrREU8S/ypZsEhPD4Y8X0+eGCWQteIPW/5xRZsnmC0tUaVNERETCj5ZoikjEqmzJZuO1X8KWLQCc8tzkcks2VWlTRERE6hNV0RSRsOJbZbPj8NTSk5lfMnIULD63IV+/eBjXwL5Oc3R3pc3dPTpRfP9wfjH8ev71v+/4atBc0ocWq8qmiIiIRAwt0QwhWqIpUjXeSzabrMpgd3YGZz7zb4q7d2P3O1M4nLLUWbKp5ugiIiISpqq7RFMzeCISdpLikkqDWGJPDuxM5/bMfzNvTiZNbrqHrWcnAE6lzdbu5uh/7+M0R3cN7Muyay5g4NhJLL/pEs7avJd5szN5KbeQja1fJ3/wlZrRExERkbClGbwQohk8kerJdeXS+dXODFlfWK6oypZ4uG+g0xw9tnsvWi39gs/mvsiF197LxP5wc6Zm9ERERCT0qMiKiNRbSXFJbLh9Aw9PXse+r1azdOoD7I6FPV3PpmD9Ssb9egLtCmDfXbcBcPpr77ArFp5Y4RRhWfnoGABWTxitIiwiIiIS1hTwRCQiBNMc/bQVGRgDP/RLJn5RCo2uGw3AkaaN1TdPREREwpoCnohEnEDN0R/pD60Owtbbr4OoKA5mrAJg8aLXaNb1fFqs/45Whc74Zl168dSdPej8ameFPBEREQl5CngiEnECLdkcMtRZqtm4W284dqzckk1P37zlN11CzHnJzJsNTy4sZOO81zWjJyIiIiFNAU9EIlJlSzZP2n8QgJ/fnuF3yebJTZsD8HHOJxR9mYkB7l4Jg8Y8oxk9ERERCWmqohlCVEVT5MSotMpmHLzZDZ5cDp/Nfp4LR97F9kt+RYM1GbQ65LRVyLrgbM5/fDqfjB9JhzVbOG1FBo/0hyFDb6PlWV050LubWiuIiIhIjVIfPBGRCniWbOYX5rOvuJjvlsznq6nPcNcqOKlrNy5tFw/LUzjk+rFkRm93Y2dGL3FRCo02fwaPT+etre9zoGURMxs4gZDlrwFqrSAiIiKhQwFPROoF7+bouSNbceWuyXyaVMgLSzLon+qMGTj2WbbEwwv93TN6t19HYlQUJ2dtdq6xp4gnVhj2JJ9N44xs3nthLCe3PI1zpy1g3pxMRlJIWm4anRM6A2hGT0RERGqdlmiGEC3RFKk9ua5cp89dcTE/LvovXf86CXP22Wx7fxaF/zeTix54jcxNaSS3v4CCoQPYuzoVY6BZz358/48nSO7Un9GjYph5ThHRR2HFDDhrL/zualhxBhyLgtgYzeiJiIhI9ajRuYhIEIIpwhK3LI03uzl793bdcTMnZ+cAsDW2iBWn/JWDb7Xlwu3QqhA+mQmuaS2YHf1bCoucGb30nemqvCkiIiK1QjN4IUQzeCJ1I1ARlvFD4BQbw1tzisjcuIIz/jyRvWtSuW8QzJlrMMOG8cXI3vS58WEm9oeeP8CwTTD5fHi/I6Sdrhk9ERERCY6KrIiIVFOgIizjLh/Ood07YM5U2v52LHGZm7hlJDy3FFwD+xI/fz7733kCgEvbXUKfzVlEsYO7VzrtFQ60SWDtr7vwuiuFjfNeJ3/wlaq6KSIiIieEZvBCiGbwREJDZTN6BxvAH0bAT6fEsOSNIrIWzqDTZTeUaa1ghg1jfa/T6Trxn0zpDtd9CY2Pll5DVTdFREQkEM3giYjUEN8ZvaJVGez+bj2LF73GEysML+9OZltcK2AR23dtpLVva4X588la/QZdJ8LYdHAN6svu/DwObslm+dO3MGj2WubNzuSl3EI2ttaMnoiIiNQczeCFEM3giYSuSvfpxcObyV7N0kfdw+KZjzBk9JPs6Xo2LdKz+Gzui1x47b1M7A83Z5b9vGb0RERExJeqaIqInECeWb2HJ69j31erWTr1AXbHwrZzfsHKj2fQve8oALYnxZP+w1p++fcZAKTf/TuIimJ7UjwATyx3Wi2sfHQMAB/dOYyY85KZNxueXFjIxnmvk759japuioiISLVoiaaISBWVaZY+qhV/TXmR/7yzjSa/u5FFZ8EIYOnTt3DyRkjOdj5jz+sCQHy2E9byu55Ni0UpFKyfB49PZ8PK/9EpCwxOQRZWPkNO/DOa0RMREZFq0UBeYPcAACAASURBVAyeiEg1JMUl8bfXNvH9tOcYcqgtr33ovD9tIQw4kEDqzQOcN77+xu+MnvnmGwDuWlV2Ru+T8SOJ6dqNebPh7qWF5P77b2TPm6JZPREREakS7cELIdqDJxKmiovJ+2gus5+9nts/P8oHHWDShfCf/8K2ONjX0OmLFwUsypjD0POuYvuAHrT6NJO8i7qRmLKWzM2fkdyhH6NHxXCAIma+51N5Mw7e6Aa5LWL44/DHadh/oAqziIiIRDDtwRMRqSvR0bQadi1XfLiZ76c9x+BDbfnsTTjDBX1z4bJtJ5Hxm+4AxM9fRMHQAZyWmknMMfh67BUQFcXJWZsBSNpTxNy5hoNdOgAw/IYGPHAptDzoFHF5a04RfW6YQLMuvXjqzh50frWzZvVERESkhGbwQohm8EQihHtG7/5Zf+AXu4+Uq5q5JQ7md3b23Hlm9AqGDmDv6lSMcZZsfv+PJ0ju1J8Xz4e7VhlcAy/iiE+rhdNSM3npfOgydgLN1WpBREQkolR3Bk8BL4Qo4IlEllxXLvmF+VBczI9L5vPV1Ge4axX80LcbX3Vry69f/oCVj46h0+ebiFuWxiMXW55cDlkLZ2CspePwm9jZBE7u04/4RSmVt1rQEk4REZGIooAXARTwRCJXpX304mD8EDjFxvDWnCIyN67gjD9PpPDzVNoedAJfp2GjeXflNK7tMxYLuAb1Y22P1gycNJsp3eG6L3327Ll76310XiPmXjOXNk3aACjwiYiIhInqBjy1SRARqQWePnr5hfnsKy7mO68ZvZO6dmPc5cM5tHsHzJlK29+OJS5zE2/0dpZx/tzpTKB8q4UfV78Bk2YzNh1cg/ryQ952jmzN4bqR8EAazJ0Nk3N/5rlNw0g7HY5FQWyMWi+IiIhEMgU8EZFaUqaP3shWXLlrMp8mFfLCkgyG3JBRMq7xV9lcfTX8dEoMd68solHWZmh/Ad1f/D/AabUwJCrKJ/AtZ9U7TzDkhsd5xl5Cn5+ziGIHd690QuKBNgms/XUXXnelsHHe6+Rrz56IiEhE0hLNEKIlmiL1i/cevSarMtj93XoWL3qNJ1YYfuiXzOe/v4he9/2D2PYdOKl5K+KWpWHAWarZ8yb2dO9Ii/XfsfitRxjyh8dLl3AaMMMuZ32v0+k68Z8VLuG8dyDsbxrD3869k8ZJZ3GgdzeFPhERkRChJZoiImHGe0aPxJ40cuXyYvEMvmnpzOpds8I9q5eRzcEG2UztBrdmQPP5SyiYOJOE9d8BUNDRuUbJjN55Z9Ni/nyyVr9B14mULOHc7a7CeeOoBjz/wVHmzAVDEfAcoEItIiIikUABT0QkRPju09u1fBn/fv9RkvYUcXOmE+4ABk6azZY4eKG/0xsvMbcAeh4LuIRz4wcz6Tj8Jvp9d5Rf7TL83PwU9h7eT/IdMYxZVcTEFc71oAjmTCAnboICn4iISJjREs0QoiWaIuKrslYLy0Z1p//D06u8hDNzUxrJHfqxOxZOurAfebePpuOVY5jYH55Y4fTaO+gu1DKlBzycqsqcIiIidUVLNEVEIlBlhVluTA1uCefJWZsBaFkIWXfczM8d2wPwl9XgGtiX+EUppYVaUpz3qlKZs1EDBT4REZFQoYAnIhImqruEk6+/Jj1xLS1feIW8WGhV6LReOHmDEwA9gS8+KgpXu7YA7O10Bs0DVOb07Nn7rrkCn4iISKhQwBMRCSNlCrNc35PTLr+uTOBb89pE/vxFMd+0gk/awZgMaPvEZLb/bTLJm+CpS6J55JNiGn27iVb/nFEm8AGc8eHnAGwecTHNo6IoOCsRgItnfIIZdjkrb/415z8+nfRhPei67GueXH645Nn8BT6AS7erUqeIiEht0R68EKI9eCJyvHJduRydO5vTHn+Jhtt2lLx/tNFJfHXrlawclswVV02gWcOmNPpxP4/0d2b5shbOoNNlN/Djue1pvmErsz+bwjUXjGXxzEcYMvpJ9nQ9mxbpWby7+o3SVgy/GcbuH7I5uCWbnFGXcvHbnxL9c2ngy4sFDLQ6WPp8qtQpIiJSNdXdg6eAF0IU8ESkxhQXk/fRXO6f9Qd+sfsIN2dCu4LS0xZY2xbu/XU0M+YWlyvUsmjWYwz9/cRyhVp8A99i9xJOT+D7KW87+dmZTOkBz3zi3OvBS2Fqn5MY+8URJq7wKdyiwCciIuKXAl4EUMATkZrm20z9YO533P/1ZJr+VMRzS8uGvoMN4Km+MC4dYs5oR+MWiQErc87+bArXXDSOHzufQfOvN5e0YtjZBE7u0xcs7F2bxn2DYM7cKlTqVOATEREBVEVTRET88G2mDjDN9ecKC7U8m+L+4PocDjbICViZ03fP3iH3Xr42ByDrjjEYa+k4PI1/fBS4Uqcn8Pnrxbe1RQOG9x/HkQt6Y6OjiG8UX1LEBVTIRURExEMBT0SknglUqCWYypy/mLMEgO9/cyG9KG3FAO7CLe5VIk7gC1Cps9LAdxTmvEpO3KvuQi6wswkq5CIiIuJDAU9EpJ473sqcAHbDt6Sf7rRi2NEY2h6ERlmbMV7bACqq1Bko8OXu2kpxbi7rh/di2JxMnlx+pOSapYVcioDngNJlnpr1ExGR+kgBT0REyvAX+L6fO5vBj7/E5W86lTnPcDl79h4a4OzZ8w58v7smmklLimny/MtgbZnAR/sLOPO95UDprF9VA98Zb6+usJDLAz6FXCqb9fvsF3DhNji9UPv8REQk8ijgiYhIpZLikmDMeLjxLkhLI3/zVxzJ+obm777Psyk7gdLAN+ES+PDMYtr1gGc/dtZ3Trw0ilvWHuPUR56h4OXpnLphKwBNt+yA848FF/gWLGCHu5DLHavBNcgp5HLr2jS+O/UIz37iFHKpbNavKApijoHvPr/cFjH8dvBd7PvVuQC0+3o7rfdbilolaNmniIiEDVXRDCGqoikiYaW4uFzga7htZ8npXbFgfPrgVVap09OawbcX3+qHbqTXM2+xesJoej09g8xNaSR36Ac4/fucQi6eyp39iF+UUq59w+4fsrEbs2l5CI42P5UG+Xu5bgQk7adc64bK+vd5ln0W9e5JwvpsElxF2vcnIiInhKpoiohI7YqOhv79Sejf3zme9CqkpcHOneSdEsWO5PYAbAlQqXOCe5lnl+ffouCtjwPO8AVdyGXBAjLefqy0f9/ab9k+sBcvLs6g1SFnxm93fh4Ht2RXedln6SygQwFQRERChQKeiIjUDHfgA2jlfgEBK3UGG/ha/ePNoAu5xBw4BMCOC7vQokEDvrl5GENWZLCn61m0WLS8pH9foGWfDTfnOrOAzZoS/eN+rveaBaxKAPS3DLTRnn3kx8Wwp3snFYMREZHjpoAnIiInXDCtGSoKfB0mTWX71PmclraeW0bCc8uociGX5t9sAeDHc5xZxTKBr6r9+96ufBawagGwCOb8vdJloL7FYJIKy84KxuTlU9QqQYFQRET8UsATEZFaV63A5/qBgw1+4MEBsPhsOGtf1Qu5tP3sSwCKmsQC5QNfVZZ9BpoFDBQAK1oG+s9e8H7+IPrNWlFBMZjKZwX9VQfVLKGISP2lgCciInWussBXtCqDg7nfEfXdZs6cn8qkT/KZ5A5InkIuT33sTj4Z2RxskF1u1q/t+u/IawztXn+X9AG/ocWKNYA78B2r2rLPQLOA1V8GCgPmLsP85jdlisFw6qnY/L1M7gV3rik7KziqaS8uf7ey6qA1M0uY37WDZg1FRMKMAp6IiIScMoEvsWfpiVeKgyvk4p71m3AJbIuHWf/dyO7OvWl5EHbHwrkvzqJgVgpxH39asuyz9SvTwVJu2WegWcDjXgbqrxjMpT3586eZ/NC3G4kfr/aaFVxTYSD0VAd99mPnR3A8s4SBZg3TTnfev3R7DBPOuslvKFRIFBGpXQp4IiISPqpYyMXfrJ9H80MQBbQspGSf34MDIKVTDK/vK+LZpWkA/M09C+hZ9pngngU8542F8PuJZQPfsROzDHTHRV1JTM1kx0Xnkeg7K+gnEBZcdilPfZKKMcc3S/hyFWcNS2cJi4ApzvcfZEisaBYxwVXEzy2akXNuIlB2qWlFofFI8RFOij6p5F4KkSJSHyngiYhIRAg065e/+Sv2xjfkwK/O43BaSpkZv0mfwKRPioDSZZ8ls4DuZZ8PumcB334vg0Otm9P8x/3sjoXOz8+gYFZKwABYnWWgxQ1jADja0AktgZaF5v3lJjoOTwWOY5YwwKzhT3nbyc/OLLeXMDcO/vNe8CEx0Cxiez9LTasaGtscqLkQWdWZSYVMEalrCngiIhLZvPr1JXjeO/38cjN+MXn57GpqSv6w32zt1/y/JS+VCYEeDfbtL50F/CqXgxtyAwbA6iwDjT7shM4Gh51AFGhZqGcZKFR/ljDQrOEOf3sJ16Q5s4YD+xH/4cfVWlrqPYvY4Mf9fpea+obIikLjsegooopLE2BNhMjqzkx6QmZ1lrNW9fh4gmpFwVRBVSR8KeCJiEi95G/Grx3QxzMgGc4ZdXu5ZZ+ePzTHrFrD+8tf5/Q9R6sWACtZBho74RG2Pze5XDGY+JQvKIqCtp9+CUePBlwW6r0MtLqzhIFmDSvaSwjuEFmNpaW+gdDvUlPfEFlJaIxKaIHNyysJjccTIn1nIqs6M+kbMquznDXY4+oE1arOfoZ6UA3XewQTsAEKfi7we+zvM8EeV+ceCv6hSQFPRESkAhUu+wToMZpe190XVACscBnoV7kcbJDrtxjMy73gzrSys4Jn/m0K26e/Xy4QtnzhFbbEOdeu7ixhoFnDivYSlhwT/NJS30BY0VJT59gJkYFC4w8Blp5WKUQGuXzVX8isiRBZ2XF1g2pVg2m4BNVwvUd1A3bfrRWPOd7j47lHoIq8oRawK7tG46SzONC7G0RHh19wtdbqFSIvoClgXS6XFRGR8Le1YKtdt2OdXbdttd0493W75dWn7eeznrH/yZhp/5Mx034+6xmb/uK9NvO2q+xPbROsdeKStWCPRFHp8YEG2Psvwf7+Kmwx2J2Nna83jIy291+KPYbzemAANicOu7VLkt3WL9kWg93VGLvxgo52Xe4qu7FPB3skCrutXzdri4rstn7JZY53dz3LWrCL3nrE2uJiu29QP/tDY+cZNiycYbPef7PkmTYsnGGttXbVhNHWgvPVWpt521XWgv341fF+jz9//BZrwX72+FhrrbUZ2akl18zYlFbu2FrrfBaca/k59n0G32Pf567K9+F7vOitidaC3d31bGuLi8seFxXZfYP62c1x2C3x2H2D+tp9A/t6Hffz+/MO9rha97i4m90Ziz1mjLXDhtm8bh3srljsMYO1rVrZY2Bf7FX2+HcjKPPf1f2XYn93lTOmsHlTW+z1meoc17d7/G4E9r+je9miRieV+f+6ODqq0uMD8bH2QHzjoD4T7HF17hHo1yvf412xzq9Dx3ON2rjHlnjsiGuwsU/H2q0FW2vit4WguFwuC1igqQ0mUwQzWC8FPBEROUGOHrU2JcXumfaK3Tj3dbvu+y/sxrmv2/QX77VLpk+w76ydYZdMn2BTnrm1SoFwp58/3FQUCgP9ATYvFrvpl63ttn7J9pgxduTVzh98tl3czW7rlxwwUPiGxDLHtnrhK9jQWJ0QGegagUJmTYTIExFUAwXTGgmRtRFUw/UeNRqwTYWfCfb4eO5xJOHUMsehHrCrco2PZj1m9w3qZ48ZY0dcg123Y10Qv6DXjOoGPC3RFBERCQUVFIMpo4fXP/upDtpk7ZflisV4lidV1jLirtXOsWfvoO9xy0Jo+e0uDjbYxYMDYPHZcNY+ePbjDAAeHhjN902Lefu9VA61bk5bz5LAKi4t9d1r2Oofb5Zbalp6/AYMvS7gfsRAS08r26/YKGsznHVR0MtXq1r0puSYwHsgAx1X5x4nYslsoGI9gY7r0z2CXV7sqnQ5cV/iP/y43GeCPa6JewRa0lwjy6Jr4R4Fl13KUympFLxyGfG/n0jB0AE8vySVguJiwoUCnoiISDiqJBD6FospUUEo9N47WNH+lGbb80sCoqegjGcv4dPLSv/gU5WQGGivYdyP+7nNs6/MXZBmUkmV0tRKQ2ObV9/iP13a02VpCkVREJ+ykvRtq6sXIj9dX7bIje/xcRS9qWqIPBFBNVAwrYkQWRtBNVzvoYAd2vfwXCN7VQaM7Fn22HcvdohSwBMREakvgp0l9D12B0R27iTvlCh2JDuBwOVTYKYqIdHD3yyiAd55zzn2hMiKqpSWD41badn3xpLQ+Ncvqh8ifWciqzoz6QmZPSdNKgmNTZ5/GawNPkQGOK5WUA1y9jNUg2q43kMBO7Tv4blGTF6+3+NwoIAnIiIiVeMOiACt3C/AT4VRKj6u4ixiVSvh+QuNLX+OIopjJaHxeEJkMMtX/YXM60sqXFZtOWuwx9UJqlWd/Wy0dDn/ufqt0A2q4XoPBeyQvofnGkWtEvweh4VgNuzppSIrIiIiIcddoMa+847z9fDhKhWsSX/xXr9VTX2L2gQ69lf0xrfKoL+iNzVdNbA696is8I73sW/higkDo+3vT3RxDPdzReI9vAsXeSrbru91un07fYZd3zPJHonCru/pHG+8oGNJoZaNF3S0G/t0KHPs7zPBHh/PPTb2qVpF3pApclOVa8Rj121bXVI5uOS4llW3yIqx1lYaAKX2GGOaAi6Xy0XTpk3r+nFERESkqopLl6/Spg1ccAF8/nnJctYf3MtZm1RxOWtt9P3yzH422VE6+xmoD55ntvNE9o+rT/c42ACe7OeZ+YXdjSldXry69Ph6n16HD14S+DPBHtfUPe5cAz+f2pSGXv0Xfz61KY389Gz03OPt9/x/JtjjmriH5xqjr3qU3jNTiFuWxshRlocnr6N7m+7Upv379xMXFwcQZ63dX9XPKeCFEAU8ERERqVWVBNNwCarheo/qBOxDpzbFAI327q/yZ4I9rs49wjVgBzreEg/jB8PirrFsuH1DrTc7V8CLAAp4IiIiIvVIEAGbNm2gb1/nc8F8JtjjIO4RbEXeUArYga7ROOksDvTuBtHRJMQm1Hq4AwW8iKCAJyIiIiIiUP2AF3XiHklERERERERqkwKeiIiIiIhIhFDAExERERERiRAKeCIiIiIiIhFCAU9ERERERCRCKOCJiIiIiIhECAU8ERERERGRCKGAJyIiIiIiEiEU8ERERERERCKEAp6IiIiIiEiEUMATERERERGJEAp4IiIiIiIiEUIBT0REREREJEIo4ImIiIiIiEQIBTwREREREZEIoYAnIiIiIiISIRTwREREREREIkRIBjxjzG3GmBxjzM/GmHXGmL4Bxo80xnxrjDns/jrC57wxxjxmjNlhjDlkjFlujDnHZ0wzY8wsY4zL/ZpljIn3Ot/fGLPAGLPTGHPQGJNpjLnO5xrLjTHWz+uDmvi5iIiIiIiIVCbkAp4x5lpgMvA00A1IAz4yxiRVML4P8C4wC+jq/jrbGNPba9h9wN3An4GewC5gqTHmFK8x7wDJwFD3K9l9LY8LgC+BkcB5wBvATGPM5V5jrgLaeL3OBYqBOUH9EERERERERKrBWGvr+hnKMMasAtKttX/yem8DMN9a+6Cf8e8CTa21v/Z6bxGwz1r7O2OMAXYAk621f3OfbwjkAfdba183xnQGvgXOt9auco85H/gC6GSt3VjBs34A5Flrb67g/J3AE0Aba+3BKnzvTQGXy+WiadOmgYaLiIiIiEiE2r9/P3FxcQBx1tr9Vf1cSM3gGWNOAnoAS3xOLcGZQfOnj5/xi73GtwNae4+x1h4GVniN6QO4POHOPWYl4KrkvgBxwN5Kzo8B/l9F4c4Y09AY09TzAk7xN05ERERERKQqQirgAQlANM7smrc8nJDmT+sA41t7vVfZmN1+rr27ovsaY67GWe75ZgXne+Es0ZxWwXMDPIgTIj2v7ZWMFRERERERqVSoBTwP33Wjxs97wY4PNMbf9f3e1xjTH5gBjLXWflPBM40BvrbWrq7gPMCzOLOAnldiJWNFREREREQq1aCuH8BHPk5REt9Zs5aUn4Hz2BVg/C7319bAzkrGtPJz7Ra+9zXGXAwsBO621s7090DGmFjgt8AjFTwzULJU9LDX5yobLiIiIiIiUqmQmsGz1h4B1gGDfE4NAj6v4GNf+Bk/2Gt8Dk6AKxnj3ut3sdeYL4A497JKz5jeOLNqn3u91x/4AHjAWjulkm/lGqAh8HYlY0RERERERGpUqM3gAbwIzDLGrMUJXrcCScC/AYwxM4EfvCpqvgykGmPuBxYAVwADgYsArLXWGDMZmGCM2QRsAiYAhTitEbDWbnBX3pxqjBnnvu4U4H+eCppe4e5lYJ4xxjNreMRa61toZQxO1c8fa+hnIiIiIiIiElDIBTxr7bvGmOY4yxvbAF8Dl1lrt7qHJAHHvMZ/boz5LfAU8CSwGbjWuyIm8HfgZOA1oBmwChhsrf3Ja8x1wCuUVtt8H6dvnseNQCxOYRTvdg0rgP6eA2NMB5xwOTjIb73E/v1VroIqIiIiIiIRqLqZIOT64NVnxpjTUCVNEREREREplWit/aGqgxXwQoi7KXtb4KdAY2vJaqBXwFH1W6T9jEL9+wmF56vtZzjR9zsR16+pa56C85deiYTOr4ty4oXC/+ehLtJ+RqH+/YTC8+n3ntq7Zqj93nMKsMMGEdpCbolmfeb+F1fldH6iGWOOWWu1XrQSkfYzCvXvJxSer7af4UTf70Rcv6au6VVZ+Ke6/vcutScU/j8PdZH2Mwr17ycUnk+/99TeNUPw956gnyGkqmhKyHm1rh8gDETazyjUv59QeL7afoYTfb8Tcf1Q+Pck4Uv//QQWaT+jUP9+QuH59HtP3VwzLGmJpoiIhCRjTFPABcSFyN+iiohIhIuE33s0gyciIqHqMPC4+6uIiEhtCPvfezSDJyIiIiIiEiE0gyciIiIiIhIhFPBEREREREQihAKeiIiIiIhIhFDAExERERERiRAKeCIiIiIiIhFCAU9ERMKWMSbWGLPVGPN8XT+LiIhEPmPMUWNMpvs1ra6fx58Gdf0AIiIix+EhYFVdP4SIiNQbBdba5Lp+iMpoBk9ERMKSMeZsoBPwYV0/i4iISKhQwBMRkVpnjOlnjFlojNlhjLHGmCv9jLnNGJNjjPnZGLPOGNPXZ8jzwIO188QiIhLuauj3nqbu9z81xlxcS48eFAU8ERGpC42B9cCf/Z00xlwLTAaeBroBacBHxpgk9/krgGxrbXbtPK6IiESA4/q9x+0Ma20P4I/ATGNM0xP7yMEz1tr/396dx9hVlnEc//4oi0hJBFEkEUQhghgSlMUFSUoENWoMaqLiAq2ICnFDCAa31C1ucdeoCAkoBRXQGhQF0S7BooBsIhZBkJ0iixoUhNbHP8476eF6h06nwzDc+X7+uXPe7TxnbtLTZ973vOfRjkGSNIslKeDVVbW4V/Y74JKqOqJX9idgcVUdl+TTwJuBNcBcYBPgC1X18emNXpL0WDSZe8+QMX4OfKSqLp6OmCfKGTxJ0oySZFNgT+DcgapzgRcCVNVxVbV9Ve0IHAN8x+ROkjRZE7n3JNkqyWbt56cCuwHXTWecE+EumpKkmWYbYA6waqB8FfCU6Q9HkjQLTOTe8yzg20n+CxTw3qq6e/pCnBgTPEnSTDX4DEGGlFFVJ01LNJKk2WDce09VrQB2n/aI1pNLNCVJM82ddM/WDc7WPZn//8uqJElTYWTuPSZ4kqQZpaoeAH4PHDhQdSCwYvojkiSNulG697hEU5I07ZLMBXbuFT09yR7A3VV1I/BF4HtJLgYuAN4O7AB8a9qDlSSNhNly7/E1CZKkaZdkHrBkSNXJVTW/tTkSOBbYDrgSOKqqlk9XjJKk0TJb7j0meJIkSZI0InwGT5IkSZJGhAmeJEmSJI0IEzxJkiRJGhEmeJIkSZI0IkzwJEmSJGlEmOBJkiRJ0ogwwZMkSZKkEWGCJ0mSJEkjwgRPkiRNiyQbJTk+yW3t0/+HSNIU8x9WSZI0XV4KPBN4OfCsdixJmkImeJKkx6Qk85JUkic82rFMlSQ7tmva49GOBSDJSUkWr2efhe0aKsn7Bqr/AdwDXAPcBdw90Hd+r++XNyh4SZqlTPAkSTNWkhcmWZPkF0OqVwDb0SUN6zPmbUk+MFD22ZZUvHig/FdJTl3vwB9jHoHE8o90383x/cKqWgFsSvedzamq3w30+0Hrd8EUxSFJs44JniRpJnsr8DXgRUl26FdU1QNVdXtV1bCOSeaM84zXUmD/gbJ5wE398iSbAi8Alkw6+tlrdftu/t0vTLIJsBfwOWCfJBv366vqvqq6HXhg+kKVpNFigidJmpGSbAG8Dvgm8FNg/kD9Q5ZotuV9f0/yyiRXAf8BnjZk6CXAvmPJRZItgecAn6FL9MY8D9i8tSfJTkl+kmRVknuTXJTkgF48n07y2yHXcUWSj/WOFyT5U5L7k6xMcuQ6fg+7JTm7nXNVku8l2aZXvzTJV5N8LsndSW5PsnBgjF2TnN/OeVWSA9rv7qDW5Pr2eWkrXzrQ/5g283lXkm+0RG0yXgE8CHwUWN2OJUlTyARPkjRTvR64uqquBk4BFiTJOvo8HjgOeBvwbOCOIW2WAHOBvdvxfsCfgTOAvZM8vpXvD9xcVde247nA2cABdAnhOcBZvZnFRcDzkuw0dqIkzwZ2b3UkORz4FPAhuk1GPgh8Ismhwy4myXbAMuAyupmvlwHbAj8caHoo8C+6pPRY4KNJDmxjbAQsBv7d6t/eYujbp30eQLdE8jW9uv2BndrnoXSJ9vxh8U7AAuC0qnoQOK0dS5KmkAmeJGmmOowusQP4BV2C9eLxmwOwCXBkVa2oqqur6l+DDarqGuAW1s7WzQOWVdUdwHXAvr3yJb1+l1fVt6vqD1V1TVV9uLV/Vau/ErgCeGPvdG8CLqqqP7fjPKnFXAAABCBJREFUjwBHV9WPqur6qvoR8CXgHeNczxHAJVX1wapaWVWX0i1b3T/JM3vtrqiqj7W4vgtc3PtdvYQuQTukXcP5dAlm39/a511taWV/85N7gHe18/8U+Bnr/h7+T5In0+2eOfadngK8opVLkqaICZ4kacZJsgvdrNL3AapqNd0GHG9dR9cH6JKsdVnKQxO8pe3nZcC8JJsBzwd+3Ytpi7YM8qq2FPReYFeg/2zgIrqkjjbbeDBrZ++eBGwPnNiWW97bxvgwXQI2zJ50yVy//cpW1+8zeM23AWOJ0y7ATe3ZtjEXjnO+Yf5YVWvGGXt9vAVYWVWXA1TVZXTX8uZJjCVJGsfG624iSdK0O4zuHnVLb1VmgAeTbFVV94zT777xNl0ZsAT4SpIn0i23XN7KlwHvBs6l9/xd83m697YdA1wL3Ee3rHPTXptTgc8keW7rvz0tSWXtH1UPBwZ3j1zDcBsBZwEfGFJ3W+/nBwfqqne+tOPJerix18cCYLckq3tlG7XyL04yNknSABM8SdKM0jY/OQQ4mi7R6juTbobs6xt4miXAFsD7gWuqalUrXwacTLf5x/VVdUOvz37ASVX14xbnXGDH/qBVdXOS5S3GzYHzxsauqlVJbgGeUVWLJhjnJcBrgb+2WczJWAnskGTb3nXuPdBmbNfKOZM8x8NKsjewG91saX/55xOA5Un2qqqLH4lzS9JsY4InSZppXglsBZxYVQ95x12SM+hm9zYowauq65LcSDdbt6hXfmuSG4B3AqcPdLsWeE2Ss+hmsT7B8JmsRcBCupm9owbqFgJfTfJP4OfAZnSbp2xVVcNmsb5BN+N3WpLPA3cCOwNvAA4fWDo5nl8CfwFOTnIssCVrN1kZm9m7g25G8mVJbgbuH/zdb6AFwIVVtXywIskFrd4ET5KmgM/gSZJmmsPoZr6GJRhnAnu0JZAbagldsrN0oHxZKx98/91RdBuOrKBbNnkO3QzboNOBJ9Lt6Lm4X1FVJ9Dt8Dkf+EM713zWvqaAgfa30m36Mqed70rgK3QvCv/vOq5vbIw1wEF0m9RcBJwAfLJV39/arAbeQ7fZy63ATyYy9kQkeRzds4hnjtPkTODg1k6StIEysUcVJEnSqEiyL3A+sHNV/WWKx14IHFRVe2zAGEuBy6rqfVMVlyTNFs7gSZI04pK8OsmBSXZsL2c/HvjNVCd3Pbu3XT8f9iXug5K8qe0Uut8jFJckjTxn8CRJGnFJDqF7B9/2dM/xnUf3Pr67HoFzbQ1s3Q7/tj7P8iXZku5F7gB/r6o7pzo+SRp1JniSJEmSNCJcoilJkiRJI8IET5IkSZJGhAmeJEmSJI0IEzxJkiRJGhEmeJIkSZI0IkzwJEmSJGlEmOBJkiRJ0ogwwZMkSZKkEWGCJ0mSJEkj4n/vLUyJdcUdrwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -250,7 +250,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAANNCAYAAADF2dxQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8XGW9+PHPN9OyBEiKlKUYG4oJFZCt7IIKRZarqKhcEOQq0p+twvUqgnpdQJTFCwp6XdCGG0Bc4SpyFVARLFoEgbIJ0kICjWWgbEJToBZK8vz+OCdlMk3StEw66fTzfr3mNZ3nfM9znjlzks43z3IipYQkSZIkae1XV+0GSJIkSZIqwwRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaYYInSZIkSTXCBE/SOiEido6ISyJifkQsjYjnI+LOiPhMRLym2u0baRFxaUR0Vbsdr1ZE7BYRf4yI7ohIEfHJAWLenW/76BD1HJzHfGpkWzy6RcS/R8QHR/gY9wz2WeXb/1++vakCx3prRPxvRDwaES/l18mfI2JGRNS/2vrXFhFxVkS8XO12SKqOSClVuw2SNKIi4iPAhcAD+fP9wFhgD+AjwD0ppfdUr4UjLyJeDzSklO6qdltejYi4C9gI+ATwLNCVUnq8LGYM8AjwSEppr0Hq+QlwJPDalNJTI9vq0Ssi5gHFlNLbRqj+PYHb8pf3pZR2GiBmc+D1wJ0ppZdexbHOBj4P3ARcAnQCGwNvAqYDP0gpfXp161+b5Mnya1NKt1a7LZLWPBM8STUtIvYFZgO/B45IKb1Ytn094LCU0q+q0b6RFhH1KaUl1W5HpUTEMuCilNKJK4k7F/gMsFNK6b6ybeOAhcA1KaUjR6yxa4E1kOB9H5gBXAu8Hdg7pXTb0HsNWteg13JEHAP8BGgDPprKvtxEREN+7N+vzrFHg/x3VW9KyZ45SUNyiKakWvd5IAHTy5M7gJTSS6XJXUTU5cM250XEixHxZERcVj58LCJujIj7ImLfiLg5Iv4ZEV0R8eF8+zvyIaBLIuLeiDisbP8z8mFpu0XElRGxOB9O9qO8R6M09uiIuC4iFubHmRsR/xURG5XFXZoPPd0pj38OuKFkW1dZ/L9GxK35cZdExMMRcXFZzMS8TU/m52NuRJwSEXUlMdvk7+XUiPhUPgz2+Yi4JSL2Gc6HFBFvjIj/i4hn8yG0d0fEh0q2Hx8RCRgDfCw/3lB/oWzPnz88wLZjgA2A5e81Ig6NiF9FRDE/xx0RcWFEbDZAW3eIiMsj4on8nPw9P79j8+0DDo8rH4oYEWPy118cILYYEf8zwL4HRER7RDyTf26XRkR9RGwdET/Pyx6LiHMj68kcVEQUgcnAQX3nMyI6S7Y3R8SPI+Kp/H3eHxEnR0QMVW/J/hsC7wduBU7Ni09Y2XnJy27Kr4ED8+toCVnyNpjTgX8AnyhP7gBSSotLk7uI2DA/R12RDeUsRsS3I6Kx/BxFxFUR8faIuKvk56/02twjb/+HKBMR78y3vb2kbHJE/KzkZ+r+iPhY2X5vy/c7NiK+ERGPAUuBbSJio4i4IF4Zbv5MRNweEUeV7L/CNRgRhYj4z4h4ID/uExHxg4jYuiyu79zvHdnw1iUR8VBkvxejrL7T8/r+GRGLIuKvEfHvQ3xOktaAIX/5S9LaLCIKwFTgjpTSI8Pc7Xtkw7m+A1wNbAOcCRwQEVNSSk+XxG5FNhTsPKAIfBy4OCJeRzb87xygm+zL51URsW1K6bGy4/0SuAL4PrBjfqwdImLvlNKyPKaVrAfkm8ALwBuAzwJ75e+v1HrAr4CZwH8xyO/5yHo2L88fZ5B9eWwurS+yRPPmvM7TgC7gcODrZEPqynvRTgLmAX1zrc4Ero2ISSml7oHakR9ncn6cJ4H/IPuifhxwaURsmVI6D7gG2Be4Bfg5cP5g9QGklB6MiJuA4yLiP0vOJWRJ36PA70rKWoA/AxeRfWaTgFOAP0XELn29JhExBfhT3tbTyIYBbg28m2zYb+lxRkI78AvgaGB34CygALyRV66jQ8l6Lx8FvjVEXe8ku/76zjtk1wERsSXZua4DvgD8new9XkB2bv6jvLIB/CvQCFycUpobEX8BjomITw2zV7kJ+AHZdfw5oGegoPzn7Q3Aj1NKS1dWaWR/nPgV8Fayn9E/A7uS/RzsExH7lQ0VnUL2M/5fZOdqBtm12ZFSujmlNCci7iW7rn5QdrjjyXqLf5cf+4358eYDnwKeIOvZ/E5EvCaldHbZ/ufl8dPz1/8A/psscf4CcDfZMNSdgBX+GFGmLW/jt8l+n0wi+xl9S0TsnlJ6piR2a+Aysp+zL5H9PjuX7PfcT/KYz5H9DJxJNix2PbLPYdOVtEPSSEsp+fDhw0dNPoAtyXrvfjrM+Dfk8d8tK98rLz+7pOzGvGz3krLXAC8DS4CtS8p3yWM/XlJ2Rl52Qdmxjs3LPzBIG4MsaXtLHrdzybZL87IPD7DfpWTz1fpen5LHNg5xPr6ax+xVVn4h0Atsl7/eJo/7K1AoidszL3//Ss77T8kSi9eVlV9LltA2lpQl4DvD/DyPz+PfU1K2Y1521hD79Z3jbfPYt5ds+yPZl+zNhtj/LODlAcr/X15fU/56TP76iwPEFoH/GWDf8uvl1+XXVl5+L3DrMM7RPOD6Acq/ln/Gu5eVt+Xlrx9G3X/MP7+GsvfwwaHOS152U172lmEcZ7889sxhXhfvyONPHuRn78MlZcX8Pby2pGxDYFHpdQicXH5eyBKuF4H/Kim7nixZ3qTs2N8j+73RmL9+W96WGwZo/1zgf1fyHvtdgyXX/X+Xxb0pL/9y2bnvBaaU/UzMA64uKfsNcPtwzrkPHz7W7MMhmpL0igPz50tLC1M2Z2gucFBZ/MKU0h0lcc+Q/YX/7tS/p25u/tw8wDF/XPb6CrIksa8tRMS2EfGTiHicrBdjGdmXZ4DtB6jzFwOUlbu973gRcVREvHaAmKnA/WnFOVOXkn3hK+89vCalVNrL8tf8eaD3XX6cG9KKvayXAvVkPXer4wrgOfoPCzyB7AvtJaWBEbFlRLTlwxZfJjvHD+Wbt89jNgb2B36WUvrHarbp1bq67HXftXXNAOUrO+9DmQrcW3p95y4l++wPXGGPEhHRQvZHiJ+nlBbnxZeTJUsrDNMcxFMppT8Nu8XD13fdXlpW/jOyPzSU/5zfmVJ6tO9FSumfQAf9z++PyK6b0mGaHyDr1boEILIh1QeQ/Xz+M7IhumPyobTXkiWO5YsCDfSzfBtweEScE9mqoRsO/laXG/A9p5Ruzt9L+Xt+NKV0Z0lcIvujQel7vg3YPSK+ExGHRDbPUdIoYIInqZY9TfZX8UnDjO8b4rRwgG2PseIQqGcGiHupvDy9MtxrgwHiHy+LfZm8hwiWJxWzgb2BL5J9QdwTeG++S/mXuyUlX6gHlX9xPoKsF+kyoBjZnMJjSsI2Y/Bz0be9VL+kJ70y53FlX0BX9TjDkrJhgD8DDouIrfIv0scBf0wp9SVvfUN5rwfeRTYM7yCyL9r7l7V/M7L/N4ur054KKb/mXhqifKDrbbhe7WcyLX/+eUSMi2xhmwJZgvrWPAFcmYGOP5AF+fOq/Jy/mFJ6trQwpdRLNmRyyOs69yIl13XKVmK9GvhQvDI/9Xjg5pTSA/nr8WTn4GSyPyCUPn5VElNqoHNwEtkw6feRjSR4JiJ+GdlKuYNZ1d9tK33PZL2EnyH7Ofkt8I+IuD4fxiypikzwJNWsvDfpBrK/Mg/nHlt9X2omDLBta7KEsdK2Kn2RJyGblbRlan7sE1JK/5NS+lNKaQ5Zz9RAhr00ckrp/1JKB5HNkzqAfH5NPj+PvA2DnQuo3PkYyeO0kyWxHySbP7gFryzA0mcXsjlsp6SUvpNSujGldDsrfsn9B9nQtZVdS0uBulhxkZPyL+99vbHrlxbmC1lU+96Mq/2Z5AlzX0/Wr8huZ9H3ODovH04v3rCu5bzndy5waEQMJ6n9B7B+RPSbK5YnZluy+tfbJcBEYGpE7AzsRv+e4mfIrp92sj/SDPQonRcKA5yDlNLzKaXTUkqTyT6jE8mGqf7fEG2r+O+2lNKylNLXU0q7kv3OOpZsuPbvhvk5SBohJniSat1XyYaUXRTZMuP9RMTYiHhn/vIP+fNxZTF7kg3Tu2EE2veBstdHkSUkN+av+77gla8AOqNSDUgpvZhS+iPZwi2QfTGF7P3uMMBf5D+Yt2tWhZpwA9mX4q3Lyj9I1gP7l9WtOGX3AbuPbHGJD5MtoFI+7G1Y5zil9DzZ/KSjI2KoBKyL7Jorv+fbO0tf5MPeFgA7l8UdzMp7PSulvFemzw3ATnmiUuqDZEnKUJ/928kSiW+RDeUsf8wj6+kqvLqm93MmWQL9zdKVHvtExCYR0XcriL6f4+PKwo4i6/Vc3Z/z35D1yPdda0vIhqUCkFJ6jmyBnt3I7r05Z4DHQKMCBpVSejyldEl+nB0jYv1BQgf73bYP2SJOr+p3W0rp2ZTS/5LNJRxPluhKqhJX0ZRU01JKt+RLkF8I3BER3wP+Rrbi4W5kq9PdB/w6pfRARLQBH4+IXrIvbNuQfXl8BPjGCDTxvfly5r/nlVU07yGbPwbZ6pLPAt+PiC+T9fh8gKzXabVFxFfIeqJuIOu5G0d28/DS+X3fIPtCf01EnE62OMQ7yHoMvpdSevDVtKHEl8l612bl7XqG7D2+A/hMGmIFzmG6mGz1x8nAzHwOVam/kSVl5+W9bovIhmuWz0uCbHjdn4DbIrvXXidZr88RZL2sS8iG6i0CLomIL5ElRCcwcO/JD4HTI+KMvN43kg3BG6yHttLuBd6XL7E/H/hnyu4beD5ZMvCb/LN/hCxBnQF8K6X08BB1TiO7js5JKT1RvjH/GbsAOIwV5w6ulpTST/MVKj9P9keJS8jmUPbN4ZxBdq6vJ/u5vh74ej509Bayn6cvA3N4ZZXIVW3DyxHxQ7LVdJ8nm39Y/jn+B9mQ6z9Fdo/ALqCBLMl6R96jPqSImANcRfbZPUv2e+MDwJ/SALeCydv2t8hugXJynv/+jldW0fw7Q6+2Olg7riVbxfMO4Km8vo8DD+cPSdVS7VVefPjw4WNNPMi+wF1K9mXmRbIvYHeSfanbvCSujmxeyQNk85ieIvti2FRW343AfQMcp4uSleZKyvut/sgrq2hOIRvG9hywmOzL5RZl++5Llui9QLaIy0VkyWkCji+JuxR4fpD3fyn9V9F8B9nCDsX8fDxB9mV7/7L9JpItBPN0fj7mkd3TrK4kZpu8LacO8r7PGMbn88b8PCzK23N36Xsb7DwO87Mfn9eZgD0HidmRLMleTJZg/oxsQYkVVrnMY3+en5MX88/8YmBsScw+ZInD82TJ0Wlkf0woXy1yfbIVKx8h6/H5A1nP32CraO5a1paz8vJxZeU/AhYN49xMAq7Lr78EdJZ9rj8p++w/BcQQ9W1JltwNusoj2fDTpcCVZe+tfBXNu1fj5/yA/LN5LG9HN9ltBk4BNi6Jqye7BcHf8/f2KNmtURrL6isCVw1wnJsYePXR7fP3koADBmnjtmRDN4v5sZ/M6/vPkpi+VTSPGGD/88gS0WeAf5IlsucDrym7Ll4u269AdmuDB3nld9tllKz4O9S5z6+p0uvj0/m5fYrs5+DvZKusvm6g9+3Dh48194iUhj1dQ5JUIXmPzZfIksuRmNsnSZLWQc7BkyRJkqQaYYInSZIkSTXCIZqSJEmSVCPswZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqENzofRSK7++jWrLkb3EqSJEkavTYBHkursHCKCd7osjXZjU8lSZIkCaAJeHS4wSZ4o8tzAI888ggNDQ3VboskSZKkKlm8eDGve93rYBVH95ngjUINDQ0meJIkSZJWmYusSJIkSVKNMMGTJEmSpBphgidJkiRJNcI5eJIkSdI6oqenh2XLllW7Gcqtt9561NVVts/NBE+SJEmqcSklHn/8cRYtWlTtpqhEXV0dkyZNYr311qtYnSZ4kiRJUo3rS+622GIL6uvriYhqN2md19vby2OPPcbChQuZOHFixT4TEzxJkiSphvX09CxP7jbbbLNqN0clNt98cx577DFefvllxo4dW5E6XWRFkiRJqmF9c+7q6+ur3BKV6xua2dPTU7E6TfAkSZKkdYDDMkefkfhMTPAkSZIkqUaY4EmSJElaJx1wwAF88pOfrHYzKsoET5IkSdKo9fjjj/OJT3yClpYWNthgA7bcckv2339/vv/977NkyZJXVfeVV17JmWeeWaGWjg6uoilJkiRpVHr44YfZb7/9GDduHOeccw477bQTL7/8Mg8++CAXX3wxW2+9Ne9617tW2G/ZsmXDWpXyNa95zUg0u6rswZMkSZI0bMVikVmzZlEsFkf8WCeeeCJjxoxhzpw5HHXUUWy//fbstNNOvO997+Oaa67hne98J5AtVvL973+fd7/73Wy00UacddZZANx///28/e1vZ+ONN2bLLbfk3/7t33j66aeX118+RPPCCy+ktbV1eU/hkUceuXxbSonzzjuPbbfdlg033JBddtmFn//858u333jjjUQEN9xwA3vssQf19fW86U1v4oEHHhjp09SPCZ4kSZKkYWlvb6e5uZmpU6fS3NxMe3v7iB3rH//4B9dddx0nnXQSG2200YAxpatQfulLX+Ld73439957LyeccAILFy7krW99K7vuuitz5szht7/9LU888QRHHXXUgHXNmTOH//iP/+ArX/kKDzzwAL/97W95y1vesnz7F7/4RS655BK+973v8be//Y2TTz6Z4447jj/+8Y/96vnCF77A+eefz5w5cxgzZgwnnHBCBc7G8DlEU5IkSdJKFYtFpk+fTm9vLwC9vb3MmDGDQw89lKampoofr7Ozk5QSkydP7lc+fvx4li5dCsBJJ53EueeeC8Cxxx7bL5k6/fTTmTJlCuecc87ysosvvpjXve51PPjgg2y33Xb96l2wYAEbbbQRhx9+OJtssgnNzc3stttuALzwwgtccMEF/OEPf2DfffcFYNttt+Wmm25i5syZvPWtb11ez9lnn7389X/+53/yjne8g6VLl7LBBhtU6tQMyQRPkiRJ0kp1dHQsT+769PT00NnZOSIJXp/ye8Xddttt9Pb28oEPfIAXX3xxefkee+zRL+6OO+5g1qxZbLzxxivU+dBDD62Q4B188ME0Nzez7bbbcthhh3HYYYfxnve8h/r6eu6//36WLl3KwQcf3G+fl156aXkS2GfnnXde/u8JEyYA8OSTTzJx4sRVeNerzwRPkiRJ0kq1trZSV1fXL8krFAq0tLSMyPFaWlqICObNm9evfNtttwVgww037FdePoyzt7eXd77znct7+Er1JV6lNtlkE+68805uvPFGrrvuOk4//XTOOOMMbr/99uXv+ZprruG1r31tv/3WX3/9fq9LF3fpS07LE+OR5Bw8SZIkSSvV1NREW1sbhUIByJK7mTNnjljv3WabbcbBBx/Md77zHV544YVV3n/KlCn87W9/Y5tttqGlpaXfY7A5fWPGjOFtb3sb5513Hn/961/p6uriD3/4AzvssAPrr78+CxYsWKGu173uda/2rVaUPXiSJEmShmXatGkceuihdHZ20tLSMqJDMyFb1XK//fZjjz324IwzzmDnnXemrq6O22+/nXnz5rH77rsPuu9JJ53ERRddxDHHHMOnP/1pxo8fT2dnJz/72c+46KKLlieqfa6++moefvhh3vKWt7Dpppty7bXX0tvby+TJk9lkk0049dRTOfnkk+nt7WX//fdn8eLF3HzzzWy88cZ86EMfGtHzsCpM8CRJkiQNW1NT04gndn1e//rXc9ddd3HOOefwuc99jmKxyPrrr88OO+zAqaeeyoknnjjovltvvTV//vOf+exnP8uhhx7Kiy++SHNzM4cddhh1dSsOZBw3bhxXXnklZ5xxBkuXLqW1tZWf/vSn7LjjjgCceeaZbLHFFnz1q1/l4YcfZty4cUyZMoXPf/7zI/b+V0eklKrdBuUiogHo7u7upqGhodrNkSRJUg1YunQp8+fPZ9KkSWtsJUcNz1CfzeLFi2lsbARoTCktHm6dzsGTJEmSpBphgidJkiRJNcIET5IkSZJqhAmeJEmSJNUIEzxJkiRJqhEmeJIkSZJUI0zwNKhiscisWbMoFovVbookSZKkYTDB04Da29tpbm5m6tSpNDc3097eXu0mSZIkSVoJEzytoFgsMn36dHp7ewHo7e1lxowZ9uRJkiRJo5wJnlbQ0dGxPLnr09PTQ2dnZ5VaJEmSJA0sIrjqqqsG3d7V1UVEcPfddw8ac+ONNxIRLFq0aCSauEaNqXYDNPq0trZSV1fXL8krFAq0tLRUsVWSJEmqlgXdC3h6ydODbh9fP56JjRNH5NiPP/44Z599Ntdccw2PPvooW2yxBbvuuiuf/OQnOeigg1i4cCGbbrrpiBx7bWSCpxU0NTXR1tbGjBkz6OnpoVAoMHPmTJqamqrdNEmSJK1hC7oXsP13t2fJsiWDxtSPrWfuSXMrnuR1dXWx3377MW7cOM477zx23nlnli1bxu9+9ztOOukk5s2bx1ZbbVXRY66ul156ifXWW6/azXCIpgY2bdo0urq6mDVrFl1dXUybNq3aTZIkSVIVPL3kaZYsW8KP3vMj7ph+xwqPH73nRyxZtmTIHr7VdeKJJxIR3HbbbRx55JFst9127LjjjnzqU5/iL3/5C7DiEM3bbruN3XbbjQ022IA99tiDu+66a4V6r732Wrbbbjs23HBDDjzwQLq6ulaI+cUvfsGOO+7I+uuvzzbbbMP555/fb/s222zDWWedxfHHH09jYyMf+chHKvvmV5M9eBpUU1OTvXaSJEkCYPvNt2fKhClr7HjPPPMMv/3tbzn77LPZaKONVtg+bty4FcpeeOEFDj/8cKZOncqPfvQj5s+fzyc+8Yl+MY888gjvfe97+ehHP8rHPvYx5syZwymnnNIv5o477uCoo47ijDPO4Oijj+bmm2/mxBNPZLPNNuP4449fHve1r32N0047jS9+8YuVedMVYIInSZIkadTp7OwkpcQb3vCGYe/z4x//mJ6eHi6++GLq6+vZcccdKRaLfOxjH1se873vfY9tt92Wb3zjG0QEkydP5t577+Xcc89dHnPBBRdw0EEHcdpppwGw3Xbbcf/99/O1r32tX4I3depUTj311Ff/ZivIIZqSJEmSRp2UEpANwRyuuXPnsssuu1BfX7+8bN99910hZp999ulX70Ax++23X7+y/fbbj46ODnp6epaX7bHHHsNu25pigidJkiRp1GltbSUimDt37rD36UsKKxFTnlgOtN9AQ0erzQRPkiRJ0qjzmte8hkMPPZTvfve7vPDCCytsH+iedTvssAP33HMP//znP5eX9S3GUhpTXjZQzE033dSv7Oabb2a77bajUCis8ntZk0zwJEmSJK3U3KfmcufCO1d4zH1q+D1sq+rCCy+kp6eHvfbai1/84hd0dHQwd+5cvvWtb60wrBLg2GOPpa6ujmnTpnH//fdz7bXX8vWvf71fzEc/+lEeeughPvWpT/HAAw/wk5/8hEsvvbRfzCmnnMINN9zAmWeeyYMPPsgPfvADvvOd74y6+XYDcZEVSZIkSYMaXz+e+rH1HPfL4waNqR9bz/j68RU/9qRJk7jzzjs5++yzOeWUU1i4cCGbb745u+++O9/73vdWiN9444359a9/zUc/+lF22203dthhB84991ze9773LY+ZOHEiv/jFLzj55JO58MIL2WuvvTjnnHM44YQTlsdMmTKFK664gtNPP50zzzyTCRMm8JWvfKXfAiujVQxnDKrWjIhoALq7u7tpaGiodnMkSZJUA5YuXcr8+fOZNGkSG2ywwWrVsaB7wZD3uRtfP77iNzlfFwz12SxevJjGxkaAxpTS4uHWaQ+eJEmSpCFNbJxoAreWcA6eJEmSJNUIEzxJkiRJqhEmeJIkSZJUI0zwJEmSJKlGmOBJkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEnD09MDN94IP/1p9tzTM6KHO/744zniiCP6ld18880UCgUOO+ywFeJvvPFGIoJFixatsG3XXXfljDPOGKmmjhomeJIkSZJW7soroaUFDjwQjj02e25pycrXoIsvvpiPf/zj3HTTTSxYsGCNHnttYIInSZIkaWhXXglHHgk77QS33ALPPZc977RTVr6GkrwXXniBK664go997GMcfvjhXHrppWvkuGsTEzwNW7FYZNasWRSLxWo3RZIkSWtKTw+ccgocfjhcdRXssw9svHH2fNVVWfmpp474cE2Ayy+/nMmTJzN58mSOO+44LrnkElJKI37ctYkJnoalvb2d5uZmpk6dSnNzM+3t7dVukiRJktaE2bOhqws+/3moK0sf6urgc5+D+fOzuBHW3t7OcccdB8Bhhx3G888/zw033DDix12bmOBppYrFItOnT6e3txeA3t5eZsyYYU+eJEnSumDhwuz5jW8ceHtfeV/cCHnggQe47bbbeP/73w/AmDFjOProo7n44otH9LhrmzHVboBGv46OjuXJXZ+enh46OztpamqqUqskSZK0RkyYkD3fd182LLPcfff1jxsh7e3tvPzyy7z2ta9dXpZSYuzYsTz77LNsuummNDQ0ANDd3c24ceP67b9o0SIaGxtHtI2jgT14WqnW1lbqyrrjC4UCLS0tVWqRJEmS1pg3vxm22QbOOQfK/uhPby989aswaVIWN0JefvllLrvsMs4//3zuvvvu5Y977rmH5uZmfvzjHwOvfG+9/fbb++2/cOFCHn30USZPnjxibRwtTPC0Uk1NTbS1tVEoFIAsuZs5c6a9d5IkSeuCQgHOPx+uvhqOOKL/KppHHJGVf/3rWdwIufrqq3n22WeZNm0ab3zjG/s9jjzyyOXrQ2yyySbMmDGDU045hauuuor58+fz5z//mWOOOYbtt9+eQw45ZMTaOFqEq86MHhHRAHR3d3cv714eTYrFIp2+ES2HAAAgAElEQVSdnbS0tJjcSZIkrSWWLl3K/PnzmTRpEhtssMHqV3Tlldlqml1dr5RNmpQld+9976tu50COP/54Fi1aRE9PD729vVxzzTUrxNx5553svvvu3HHHHUyZMoUXX3yR8847j5/+9Kd0dXWxxRZbcOCBB/LVr36VrbbaakTaubqG+mwWL17cN6S0MaW0eLh1muCNIqM9wZMkSdLap2IJHmS3Qpg9O1tQZcKEbFjmCPbc1bqRSPBcZEWSJEnS8BQKcMAB1W6FhuAcPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJEnrABdXHH1G4jMxwZMkSZJq2NixYwFYsmRJlVuici+99BLA8vtNV4KraEqSJEk1rFAoMG7cOJ588kkA6uvriYgqt0q9vb089dRT1NfXM2ZM5dIyEzxJkiSpxvXd4LsvydPoUFdXx8SJEyuacJvgSZIkSTUuIpgwYQJbbLEFy5Ytq3ZzlFtvvfWoq6vsrDkTPEmSJGkdUSgUKjrfS6OPi6xIkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4Gm1FYtFZs2aRbFYrHZTJEmSJGGCp9XU3t5Oc3MzU6dOpbm5mfb29mo3SZIkSVrnRUqp2m1QLiIagO7u7m4aGhqq3ZxBFYtFmpub6e3tXV5WKBTo6uqiqampii2TJEmSasPixYtpbGwEaEwpLR7ufvbgaZV1dHT0S+4Aenp66OzsrFKLJEmSJIEJnlZDa2srdXX9L51CoUBLS0uVWiRJkiQJTPC0Gpqammhra6NQKABZcjdz5kyHZ0qSJElV5hy8UWRtmYPXp1gs0tnZSUtLi8mdJEmSVEGrOwdvzMg1SbWuqanJxE6SJEkaRRyiKUmSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaMSoTvIg4MSLmR8TSiLgjIt68kvj3RcT9EfFi/vyesu0REWdExGMR8c+IuDEidiyL2TQifhgR3fnjhxExrmT75IiYFRFP5O16OCLOioixJTHvjYg5EbEoIl6IiLsj4t8qdV4kSZIkaSijLsGLiKOBbwJnA7sBs4HfRMTEQeL3BS4Hfgjskj9fERF7l4R9BvgU8O/AnsDjwO8jYpOSmJ8AuwKH5Y9d87r6LAMuAw4BJgOfBD4CfLkk5pm83fsCOwOXAJdExKGrdBIkSZIkaTVESqnabegnIm4F7kwpfaykbC5wVUrpcwPEXw40pJT+paTst8CzKaVjIiKAx4BvppTOzbevDzwBfDalNDMitgfuB/ZJKd2ax+wD3AK8IaX0wCBtvQDYM6U0aA9jRNwJXJNSOm0Y770B6O7u7qahoWFl4ZIkSZJq1OLFi2lsbARoTCktHu5+o6oHLyLWA3YHrivbdB3wpkF223eA+N+VxE8CtiqNSSm9CPyxJGZfoLsvuctj/gJ0D3bciGgh6+n74yDbIyIOIuvt+9MgMetHREPfA9hkoDhJkiRJGo5RleAB44ECWe9aqSfIkrSBbLWS+K1KyoaKeXKAup8sP25E3BwRS4EOsuGjp5dtb4yI54GXgGuAj6eUfj9I2z9HlkT2PYqDxEmSJEnSSo22BK9P+bjRGKBsVeNXFjNQ/QPVczQwBTgWeAdwatn258jm7+0JfAG4ICIOGKTdXwUaSx5Ng8RJkiRJ0kqNqXYDyjwN9LBib90WrNgD1+fxlcQ/nj9vBSwcImbLAerevPy4KaVH8n/eHxEFoC0izk8p9eTbe4HOPObufH7f54AbyyvPh4q+2Pc6my4oSZIkSatnVPXgpZReAu4ADi7bdDBw8yC73TJA/CEl8fPJErjlMflcv7eWxNwCNEbEXiUxe5P1qg12XMh6+Mbmz0PFrD/EdkmSJEmqiNHWgwdwAfDDiJhDlnhNByYC3weIiMuAR0tW1Pxv4E8R8Vng/4B3A28D9gdIKaWI+Cbw+YjoIJs793lgCdmtEUgpzc1X3rwoImbk9bYBV/etoBkRHyC7VcK9ZL1uu5MNsbw8pfRyHvM5YA7wELAe8Hbgg8DyFUElSZIkaaSMugQvpXR5RGxGtnjJBOA+4O0ppb/nIROB3pL4myPi/cBZwJlkydXRpStiAucBGwIXApsCtwKHpJSeK4n5APAtXllt81dk983r8zLwWWA7sl65vwPfBb5RErNRfowm4J/APOC4lNLlq34m1j7FYpGOjg5aW1tpanI6oSRJkrSmjbr74K3L1ub74LW3tzN9+nR6e3upq6ujra2NadOmVbtZkiRJ0lppde+DZ4I3iqytCV6xWKS5uZne3uUdqxQKBbq6uuzJkyRJklZDTdzoXGunjo6OfskdQE9PD52dnYPsIUmSJGkkmODpVWttbaWurv+lVCgUaGlpqVKLJEmSpHWTCZ5etaamJtra2igUCkCW3M2cOdPhmZIkSdIa5hy8UWRtnYPXp1gs0tnZSUtLi8mdJEmS9Cqs7hy8UXebBK29mpqaTOwkSZKkKnKIpiRJkiTVCBM8SZIkSaoRJniSJEmSVCNM8CRJkiSpRpjgSZIkSVKNMMGTJEmSpBphgidJkiRJNcIET5IkSZJqhAmeJEmSJNUIEzxJkiRJqhEmeJIkSZJUI0zwJEmSJKlGmOBJkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPI6ZYLDJr1iyKxWK1myJJkiStE0zwNCLa29tpbm5m6tSpNDc3097eXu0mSZIkSTUvUkrVboNyEdEAdHd3d9PQ0FDt5qy2YrFIc3Mzvb29y8sKhQJdXV00NTVVsWWSJEnS2mHx4sU0NjYCNKaUFg93P3vwVHEdHR39kjuAnp4eOjs7q9QiSZIkad1ggqeKa21tpa6u/6VVKBRoaWmpUoskSZKkdYMJniquqamJtrY2CoUCkCV3M2fOdHimJEmSNMKcgzeK1MocvD7FYpHOzk5aWlpM7iRJkqRVsLpz8MaMXJO0rmtqajKxkyRJktYgh2hKkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaYYInSZIkSTXCBE+SJEmSaoQJniRJkiTVCBM8SZIkSaoRJnhaY4rFIrNmzaJYLFa7KZIkSVJNMsHTGtHe3k5zczNTp06lubmZ9vb2ajdJkiRJqjmRUqp2G5SLiAagu7u7m4aGhmo3p2KKxSLNzc309vYuLysUCnR1ddHU1FTFlkmSJEmj0+LFi2lsbARoTCktHu5+9uBpxHV0dPRL7gB6enro7OysUoskSZKk2mSCpxHX2tpKXV3/S61QKNDS0lKlFkmSJEm1yQRPI66pqYm2tjYKhQKQJXczZ850eKYkSZJUYc7BG0VqdQ5en2KxSGdnJy0tLSZ3kiRJ0hBWdw7emJFrktRfU1OTiZ0kSZI0ghyiKUmSJEk1wgRPkiRJkmqECZ4kSZIk1Qjn4GlgPT0wezYsXAgTJsCb3wz5KpiSJEmSRid78LSiK6+ElhY48EA49tjsuaUlK5ckSZI0apngqb8rr4Qjj4SddoJbboHnnsued9opKzfJkyRJkkYt74M3ilT9Png9Pby87TY8P3lbHr7kfKgryf97e9n2w6ew8YPzGfPQfIdrSpIkSSPI++DpVXviNz9nywVFDju4yK3/s+cK2/eZCLf8Po87/OgqtFCSJEnSUEzwtNySBQ8BcPL/+x9am3dbYXtH153Q/pHlcZIkSZJGFxM8Lbdsy/EA7PL0GN6wz5QVtm8056/94iRJkiSNLi6youWe33s35o+Drb51MfT29t/Y28uW376Eh8dlcZIkSZJGHxM8vaJQ4JRDoPH62XDEEf1X0TziCBqvn82ph+ACK5IkSdIoZYKnfn65A8y/6Dy4915405ugoSF7vu8+5l90Hr/codotlCRJkjQYEzytYNHbp0JnJ8yaBT/5Sfbc0ZGVV1ixWGTWrFkUi8WK1y1JkiSta1xkRSuY+9Tc7B+TG7IHwJP3vFJeIe3t7UyfPp3e3l7q6upoa2tj2rRpFT2GJEmStC7xRuejSLVvdL6gewHbf3d7lixbMmhM/dh65p40l4mNE1/VsYrFIs3NzfSWLOZSKBTo6uqiqanpVdUtSZIkre280bletYmNE5l70lyeXvL0oDHj68e/6uQOoKOjo19yB9DT00NnZ6cJniRJkrSaTPDUz8TGiRVJ4FamtbWVurq6FXrwWlpaRvzYkiRJUq1ykRVVRVNTE21tbRTyWy4UCgVmzpxp750kSZL0KjgHbxSp9hy8aigWi3R2dtLS0mJyJ0mSJOWcg6e1UlNTk4mdJEmSVCEO0ZQkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaYYInSZIkSTXCBE+SJEmSaoQJnkaVYrHIrFmzKBaL1W6KJEmStNYxwdOo0d7eTnNzM1OnTqW5uZn29vZqN0mSJElaq0RKqdptUC4iGoDu7u5uGhoaqt2cNapYLNLc3Exvb+/yskKhQFdXF01NTVVsmSRJkrTmLV68mMbGRoDGlNLi4e5nD55GhY6Ojn7JHUBPTw+dnZ1VapEkSZK09jHB06jQ2tpKXV3/y7FQKNDS0lKlFkmSJElrHxM8jQpNTU20tbVRKBSALLmbOXOmwzMlSZKkVeAcvFFkVM/B6+mB2bNh4UKYMAHe/GbIk7FKKhaLdHZ20tLSYnInSZKkddbqzsEbM3JNUs248ko45RTo6nqlbJtt4Pzz4b3vreihmpqaTOwkSZKk1eQQTQ3pqR/OJB15JItaJzLv15dyd8ds5v36Uha1TiQdeSRP/XBmtZsoSZIkKecQzVFktA3RXPDMfHpbXs9fN08c8X5IJX8OiF646mew01NBofMhJr5mUvUaKkmSJNUYh2iq4pbO+j3bPZuY960zmHPQO1fY/lTLr5j0wS/z4Kzfw/umV6GFkiRJkkqtUoIXEe9ajWP8PqX0z9XYT1U29omnAdhqn4PYdcKUFbbfvc8LwJeXx0mSJEmqrlXtwbtqFeMT0Ao8vIr7aRRYtuV4ADaY9xC07L/C9g3nPdQvTpIkSVJ1rc4iK1ullOqG8wCWrE6jIuLEiJgfEUsj4o6IePNK4t8XEfdHxIv583vKtkdEnBERj0XEPyPixojYsSxm04j4YUR0548fRsS4ku2TI2JWRDyRt+vhiDgrIsaWxHwkImZHxLP54/qI2Gt1zsFo8PzeuzF/HGz1rYuht7f/xt5etvz2JTw8LouTJEmSVH2rmuD9AFiV4ZY/AoY9IRAgIo4GvgmcDewGzAZ+ExETB4nfF7gc+CGwS/58RUTsXRL2GeBTwL8DewKPA7+PiE1KYn4C7Aoclj92zevqswy4DDgEmAx8EvgI8OWSmAOAnwIHAvsCC4DrIuK1q3IORo1CgVMOgcbrZ8MRR8Att8Bzz2XPRxxB4/WzOfUQRuR+eJIkSZJW3ahbRTMibgXuTCl9rKRsLnBVSulzA8RfDjSklP6lpOy3wLMppWMiIoDHgG+mlM7Nt68PPAF8NqU0MyK2B+4H9kkp3ZrH7APcArwhpfTAIG29ANgzpTRgD2NEFIBngX9PKV02jPc+qlbRvHPhnezetjsPNX2Nbc/6bv/74E2axMNfOJHXFz/NHdPvYMoAc/QkSZIkrZ6aWEUzItYDdgf+q2zTdcCbBtltX+AbZWW/I+thA5gEbJXXAUBK6cWI+GNe58y8ju6+5C6P+UtEdOcxKyR4EdFC1tN35RBvqR4YCzwz0MY80Vy/pGiTgeKq7ZY9J7Bo9hVsfOtdjH3iaZZtOZ7n996Nuc88CMVqt06SJElSn4oleBHxeuDjQDOwfMxeSmlVVt4cn+/7RFn5E2RJ2kC2Wkn8ViVl5THNJTFPDlD3k+XHjYibgSlkiVkbcPog7YIsUX0UuH6Q7Z8DvjTE/lU1vn489WPrOe6Xx/Xf8BRwX/bP+rH1jK93kRVJkiRpNKhkD95VwHfI5sP1riR2ZcrHjcYAZasav7KYgeofqJ6jyXradgG+BpwKnLfCjhGfAY4BDkgpLR2k3V8FLih5vQmjqE9sYuNE5p40l6eXDH4bhPH145nYOOD0SEmSJElrWCUTvBdSSjNfZR1PAz2s2Fu3BSv2wPV5fCXxj+fPWwELh4jZcoC6Ny8/bkrpkfyf9+dz7Noi4vyUUk9fTEScCnweeFtK6a+DtJuU0ovAiyX7DRZaNRMbJ1Y1gSsWi3R0dNDa2kpTU1PV2iFJkiStDVbnNgmD+WpEnBsRB0fEW/oeq1JBSukl4A7g4LJNBwM3D7LbLQPEH1ISP58sgVsek8/1e2tJzC1AY+ktDfJVOBuHOC5kPXxj8+e+/T4NnAYcllKaM8S+Won29naam5uZOnUqzc3NtLe3V7tJkiRJ0qhWsVU0I+JCstsEzOWVIZoppXTUKtZzNNntCT5KlnhNJ7sdwY4ppb9HxGXAo30rakbEm4A/AV8A/g94N3AWsH/JipifJZvv9mGgg6x37QBgckrpuTzmN8DWwIy8KW3A31NK78y3f4DsVgn3kvW67U62uMuNKaXj8pjPAGcCxwJ/Lnlbz6eUnh/Gex9Vq2hWU7FYpLm5md6S++8VCgW6urrsyZMkSVLNGw2raL6VLAl7VRljSunyiNiMbPGSCWTLebw9pfT3PGQiJXP8Uko3R8T7yZK6M4GHgKNLV8QkmyO3IXAhsClwK3BIX3KX+wDwLV5ZbfNXZPfN6/My8FlgO7Ieu78D36X/Cp4nAusBPy97W18GzhjeGRBAR0dHv+QOoKenh87OThM8SZIkaRCV7MG7BDg7pdRZkQrXQfbgvcIePEmSJK3LVrcHr5Jz8HYD7ouIeyLitoi4PSJuq2D9Woc0NTXR1tZGoZDdcaNQKDBz5kyTO0mSJGkIlezBax6ovGRopVbCHrwVFYtFOjs7aWlpMbmTJEnSOmO0zMEbyGUVPIbWMU1NTSZ2kiRJ0jBVMsHbqeTf65PdluCvmOBJkiRJ0hpRsQQvpfTp0tcRsTHws0rVL0mSJEkaWiUXWSmXyG4pIEmSJElaAyrWgxcRt5MldQAFsnvYfa1S9UuSJEmShlbJOXhHlvz7ZeDJlNKyCtYvSZIkSRrCiK6iGRGklFxkRZIkSZLWAFfRlCRJkqQa4SqakiRJklQjXEVTkiRJkmrESK+ieV6l6pcAisUiHR0dtLa20tTUVO3mSJIkSaOKq2hqrdHe3s706dPp7e2lrq6OtrY2pk2bVu1mSZIkSaNGpJRWHqU1IiIagO7u7m4aGhqq3Zyh9fTA7NmwcCFMmABvfjMUCiN2uGKxSHNzM729vcvLCoUCXV1d9uRJkiSp5ixevJjGxkaAxpTS4uHuV7E5eBFxTkSMK3m9aUScXan6NYpceSW0tMCBB8Kxx2bPLS1Z+Qjp6Ojol9wB9PT00NnZOWLHlCRJktY2lVxk5V9SSov6XqSUngX+pYL1axR46oczSUceyaLWicz79aXc3TGbeb++lEWtE0lHHslTP5w5IsdtbW2lrq7/5VooFGhpaRmR40mSJElro4oN0YyIvwJvSik9n79uAP6cUtpp6D3VZ7QP0VzwzHx6W17PXzdPHPF+SCX5VvTCVT+DnZ4KCp0PMfE1kyp+/Pb2dmbMmEFPTw+FQoGZM2c6B0+SJEk1aXWHaFZykZVvA3+OiMuBAI4CvlHB+lVlS2f9nu2eTcz71hnMOeidK2x/quVXTPrgl3lw1u/hfdMrfvxp06Zx6KGH0tnZSUtLi3PvJEmSpDKVvNH5RRFxK/DWvOjYlNLfKlW/qm/sE08DsNU+B7HrhCkrbL97nxeALy+PGwlNTU0mdpIkSdIgKtmDR0rprxHxBLA+QERMTCktqOQxVD3LthwPwAbzHoKW/VfYvuG8h/rFSZIkSVqzKrmK5nsiYi7wEPA7YD7wf5WqX9X3/N67MX8cbPWti6FsRUt6e9ny25fw8LgsTpIkSdKaV8lVNL8M7A10ppS2B/YF7q5g/aq2QoFTDoHG62fDEUfALbfAc89lz0ccQeP1szn1EEb0fniSJEmSBlfJBO/FvtVdImK9lNJtwC4VrF+jwC93gPkXnQf33gtvehM0NGTP993H/IvO45c7VLuFkiRJ0rqrknPwFuY3Ov81cG1E/AN4qoL1a5S4Zc8JLJp9BRvfehdjn3iaZVuO5/m9d2PuMw9CsdqtkyRJktZdlUzwvg88n1I6LSIOABrI5uKpRoyvH0/92HqO++Vx/Tc8BdyX/bN+bD3j611kRZIkSaqGSiZ4RwLfjojZwBXAtSmllytYv6psYuNE5p40l6eXDH4bhPH145nYOHENtkqSJElSn0gpVa6yiDHA24B/Jbsf3uyU0ocrdoAaFxENQHd3dzcNDQ3Vbo4kSZKkKlm8eDGNjY0AjX1rnQxHpe+D93JE3AxsDmwNHFDJ+qVyxWKRjo4OWltbvQG6JEmS1nmVvA/e8RFxDXAbsBPwpZTSpErVL5Vrb2+nubmZqVOn0tzcTHt7e7WbJEmSJFVVxYZoRsS5wP+mlOZUpMJ1kEM0h69YLNLc3ExvyQ3XC4UCXV1d9uRJkiRprbe6QzQr1oOXUvqsyZ3WlI6Ojn7JHUBPTw+dnZ1VapEkSZJUfZW80bm0xrS2tlJX1//yLRQKtLS0VKlFkiRJUvVVJMGLiDERsWNEHB0RZ0bELytRrzSYpqYm2traKBQKQJbczZw50+GZkiRJWqet8hy8iNiWbBGVN5Y8tiNbkfMlYC5wb0rpQ5Vtau1zDt6qKxaLdHZ20tLSYnInSZKkmrFGbpMQET8CjgESsATYCLgG+ApwL9CRUupZlTqlV6OpqcnETpIkScqt6hDNI4GPAxuT3efuO8AhwJ7A303uJEmSJKl6VjXB+xpwWUppaUrp+ZTSJ4D9gAOB+yPisIq3UJIkSZI0LKuU4KWUTkspPV9WdgewF/BN4PKI+ElEbF7BNkqSJEmShmGVV9GMiHMiYq/SspT5b2AHYH1gXoXaJ0mSJEkaptW5TcIE4OqIWBgRbRHxjohYHyCl9GhK6X3AByvaSkmSJEnSSq1ygpdS+jCwJXAUsAg4H3g6Iq6MiOMjYrOU0jUVbqckSZIkaSVW60bn+ZDM2Smlz6SU3kA2B+8vwEeAxyLiTxFxakS8tpKNlSRJkiQNbpXugzeYlNJcshucn5cvsPKu/AHw9UocQ5IkSZI0tIokeAARMTaltCyl9BTQnj9U4xZ0L+DpJU9DTw8b33oXY594mmVbjuf5vXeDQoHx9eOZ2DhxjbWnWCzS0dFBa2urN0CXJEnSOqciCV5E1AG3A7tWoj6tHRZ0L2D7727Pofcs4fzrYNKiV7bNHwenHAK/26WeuSfNXSNJXnt7O9OnT6e3t5e6ujra2tqYNm3aiB9XkiRJGi1Waw5euZRSL3BbROxYifq0dnh6ydMces8SfvG/waZ7voV5v76UuztmM+/Xl7Lpnm/hF/8bHHrPkqyHb4QVi8XlyR1Ab28vM2bMoFgsjvixJUmSpNGiYkM0yRZauTsiHgCWAEG2HsteQ++mtVZPD+dfB91vezPjfjuLcXX53wta9oe3/xuLDjuQr1/3Jxb19Ix4Uzo6OpYnd680r4fOzk6HakqSJGmdUckE790DlKUK1q9RZuNb72LSIpj3Hye8ktz1qavjiY9/mMnv+hMP3noXNO05om1pbW2lrq6uX5JXKBT+P3v3Hh31dd97//2dX3FAJkgkkwjHc5gCowJJfAEXQ1pDkEwQx12PT/oQP+4lXk9BDUrjmqaGOk2ay8mlJyetcWwcdx3UDuaJ0/YklDYpvRjKqRrUZVfBMSZOjYgEyOrPseVM7REhgoTM7OeP3wyMBiE0F2lGms9rrVka//aePd844MWXvff3SywWm9DvFRERERGpJiUf0TSzJzJv/wrYm/f6q1LXl+o1YzA4enl+yaJRx89lnmfnTaRIJEJHRwee5wFBcrdr1y7t3omIiIhITSnHDt4DmZ/vK8NaMoVcaAwDMLPnZHAsM8+snpMj5k20trY2Wltb6evrIxaLKbkTERERkZpTcoLnnHs58/NFADNrBN5Q6rpS/c6uXMbpBpi3czfccQ/kHtNMp2l89HFONQTzJkskElFiJyIiIiI1qyxVNAHM7L1mdhw4CRwATgPfKNf6UoU8j23rof5QF8kNzZzIVNE8sX8PyQ3N1B/qYvv6YJ6IiIiIiEy8chZZ+QywEjjsnLvZzG4FfquM60uVCdeFOXBTHRsZZsfBwyy+8/DFsVMNsPmuoA/ew3WTc0RTRERERKTWmXPlKXRpZkeccyvM7DngVufcT8zsWefc8rJ8QQ0wsznA0NDQEHPmzKl0OOMyMDQQ9LlLpZjdfZQZgwkuNIaDY5meR7guPClNzkVEREREppMzZ85QX18PUO+cOzPez5VzB+9lM2sA9gP/YGb/CfygjOtLFZpfP/9SAjfBrRBERERERGRsZUvwnHN3Zt5+wszWAnMI7uKJiIiIiIjIJCjnDt5Fzrl/mYh1RURERERE5MrKVkVTREREREREKqssO3hm9jPAYuCd2Zdz7pfLsbZIqXzfp7e3l6amJvXIExEREZFpreAEz8wWAjeQk8wBP5dZ6yfAceD5MsYoUrR4PM6WLVtIp9OEQiE6Ojpoa2urdFgiIiIiIhOioDYJZvYV4FcBBwwD1wJ/DzxBkNT1OudSExBnTZiKbRKqme/7RKNR0un0xWee59Hf36+dPBERERGpasW2SSj0Dt77gPuA2cDbgC8B64EVwItK7qSa9Pb2jkjuAFKpFH19fRWKSERERERkYhWa4P0x8Mx2ahcAACAASURBVGXn3Hnn3Fnn3O8Avwg0Ay+Y2YayRyhSpKamJkKhkb/EPc8jFotVKCIRERERkYlVUILnnPuEc+5s3rNvA7cCDwNfNbO/MLO3lDFGkaJEIhE6OjrwPA8Ikrtdu3bpeKaIiIiITFsF3cG76mJm1wM7gbXOuTeXbeEaoTt4E8P3ffr6+ojFYkruRERERGRKKPYOXlkbnTvnXgI2mtkvlXNdkVJEIhEldiIiIiJSEyak0blz7u8nYl0RERERERG5sglJ8ERERERERGTylSXBM7PlZnZNOdYSERERERGR4pTrDt4RYCnwvTKtJ1NdKgVdXfDyy3DddbB6NWSqWYqIiIiIyMQoV4JnZVpHpriBoQF++ldf4/pPf5E3/Mf3Lz7/8X95Gy996nf5mff9P8yvn1/BCEVEREREpi/dwZOyGRga4CMfauJnf/P3ODDr+6xqg9kfhVVtcGDW9/nZ3/w9PvKhJgaGBiodqoiIiIjItFTWNglS2xI/HOR//MNP+P67lxH58w7+JJTz9wfpNN//9S384T8cJfHDwYru4vm+T29vL01NTWqfICIiIiLTinbwpGxmdx9lQRLObv8dll//8yy/bvml1/U/z4+2bWVhMphXKfF4nGg0SktLC9FolHg8XrFYRERERETKTQmelM2MwQQA55csGnX8XOZ5dt5k832fLVu2kE6nAUin07S3t+P7fkXiEREREREpNyV4UjYXGsMAzOw5Oer4rMzz7LzJ1tvbezG5y0qlUvT19VUkHhERERGRclOCJ2VzduUyTjfAvJ27IS+RIp2m8dHHOdUQzKuEpqYmQqGRv+Q9zyMWi1UkHhERERGRcitXgvdpoDLn7qR6eB7b1kP9oS5473vh6afhhz8Mfr73vdQf6mL7eirWDy8SidDR0YGX+X7P89i1a5cKrYiIiIjItGHOuUrHIBlmNgcYGhoaYs6cOZUOp2DPvvwst3Tcwjff+DusfHjvyD5486+n+3fex7t/+Ajf3vJtll+3vGJx+r5PX18fsVhMyZ2IiIiIVKUzZ85QX18PUO+cOzPez6lNgpRNuC5M3Yw63v3DRwhtgtUvwnVn4eXZ0BV9ifQPH6FuRh3husrcwcuKRCJK7ERERERkWlKCJ2Uzv34+x+89TmL4yqd1w3XhivbAExERERGZzpTgSVnNr5+vBE5EREREpELKXkXTzP6Lme0u97oiIiIiIiIytolok/Am4P+dgHVFRERERERkDAUf0TSzO68yZWGRsYiIiIiIiEgJirmD93XAATbGHPVekCnD9316e3tpampSdU0RERERmdKKOaL5MrDRORca7QVUrsGZSIHi8TjRaJSWlhai0SjxeLzSIYmIiIiIFK2YBO/bjJ3EXW13T6Qq+L7Pli1bSKfTAKTTadrb2/F9v8KRiYiIiIgUp5gE74+Bp8YY7wOaiwtHZPL09vZeTO6yUqkUfX19FYpIRERERKQ0Bd/Bc851XWX8R8A3i45IZJI0NTURCoVGJHme5xGLxSoYlYiIiIhI8SaiTYLIlBCJROjo6MDzPCBI7nbt2qVCKyIiIiIyZZlz4y94aWY3At91zqWvOjmY/w7ghHPup0XGV1PMbA4wNDQ0xJw5cyodTs3wfZ++vj5isZiSOxERERGpCmfOnKG+vh6g3jl3ZryfKzTBSwHznHM/GOf8M8DNzrlT4/6SGqYET0REREREoPgEr9A7eAZ81syGxzn/mgLXFxERERERkSIVmuAdBhYXMP9p4FyB3yHTyMDQAInhBKRSzO4+yozBBBcaw5xduQw8j3BdmPn18ysdpoiIiIjItFBQguecWztBcVxkZh8Cfg+4Dvh34MNjVe40s43AZ4FFwEngD5xzf5MzbsCngC3AXKAbuNc59+85c+YCO4E7M4/+FrjPOZfMjC8G/hfwdqAe+D7wF8CnnXMXMnPeAXwGuAWIAr/rnHu4pH8ZU9zA0ABLH1tK67FhdhyEBclLY6cbYNt6OHBTHcfvPa4kT0RERESkDKqqiqaZ3Q08DPwhsAzoAv7RzEb907+ZvQv4KvAEcFPm59fMbGXOtAeA+4HfBlYArwD/ZGZvzJnzF8DNwIbM6+bMWlkXgC8D6wl2MD8MfAD4dM6cOuAU8PuZ76h5ieEErceG2bfXmLtiDT379/Bcbxc9+/cwd8Ua9u01Wo8NBzt8IiIiIiJSsoKKrEw0M+sGnnXO/VbOs+PA151zHx1l/leBOc65/5rz7Engdefcr2Z2774PPOyc+0Jm/A3AIPAR59wuM1sKvACscs51Z+asIjheusQ5d+IKsT4ErHDOrR5lrD/znQXt4E23IivP+keYe8OtzF2xhoYnOyGU8/cJ6TTJDc28duQwyee/xfLIisoFmsf3fXp7e2lqalJVTRERERGpiGKLrFTNDp6ZXUNwvPFg3tBB4Beu8LF3jTL/QM78BcC83DnOuR8TNGLPznkXMJRN7jJz/g0YutL3mlmMYKevpIbuZvYGM5uTfQFvvOqHppDZ3UdZkIRXtm4emdwBhEIM3reJhclgXrWIx+NEo1FaWlqIRqPE4/FKhyQiIiIiMm5Vk+ABYcAj2F3LNUiQpI1m3lXmz8t5NtacV0dZ+9X87zWzp8zsPNBLcHz0k1eIa7w+SpBIZl9+ietVlRmDwdHL80sWjTp+LvM8O6/SfN9ny5YtpNNBm8d0Ok17ezu+P63+bxERERGRaayaErys/DOjNsqzQudfbc5o64+2zt3AcuDXgF8Cto8R13h8nqBoS/Y1rc4DXmgMAzCz5+So47Myz7PzKq23t/dicpeVSqXo6+urUEQiIiIiIoUptE3CCGZ2O3A78FbykkXn3OYCl0sAKS7frXsrl+/AZb1ylfnZYifzgJfHmNM4ytpvyf9e59x/ZN6+YGYe0GFmO5xzqSvEN6bMcdEfZ/85uDI4fZxduYzTDTBv5264457L7uA1Pvo4pxqCedWgqamJUCg0IsnzPI9YLFbBqERERERExq/oHTwz+xTB3bbbCY5Xzs17FcQ59xPg28B78obeAzx1hY89Pcr89TnzTxMkcBfnZO76vTtnztNAvZndmjNnJcGO2pW+F4IdvhmZnzIaz2Pbeqg/1EVyQzMnMlU0T+zfQ3JDM/WHuti+PphXDSKRCB0dHXiZeDzPY9euXSq0IiIiIiJTRik7eB8EfsM598RVZ47fQ8ATZvYMQeK1BZhP0IMOM/sy8FJORc1HgMNm9hHgG8B/A9YBtwE455yZPQx8zMx6Ce7OfQwYJmiNgHPueKby5p+aWXtm3Q7g77IVNM3s1wlaJTxPsON2C8Hxyq86536amXMNQZ88gGuA683sZuCsc64mz/iF68IcuKmOjQyz4+BhFt95+OLYqQbYfFfQB+/huuo4ognQ1tZGa2srfX19xGIxJXciIiIiMqUU3SbBzP4TuNU5N/oFq2IDChqdP0DQ6Py7BA3DD2fG/gXod879Rs789wGfAxZyqdH5X+eMZxudtzOy0fl3c+a8icsbnf92TqPzuzMx/RzBjt2LwFeALzrnzmfm/CzBjmG+b463Qfx0a5MAQbPzxHACUilmdx9lxmCCC43h4Fim5xGuC6vJuYiIiIhInmLbJJSS4H2BYHfqs0UtIJeZjgmeiIiIiIgUrtgEr6Ajmpnm3lkhYIuZrQO+Q3CE8SLn3P2FrC0iIiIiIiKlKfQOXn65w+cyP9+Z97y4bUEREREREREpWkEJnnOueaICERERERERkdKU0iZhvl2hcZuZqWqGTBu+79PZ2Ynv+5UORURERERkTEUneAQVI9+S/9DM3szo1SRFppx4PE40GqWlpYVoNEo8Hq90SCIiIiIiV1RKFc000Oic+0He8yjwgnPu2jLEV1NURbO6+L5PNBolnU5ffOZ5Hv39/eqPJyIiIiITalKqaMKISpoO+KyZDecMe8BKLhVfEZmyent7RyR3AKlUir6+PiV4IiIiIlKVCk7wuFRJ04AbgJ/kjP0EOAY8WGJcIhXX1NREKBS6bAcvFotVMCoRERERkSsrOMHLVtI0s8eBrc65H5Y9KpEqEIlE6OjooL29nVQqhed57Nq1S7t3IiIiIlK1SrmD90VG73fngPNAH/AN59xrxYdXW3QHrzr5vk9fXx+xWEzJnYiIiIhMimLv4JWS4HUCywnu3Z0gOLLZBKSAHmAxQbJ3m3PuhaK+pMYowRMREREREZjEIis5vgG8BmzKfmEmQYkD/wr8KfAXwBeB1hK+R6aZgaEBEsMJSKWY3X2UGYMJLjSGObtyGXge4bow8+vVSlFEREREpFCl7OC9BLwnf3fOzN4BHHTOXW9myzPvw6WHOv3Vwg7ewNAASx9bSuuxYXYchAXJS2OnG2DbejhwUx3H7z2uJE9EREREalaxO3ilNDqvB946yvO3ANnsJAlcU8J3yDSTGE7QemyYfXuNuSvW0LN/D8/1dtGzfw9zV6xh316j9dhwsMMnIiIiIiIFKfWI5m4z2wYcIbhvdytBi4SvZ+bcCnyvpAhlekml2HEQhtatpuHJThpCmb9jiN0Gd9xDckMzDx48TDKVqmycY/B9n97eXpqamlR0RURERESqSik7eO3A/wH+N/AiMJB5/3+AD2bm9AC/WUqAMr3M7j7KgiS8snUzhPJ++YVCDN63iYXJYF41isfjRKNRWlpaiEajxOPxSockIiIiInJR0Qmec+6sc+4DwJsJmp8vB97snNvinPtRZs5zzrnnyhOqTAczBoOjl+eXLBp1/FzmeXZeNfF9ny1btlxsfJ5Op2lvb8f3/QpHJiIiIiISKGUHD7iY6H3HOXfMOXe2HEHJ9HWhMai3M7Pn5KjjszLPs/OqSW9v78XkLiuVStHX11ehiERERERERirlDh5mdjtwO0GxlRHJonNucylry/R0duUyTjfAvJ274Y57Rh7TTKdpfPRxTjUE86pNU1MToVBoRJLneR6xWKyCUYmIiIiIXFL0Dp6ZfQo4SJDghYG5eS+Ry3ke29ZD/aEukhuaOZGponli/x6SG5qpP9TF9vXBvGoTiUTo6OjAy8TmeR67du1SoRURERERqRql9MF7GXjAOfdEeUOqXbXeB+9UA2yfAn3wfN+nr6+PWCym5E5EREREJkSxffBKSfD+E7jVOTf6ZSopWC0keBAkeYnhBKRSzO4+yozBBBcaw8GxTM8jXBeu2uRORERERGQyVCLB+wJw1jn32aIWkMvUSoInIiIiIiJjKzbBK6XIykxgi5mtA74DXMgddM7dX8LaIiIiIiIiUqBSErwbgWyPu3fmjRW3LSgiIiIiIiJFKzrBc841lzMQkanM9316e3tpampS4RURERERqZiSG52L1Lp4PE40GqWlpYVoNEo8Hq90SCIiIiJSo4ousgJgZquBdmAR8D7n3Etmdg9w2jn3r2WKsWaoyMrU4/s+0Wj0subn/f392skTERERkaIVW2SllEbnG4EDwDlgGfCGzNAbgY8Vu67IVNLb2zsiuQNIpVL09fVVKCIRERERqWWlHNH8OPBB59wHGFlB8ylgeUlRiUwRTU1NhEIjfxt5nkcsFqtQRCIiIiJSy0pJ8BYDh0d5fgZoKGFdkSkjEonQ0dGB53lAkNzt2rVLxzNFREREpCJKaZPwMhAD+vOe3wacKmFdkSmlra2N1tZW+vr6iMViSu5EREREpGJKSfB2AY+Y2WaCvndvM7N3AQ8CnylHcFIbBoYGSAwnIJVidvdRZgwmuNAY5uzKZeB5hOvCzK+fX+kwxxSJRJTYiYiIiEjFldIH74/MrB7oBGYSHNf8MfCgc+5LZYpPprmBoQGWPraU1mPD7DgIC5KXxk43wLb1cOCmOo7fe7zqkzwRERERkUorqQ+ec+4PgDBwK7AKeItz7hPlCExqQ2I4QeuxYfbtNeauWEPP/j0819tFz/49zF2xhn17jdZjw8EOn4iIiIiIjKmUI5oAOOeGgWfKEIvUolSKHQdhaN1qGp7spCFbkTJ2G9xxD8kNzTx48DDJVKqycRbI9316e3tpamrS0U0RERERmTQFJXhm9tB45zrn7i88HKk1s7uPsiAJPVs3X0ruskIhBu/bxOI7D/O97qMQWVGZIAsUj8fZsmUL6XSaUChER0cHbW1tlQ5LRERERGpAoTt4y8Y5zxUaiNSmGYPB0cvzSxaNOn4u8zw7r9r5vn8xuQNIp9O0t7fT2tqqnTwRERERmXAFJXjOueaJCkRq04XGMAAze04GxzLzzOo5OWJetevt7b2Y3GWlUin6+vqU4ImIiIjIhCupyIqZrTazr5jZU2Z2febZPWZ2+Z/URUZxduUyTjfAvJ27IS8xIp2m8dHHOdUQzJsKmpqaCOUdNfU8j1gsVqGIRERERKSWFJ3gmdlG4ABwDlgOvCEz9EbgY6WHJjXB89i2HuoPdZHc0MyJTBXNE/v3kNzQTP2hLravD+ZNBZFIhI6ODrxMvJ7nsWvXLu3eiYiIiMikMOeKuy5nZkeBLzrnvmxmPwRucs6dMrObgSedc/PKGWgtMLM5wNDQ0BBz5sypdDiTYqw+eKcaYPsU7YPn+z59fX3EYjEldyIiIiJSsDNnzlBfXw9Q75w7M97PlZLgDQNvd8715yV4C4EXnHMzi1q4htViggdBkpcYTkAqxezuo8wYTHChMRwcy/Q8wnXhKZXciYiIiIiUqtgEr5Q+eC8DMaA/7/ltwKkS1pUaM79+/qUEboq0QhARERERqUalFFnZBTxiZisJ2iK8zcx+HXgQ+JNyBCciIiIiIiLjV/QOnnPuj8ysHugEZgKHgR8DDzrnvlSm+ESmBd/36e3tpampSXfyRERERGTClNQmwTn3B0AYuBVYBbzFOfeJcgQmMl3E43Gi0SgtLS1Eo1Hi8XilQxIRERGRaaqUIiuPA18B/tkVu4iMUKtFVqYz3/eJRqMjmp97nkd/f7928kRERETkiootslLKDt6bgb8HfDPbkWmPICI5ent7RyR3AKlUir6+vgpFJCIiIiLTWdEJnnPuTmAe8GngFuDbZvaCmX3MzH62POGJTG1NTU2EQiN/m3meRywWq1BEIiIiIjKdlXoHL+mc63DOrQWiwOPAPYC2J0SASCRCR0cHnucBQXK3a9cuHc8UERERkQlR9B28EYuYzQB+CXh/5udrzrnrS164xugO3vTl+z59fX3EYjEldyIiIiJyVZVodI6ZNQO/BmwEPOCvgf8L+OdS1pXaNjA0QGI4AakUs7uPMmMwwYXGMGdXLgPPI1wXvtQYfYqIRCJK7ERERERkwhWd4JmZT1Bo5QDQDux3zp0vV2BSmwaGBlj62FJajw2z4yAsSF4aO90A29bDgZvqOH7v8SmX5ImIiIiITLRSdvA+A+x1zr1ermBEEsMJWo8Ns2+vMbRuNT1bN3N+ySJm9pxk3s7d7NvbxUaGSQwnpnSCp8bnIiIiIjIRik7wnHMd5QxEBIBUih0HYWjdahqe7KQhW4EydhvccQ/JDc08ePAwyVSqsnGWIB6Ps2XLFtLpNKFQiI6ODtra2iodloiIiIhMAyVV0QQws7eb2QYzuzP3VY7gpPbM7j7KgiS8snUz5LUXIBRi8L5NLEwG86Yi3/cvJncA6XSa9vZ2fN+vcGQiIiIiMh2UcgdvIfA3wA2AAywzlC3L6ZUWmtSiGYMJAM4vWTTq+LnM8+y8qWasxuc6qikiIiIipSplB+8R4DTQCAwD7wDWAM8Aa0uOTGrShcYwADN7To46PivzPDtvqlHjcxERERGZSKUkeO8CPumc+wGQBtLOuX8FPgrsLEdwUnvOrlzG6QaYt3M35O10kU7T+OjjnGoI5k1FanwuIiIiIhOplCqaHnA28z4BvA04AbwILC4xLqlVnse29bBvbxfJDc0M3reJc0sWMavnJI2PPk79oS423wUf96buCeC2tjZaW1vV+FxEREREyq6UBO+7wI3AKaAbeMDMfgJsyTwTKVi4LsyBm+rYyDA7Dh5m8Z2HL46daoDNdwV98B6um5pHNLPU+FxEREREJoI5564+a7QPmrUC1zrn/jpTcOXvgCXAfwJ3O+f+uXxh1gYzmwMMDQ0NMWfOnEqHUzEDQwMkhhOQSjG7+ygzBhNcaAwHxzI9j3BdeEr3wBuN+uKJiIiISK4zZ85QX18PUO+cOzPezxWd4I26mNmbgNddORetIUrwapP64omIiIhIvklL8Mws5pzrKzA+GQcleLXH932i0eiI1gme59Hf36+dPBEREZEaVmyCV0wVze+Z2X+Y2ZfNbJOZ/WwRa4gIY/fFExEREREpVDFFVt6dea0FvgTMNLMB4J+BTqDTOfdS2SIUmcayffHyd/DUF09EREREilHwDp5zrss59znn3DqgAWgGHgcWAB3AgJmdKG+YItOT+uKJiIiISDmVpciKmc0CbgNagQ8As51zU7dRWYXoDl7t8n1fffFERERE5KJi7+AV1QfPzGYCv0Cwe7cWWAGcBr4J/Fbmp4iMk/riiYiIiEg5FJzgmdk3CRK6k8Bh4FHgm865wTLHJgKoL54SPxEREREZr2J28H4BeJmgoMq/AIedc4lyBiWSNTA0wNLHltJ6bJgdB2FB8tLY6QbYth4O3FTH8XuPT5skT33xRERERKRYxbRJaAC2AMPAR4CXzOx5M/uSmb3PzN5S1gilpiWGE7QeG2bfXmPuijX07N/Dc71d9Ozfw9wVa9i312g9Nhzs8E0Dvu9fTO4A0uk07e3t+L5f4chEREREZCooeAfPOfcj4MnMCzN7I0GBlWbgAeDPzazXOffOcgYqNSqVYsdBGFq3moYnO2kIZf5OInYb3HEPyQ3NPHjwMMlUqrJxlslYffF0VFNERERErqaYHbx8PwJey7xeB34KLC3DuiLM7j7KgiS8snUzhPJ+uYZCDN63iYXJYN50kO2Ll0t98URERERkvApO8MwsZGa3mtkDZvaPQBJ4CvgQ8ApwL7CwvGFKrZoxGBy9PL9k0ajj5zLPs/OmOvXFExEREZFSFFNkJQlcS1Bo5V+A+4FO59zJMsYlAsCFxjAAM3tOBscy88zqOTli3nTQ1tZGa2ur+uKJiIiISMGKSfB+jyCh+165gxHJd3blMk43wLydu+GOe0Ye00ynaXz0cU41BPOmE/XFExEREZFiFHxE0zm3S8mdTBrPY9t6qD/URXJDMycyVTRP7N9DckMz9Ye62L4+mDfd+b5PZ2enKmqKiIiIyBUVs4MnMmnCdWEO3FTHRobZcfAwi+88fHHsVANsvivog/dw3fQ5ojka9cYTERERkfEw51ylY5AMM5sDDA0NDTFnzpxKh1M1BoYGgj53qRSzu48yYzDBhcZwcCzT8wjXhadNk/PR+L5PNBod0T7B8zz6+/t1jFNERERkmjpz5gz19fUA9c65M+P9nHbwpOrNr59/KYGLrKhsMBWg3ngiIiIiMl7l6IMnIhNIvfFEREREZLxK2sEzs9uB24G3kpcsOuc2l7K2iASyvfHa29tJpVLqjSciIiIiV1T0HTwz+xTwSeAZgp54IxZyzv1yydHVGN3Bk7H4vq/eeCIiIiI1ohJ38D4I/IZz7okS1hCRccrvjef7Pr29vTQ1NSnhExERERGgtDt41wBPlSsQERm/eDxONBqlpaWFaDRKPB6vdEgiIiIiUgVKOaL5BeCsc+6z5Q2pdumIpoyH2iaIiIiITH+VOKI5E9hiZuuA7wAXcgedc/eXsLbIFdV6Xzy1TRARERGRKyklwbsReC7z/p15Y+qeLhNiYGiApY8tpfXYMDsOwoLkpbHTDbBtPRy4qY7j9x6ftkletm1C/g6e2iaIiIiISNEJnnOuuZyBiIxHYjhB67Fh9u01htatpmfrZs4vWcTMnpPM27mbfXu72MgwieHEtE3w1DZBRERERK6k6Dt4Un66g3d1z/pHmHvDrcxdsYaGJzshtwF4Ok1yQzOvHTlM8vlvsTyyonKBTgK1TRARERGZviblDp6ZPQR8wjn3o8z7K9IdPJkIs7uPsiAJPVs30xDKKwIbCjF43yYW33mY73UfhWme4KltgoiIiIjkK/SI5jJgRs77K9G2oEyIGYMJAM4vWTTq+LnM8+y8WhGPx9myZQvpdJpQKERHRwdtbW2VDktEREREJllBCV7uvTvdwZNKuNAYBmBmz0mI3XbZ+KyekyPm1QLf9y8mdwDpdJr29nZaW1u1kyciIiJSY0ppdC4y6c6uXMbpBpi3czfktQognabx0cc51RDMqxVjtU0QERERkdpSlQmemX3IzE6b2Xkz+7aZrb7K/I1m9oKZ/Tjz85fzxs3M/ruZfd/MzpnZv5jZO/LmzDWzJ8xsKPN6wswacsYXm1mnmQ1m4jplZp8zsxl564wZi5TI89i2HuoPdZHc0MyJ/Xt4rreLE/v3kNzQTP2hLravD+bVimzbhFxqmyAiIiJSm6ouwTOzu4GHgT8kuOfXBfyjmY1a897M3gV8FXgCuCnz82tmtjJn2gPA/cBvAyuAV4B/MrM35sz5C+BmYEPmdXNmrawLwJeB9cBi4MPAB4BPFxiLlCBcF+bATXVsvMvx+pHDLL5zEzf/3BoW37mJ144cZuNdjgM31RGuq50jmtm2CV4mqVXbBBEREZHaVXVtEsysG3jWOfdbOc+OA193zn10lPlfBeY45/5rzrMngdedc79qZgZ8H3jYOfeFzPgbgEHgI865XWa2FHgBWOWc687MWQU8DSxxzp24QqwPASucc6vHE8s4/rerTcI4DAwNkBhOQCrF7O6jzBhMcKExHBzL9DzCdeFp2wNvLGqbICIiIjJ9TEqbhIlmZtcAtwD/M2/oIPALV/jYu4Av5j07QLDDBrAAmJdZAwDn3I/N7JuZNXdl1hjKJneZOf9mZkOZOZcleGYWI9jp++sCYpEymF8//1ICN81bIRRCbRNEREREpKQjmma22sy+YmZPm9n1mWf3mNnl5Q3HJwx4BLtruQYJkrTRcslo6QAAIABJREFUzLvK/Hk5z8aa8+ooa7+a/71m9pSZnQd6CY6PfrKAWEYwszeY2ZzsC3jjaPNEChWPx4lGo7S0tBCNRonH45UOSUREREQmQdEJnpltJNidOkdwV+4NmaE3Ah8rMa78c6M2yrNC519tzmjrj7bO3cBy4NeAXwK2FxFL1keBoZyXf4V5IuN2pbYJvq9fXiIiIiLTXSk7eB8HPuic+wBBAZKspwgSoGIkgBSX73i9lct3xrJeucr8VzI/rzancZS135L/vc65/3DOveCc+0vg94H/bmbZko1XiyXf54H6nJfO0UnJ1DZBREREpHaVkuAtBg6P8vwM0DDK86tyzv0E+Dbwnryh9xAkjqN5epT563PmnyZIvC7Oydz1e3fOnKeBejO7NWfOSoKk60rfC8Hu3IzMz/HEMoJz7sfOuTPZF/DDMb5LZFzUNkFERESkdpVSZOVlIAb05z2/DThVwroPAU+Y2TMECdMWYD7wvwDM7MvASzkVNR8BDpvZR4BvAP8NWJeJA+ecM7OHgY+ZWS/B3bmPAcMErRFwzh3PVLv8UzNrz6zbAfxdtoKmmf06wU7l88CPCYrBfB74qnPup+OJRSaGqmqOlG2b0N7eTiqVUtsEERERkRpSSoK3C3jEzDYT3DF7W6YP3IPAZ4pd1Dn3VTN7M0HxkuuA7wJ3OOdezEyZD6Rz5j9lZr8CfA74LHASuDu3IibwR8As4E+AuUA3sN45l7tj9uvATi5V2/xbgr55WT8FPgL8HMGO3YvAY+RUzRxnLFJGA0MDLH1sKa3HhtlxEBYkL42dboBt6+HATXUcv/d4TSV5bW1ttLa2jmiboKqaIiIiItNfSX3wzOwPgd8FZmYe/Rh40Dn3iTLEVnPUB69wz778LJ/78C3s22sMrVvNK1s3c37JImb2nGTezt3UH+pi412Ojz/8bZZfV+zV0KkvHo9fLLwSCoXo6Oigra2t0mGJiIiIyBUU2wev5EbnZlYHvJ3gPt8LzrmzJS1Yw5TgFe5Z/whzb7iVuSvW0PBkJ+TePUunSW5o5rUjh0k+/y2W12jPPN/3iUajIwqveJ5Hf3+/dvJEREREqtSkNzo3s4eu8NwB54E+4BvOudeK/Q6Rq5ndfZQFSejZupmGvMIihEIM3reJxXce5nvdR2u2KfpYVTWV4ImIiIhML6XcwVtG0A7BA04Q3EtrImhz0AN8CNhhZrc5514oNVCR0cwYTABwfsmiUcfPZZ5n59WibFXN/B08VdUUERERmX5KaZPwDeAQ8Dbn3C3OueXA9cA/AX+ZeX+YnCIkIuV2oTEMwMyek6OOz8o8z86rRdmqmp4XtGtUVU0RERGR6avoO3hm9hLwnvzdOTN7B3DQOXe9mS3PvK/dP10XQHfwCqc7eOPn+76qaoqIiIhMEcXewStlB68eeOsoz98CZLOTJHBNCd8hMjbPY9t6qD/URXJDMyf27+G53i5O7N9DckMz9Ye62L4+mFfrIpEIa9euJRKJEI/HiUajtLS0EI1GicfjlQ5PRERERMqglB28PwfeBWwDjhD0wruVoA/eU865ezI94bY7536+TPFOa9rBK9xYffBONcD2Gu2DNxZV1RQRERGpfpNeRRNoJ7hf979z1vkp8P8R9MaDoNjKb5bwHSJjml8/n+P3HicxnOD1VIoL3UeZMZjgQmOYsyuX8XHP4+G6sJK7HKqqKSIiIjJ9laMP3mxgIUEVzZPqg1c87eDJZNAOnoiIiEj1q8QdPACcc2edc99xzh1TcidS/VRVU0RERGT6KmkHz8xuB24nKLYyIll0zm0uLbTaox08mUz5VTWzz1RZU0RERKTyJn0Hz8w+BRwkSPDCwNy8l4hUsdyqmoAqa4qIiIhMA6VU0XwZeMA590R5Q6pd2sErn4GhARLDCUilmJ1XeAXPI6zCKyPoXp6IiIhIdalEFc1rgKdK+LzIhBirdcLpBtim1gmXUWVNERERkemhlCIrfwb8WrkCESmXxHCC1mPD7NtrzF2xhp5M8/Oe/XuYu2IN+/YarceGgx0+AaCpqYlQaOR/DjzPIxaLVSgiERERESlGKTt4M4EtZrYO+A5wIXfQOXd/KYGJFC2VYsdBGFq3moYnO2nIJi6x2+COe0huaObBg4dJplKVjbOKZCtrtre3k0qlLlbWBOjs7FTRFREREZEpopQdvBuB54A08E5gWc7r5tJDEynO7O6jLEjCK1s3Q96uFKEQg/dtYmEymCeXtLW10d/fT2dnJ/39/QAquiIiIiIyxRS9g+ecay5nICLlMmMwOHp5fsmiUcfPZZ5n58klkUiESCSC7/ts2bLl4r28dDpNe3s7ra2t2skTERERqWIlNzoXqTYXGsMAzOw5Oer4rMzz7Dy53FhFV0RERESkepVyBw8AM3s7MJ+gquZFzrm/LXVtkWKcXbmM0w0wb+duuOOekcc002kaH32cUw3BPBldtuhKftsEFV0RERERqW6lNDpfaGbHgO8Cfw98PfP6m8xLpDI8j23rof5QF8kNzZzIVNE8sX8PyQ3N1B/qYvv6YJ6MLlt0xcv8O8oWXdHxTBEREZHqVkqj8/1ACvgAcAq4FXgzsAPY7pzrKleQtUKNzstjrD54pxpgu/rgjZvv+/T19RGLxS7ezevt7VVVTREREZEJVmyj81ISvATQ4pz7jpkNAbc6506YWQuwwzmn828FUoJXPgNDA0Gfu1SK2d1HmTGY4EJjODiW6XmE68JK7goUj8cvFl4JhUJ0dHTQ1tZW6bBEREREpqVKJHivA7c4506Z2UngN51znWa2CHjeOVdX1MI1TAmeVCvf94lGo5fdyevv79dOnoiIiMgEKDbBK6WK5ncJeuEBdAMPmNkvAp8kOLIpItOEqmqKiIiITA2lJHify/n8x4Eo0AXcAWwtMS4RqSLZqpq5PM/j2muvpbOzE9/3KxSZiIiIiOQqpdH5gZz3p4C3m9mbgNddsec+RSaI7uSVJltVs729nVQqhed5vP/972fVqlW6kyciIiJSRYq+gyflpzt4E2OsqpqnG2CbqmqOW7aq5rXXXnsxucvSnTwRERGR8in2Dl5Jjc7N7HbgduCt5B33dM5tLmVtkXJJDCdoPTbMvr3G0LrV9GzdzPkli5jZc5J5O3ezb28XGxkmMZxQgncVkUiESCRCZ2fnFe/kKcETERERqZyiEzwz+xRBQZVngJcBbQVKdUql2HEQhtatpuHJThqyd8lit8Ed95Dc0MyDBw+TTKUqG+cUkr2Tl7+DF4vFKhiViIiIiJRSZOWDwG8451Y6597rnPvl3Fe5AhQp1ezuoyxIwitbN0NeoRBCIQbv28TCZDBPxid7J8/zPCBI7nbt2gWgoisiIiIiFVRKgncN8FS5AhGZKDMGEwCcX7Jo1PFzmefZeTI+bW1t9Pf309nZSX9/PwDRaJSWlhai0SjxeLyyAYqIiIjUoFISvD8Dfq1cgYhMlAuNYQBm9pwcdXxW5nl2noxfJBJh7dq1AGzZsuXikc10Ok17e7t28kREREQmWUF38MzsoZx/DAFbzGwd8B3gQu5c59z9pYcnUrqzK5dxugHm7dwNd9wz8phmOk3jo49zqiGYJ8UZqxG6iq6IiIiITJ5Ci6zk/wn4uczPd+Y9V8EVqR6ex7b1sG9vF8kNzQzet4lzSxYxq+ckjY8+Tv2hLjbfBR/P3CeTwqnoioiIiEh1KCjBc841T1QgIhMlXBfmwE11bGSYHQcPs/jOwxfHTjXA5ruCPngP1+mIZrFGa4SeW3SlqalJO3kiIiIik6DgRudm1gJ8CViV33DPzOoJCq980DnXVbYoa4QanU+cgaEBEsMJSKWY3X2UGYMJLjSGg2OZnke4LqweeGWQbYQei8U4cODAxXt5oVCIjo4O2traKh2iiIiIyJRQbKPzYhK8vwU6nXNfvML4VqBZrRIKpwRPpgvf94lGo5cd2ezv79dOnoiIiMg4FJvgFVNF8ybgyTHGDwK3FLGuiEwTYxVdEREREZGJU2iRFYBG8ipm5vkp8JbiwhGZHDqyObHGKrri+z69vb26lyciIiIyAYpJ8F4CbgCu9FfxNwIvFx2RyAQbGBpg6WNLaT02zI6DsCB5aex0A2xbHxRdOX7vcSV5RbpS0RXdyxMRERGZWMXcwXsUWAuscM6dzxubBXyL4I7e1nIFWSt0B29yPPvys3zuw7ewb68xtG41r2zdzPkli5jZc5J5O3dTf6iLjXc5Pv7wt1l+3fJKhzul5RZdAXQvT0RERGScir2DV8wO3ueA/xv4npl9CThB0PduKXAv4AF/WMS6IpMjlWLHQRhat5qGJztpyDY+j90Gd9xDckMzDx48TDKVqmyc00AkErmYvHV2dqoZuoiIiMgEK7jIinNuEPgF4LvA54G/Ab4O/I/Ms1/MzBGpSrO7j7IgCa9s3QyhvN8CoRCD921iYTKYJ+WTvZeXy/M8rr32Wjo7O/F9v0KRiYiIiEwfxVTRxDn3onPuDiAMrARWAWHn3B3Ouf4yxidSdjMGEwCcX7Jo1PFzmefZeVIe2Xt5nucBQXL3/ve/n1WrVtHS0kI0GiUej1c4ShEREZGpragEL8s597pz7ohz7lvOudfLFZTIRLrQGAZgZs/JUcdnZZ5n50n5tLW10d/fT2dnJ08//TRPPPHExWOb6XSa9vZ27eSJiIiIlKCkBE9kKjq7chmnG2Dezt2QdyeMdJrGRx/nVEMwT8ovEomwdu1azp49q155IiIiImWmBE9qj+exbT3UH+oiuaGZE/v38FxvFyf27yG5oZn6Q11sXx/Mk4mjO3kiIiIi5acET2pOuC7MgZvq2HiX4/Ujh1l85yZu/rk1LL5zE68dOczGuxwHbqojXKcjmhNJd/JEREREyq/gPngycdQHb/IMDA2QGE5AKsXs7qPMGExwoTEcHMv0PMJ1YTU5nyTZXnnXXnstq1atUp88ERERESa3D57IlDe/fv6lBC6yorLB1Lhsr7wr9cl7+umnCYfDNDU1KdETERERuYqCEjwze2i8c51z9xcejojUquydvNwkz8z4lV/5FdLpNKFQiI6ODtra2ioYpYiIiEh1K+iIppl1jnOqc861FBdS7dIRzcrRkc3qEI/HaW9vJ5VKEQqFcM6R+98oHdkUERGRWlHsEU3dwasiSvAqY2BogKWPLaX12DA7DsKC5KWx0w2wbT0cuKmO4/ceV5I3CbJ38l599VXuvvvuy8Y7OztZu3bt5AcmIiIiMokqdgfPzN4OzAeuyXnsnHP7S11bZDIkhhO0Hhtm315jaN1qerZu5vySRczsOcm8nbvZt7eLjQyTGE4owZsE2Tt5vu9fdmQzt42C7uSJiIiIXK7oBM/MFgJ/A9wAOMAyQ9ktQTURk6khlWLHQRhat5qGJztpyPZmi90Gd9xDckMzDx48TDKVqmycNSbbRiF7ZDO3jYLu5ImIiIiMrpQ+eI8Ap4FGYBh4B7AGeAZYW3JkIpNkdvdRFiThla2bIa/xNqEQg/dtYmEymCeTq62tjf7+fjo7O3n66ad54oknLu7opdNp2tvb1RBdREREJEcpCd67gE86534ApIG0c+5fgY8CO8sRnMhkmDGYAOD8kkWjjp/LPM/Ok8kViURYu3YtZ8+evWIbhc7OTiV6IiIiIpSW4HnA2cz7BPC2zPsXgcWlBCUymS40hgGY2XNy1PFZmefZeVIZ2TYKubJtFFpaWohGo8Tj8QpFJyIiIlIdSknwvgvcmHnfDTxgZr8IfBI4VWpgIpPl7MplnG6AeTt3Q94OEek0jY8+zqmGYJ5UTvZOnucF13uzyZ6ObIqIiIhcUkqC97mcz38ciAJdwB3A1hLjEpk8nse29VB/qIvkhmZO7N/Dc71dnNi/h+SGZuoPdbF9fTBPKiv3Tt5f/uVfkt/mJZVK0dfXh+/7OrYpIiIiNanoKprOuQM5708BbzezNwGvOzXXkykkXBfmwE11bGSYHQcPs/jOwxfHTjXA5ruCPngP1+mIZjW4WhuFZ555httvv12VNkVERKQmqdF5FVGj88oZGBogMZyAVIrZ3UeZMZjgQmM4OJbpeYTrwuqBV4Xi8fiINgqf//zn+f3f//3Lkr7+/n71zBMREZEppdhG5yUleGZ2O3A78Fbyjns65zYXvXCNUoInUjjf9+nr6yMWi9Hb20tLS8tlc772ta8RDofVHF1ERESmjGITvFIanX+KoKDKM8DLXGpwLjLlaUdv6sge2czKP7aZrbSpI5siIiJSC4rewTOzl4EHnHNPlDek2qUdvOowMDTA0seW0npsmB0HYUHy0tjpBti2PriTd/ze40ryqlDusc1QKIRzbkQxFh3ZFBERkamg2B28UqpoXgM8VcLnRapSYjhB67Fh9u015q5YQ0+mqmbP/j3MXbGGfXuN1mPDwQ6fVJ3xVNpUc3QRERGZrkrZwfsCcNY599nyhlS7tINXHZ71jzD3hluZu2INDU92Qm5z7XSa5IZmXjtymOTz32J5ZEXlApWr8n2faDR62ZFNM9ORTREREalqldjBmwncb2bfNLNHzeyh3FcJ64pU1OzuoyxIwitbN49M7gBCIQbv28TCZDBPqpuao4uIiEitKbrICnAj8Fzm/TvzxlRwRaasGYPB0cvzSxaNOn4u8zw7T6pbW1sbra2t9PX18eqrr3L33XePGM8e2VSVTREREZkOSml03lzOQESqxYXGoKH5zJ6TELvtsvFZPSdHzJPqN1ZzdFXZFBERkemklCOamFmDmW0zsz8zsz81s981s/pyBSdSCWdXLuN0A8zbuRtyEgEA0mkaH32cUw3BPJlaxntk88iRIyrCIiIiIlNS0Qmemf08cBL4XeBNQBi4HzhpZsvLE55IBXge29ZD/aEukhuaOZGponli/x6SG5qpP9TF9vXBPJl6xlNlc9WqVbS0tBCNRonH4xWKVERERKRwpVTR7AL6gA84536aefYzwJ8BC51za8oWZY1QFc3qMFYfvFMNsF198KaN0aps5lPfPBEREamEYqtolpLgnQOWOed68p6/HXjGOVdX1MI1TAle9RgYGgj63KVSzO4+yozBBBcaw8GxTM8jXBdWcjdN5DdGHy3Z+9rXvqYiLCIiIjKpKpHgDQL3OOcO5j1vBb7snGssauEapgSveinhm95836evr49rr72WVatWqW+eiIiIVFwlErydwC8D24GnCFoj3Ab8MbDPOffhohauYUrwqtNYRzZPN8A2HdmcVvJ39JxzI+7pZY9sAvT29mpXT0RERCZEJRqdbwf+Gvgy0A+8COwB/gr4SAnrilSVxHCC1mPD7NtrzF2xhp5M0ZWe/XuYu2IN+/YarceGgx0+mfLGU4TlkUceIRqNqhCLiIiIVJ2id/AuLmBWBywCDOhzzg2XI7BapB286vSsf4S5N9zK3BVraHiyE0I5fy+STpPc0MxrRw6TfP5bLI+sqFygUnajFWHJb60Awa7e008/zdmzZ7WjJyIiImVRiR08AJxzw865551z31FyJ9PR7O6jLEjCK1s3j0zuAEIhBu/bxMJkME+ml/y+eZ7ncf/9919WiEWtFURERKRa/Ewhk83sIeATzrkfZd5fkXPu/pIiE6kSMwaDo5fnlywadfxc5nl2nkwvbW1ttLa20tfXRywWA+Chhx66LMnLb5Z+4403akdPREREJl1BCR6wDJiR8/5KSjv3KVJFLjSGAZjZcxJit102Pqvn5Ih5Mv1EIpERSVpHR8eYrRWyO3qqvCkiIiKTreQ7eFI+uoNXnXQHT0YzVmuFfLqjJyIiIoWa9Dt4ZjbfzOxKY8WuK1J1PI9t66H+UBfJDc2cyFTRPLF/D8kNzdQf6mL7+mCe1I5IJMLatWtZsWLFiHt6ofx7muiOnoiIiEyeUvrgpYDrnHOv5j1/M/Cqc05/2i2QdvCq01h98E41wHb1wRO0oyciIiLlVYlG52mg0Tn3g7znUeAF59y1RS1cw5TgVa+BoYGgz10qxezuo8wYTPDKHOP0O4M/mC/4rs+8M44LjWHOrlwGnke4LqyEr0blN0sfLdnLPtcdPRERERnNpCV4OdUzfwf4UyC3NYIHrARSzrlfLGhhUYI3hYy1q3e6AbZpV6/maUdPRERESlFsgldoFU24VD3TgBuAn+SM/QQ4BjxYxLoiU0ZiOEHrsWH27TWG1q2mZ+tmzi9ZxMyek8zbuZt9e7vYyDCJ4YQSvBqVW3lTVTdFRERkspRyRPNxYKtz7oflDal2aQdv6lBlTSlUoTt6/f39APT29mpXT0REpAZNehVNoBe4K/+hmW02s4+UsK5I1ZvdfZQFSXhl6+aRyR1AKMTgfZtYmAzmiUDhVTcfeeQRotGoKm+KiIhIQUpJ8LYAPaM8/3fggyWsK1L1ZgwmADi/ZNGo4+cyz7PzRHK1tbXR399PZ2cn//Zv/3ZZkhcKhXjooYcu7vKl02na29s5cuQInZ2d+L5fibBFRERkCiglwZsHvDzK8x8A15WwrkjVu9AYBmBmz8lRx2dlnmfnieS70o6e53ncf//9V7ynl7uj5/u+Ej4REREZoZQ7eL3Ap51zX8l7fk/m+cIyxFdTdAdv6tAdPCm37B29WCwGQDQaHfOenplhZirMIiIiMk1NZhXNrD8DHjazGf8/e3ceH1V1/3/8dRIiGJAECQQQoyBrFdlkU0FQtlqkWsQuahERbbV1q1alYOuGWDek1ZZNEdTvTwEVqQqIBBJF1gQEBcISCQgEIiQIQQjJ+f1xZ5LJZJLJhCwzk/fz8ZhHvHPP3HsTZXl7zvl8gGWu964B/gm8eAbXFQl+kZH8ZTDMn5tM9tABZP55NCc6XMTZW3cS/683iFmazO0jYbxrVkbEH8+qm+C/8qa1Fvf/oHMv4bz00kvVakFERKSWO5MZPANMAu4FznK9/RPwnLX2ycp5vNpFM3iho6w+eLti4SH1wZNKEEjlTSjZPH3IkCGqwikiIhKiqq3ReYkLGNMA6AicALZba0+e0QVrMQW80JKRk0FWbhbk59NgdSrHM3aQFRNFVud2xG1MIy4nj/oJbTjWqytERhIXHaewJxU2c+bMYjN6njN4vvhawqnAJyIiEjpqLOBVNmPM3cDDOIVavgHut9YmlzF+BPAUcBGwE/ibtfYDj/MG+DtO1c9GwGrgHmvtNx5jGgFTgOGutz4C/mytzXad7w88APQEGuK0iHjeWvu2xzWigMeAUcB5wDbgEWvtogC+dwW8EFXWjF56LPxFM3pSCTz36S1evLjMJZzetGdPREQktNTkDN7PgASKlmkCYK39qALX+jUwB7gb+BK4C7gD+Jm1NsPH+D5AMjAB+AC4AXgSuNJau9o15hHgb8BtQBowHugHtHc3aTfGfAq0xAmBANOA76y117nOjwPOBj4FMoFfAC8D11trF7rGPAfcAozFaR8xBHgJuNxaW65maAp4oStlfwpP39+d+XMNOQP7cuDe2/mpw0XU27qTZlNeJ2ZpMiNGWsZPXk+35t1q+nElTAS6hNOTmqmLiIgEt2oPeMaY1jihqhNgAeM6ZQGstQFXlzDGrAZSrLV/9HhvC/ChtfYxH+PfBRpaa3/u8d4i4Ii19reu2bt9wGRr7XOu83VxQtoj1tqpxpiOwLdAb49Q2Bv4Cuhgrd1WyrN+DGRaa293He8DnrHWvuox5kPgmLX2lnJ+/wp4IUpVNaWmBbqEE+Chhx4q7LenZZwiIiLBpaIB70z64L0CpAPxQC5wMc7M2Dqgf6AXM8acBXQHlnidWgJcXsrH+vgYv9hjfCucfn2FY1x7BFd4jOkD5LjDnWvMKiCnjPsCxACHPY7r4hSZ8XQCuLKMa0iYaLA6lVbZcODe24uHO4CICDL/PJrW2c44karg2Tx99+7dTJ8+vbC3XkREBM7/7yriq5n62LFjueCCC9RrT0REJISdScDrAzxurT0EFAAF1tovcPahTanA9eKASJzZNU+ZOCHNl2Z+xjfzeK+sMQd9XPtgafc1xtwI9ADe8Hh7MfCgMaatMSbCGDMI+CVlNH03xtQ1xjR0v4BzShsrwS0qMwuAnzpc5PP8Cdf77nEiVcHdPL1ly5ZlBr7SmqlbaxX4REREQtyZ9MGLBI65/jkLaIFTWGQ30P4Mruu9psj4eC/Q8f7G+Lq+z/u6Cq7MAsZ6FmoB7gOm4+y/szgFX94ARpfx7I/hFICREJcXHwdAva07oU3JSduzt+4sNk6kOnj21hszZgxDhgwp1kzdcwbPF+9ee2PHjlVlThERkSB3JjN4m4FLXf+8GvirMeYK4HFgVwWulwXkU3LWrCklZ+DcDvgZf8D11d+YeB/XbuJ9X2PMVcBC4EFr7WzPc9baQ9ba64H6wAVAB5wAnF7KswM8i7PU0/3S345C1LFeXUmPhWZTXgfvvzAXFBD/rzfYFeuME6kpnjN8LVu2ZNq0aWUu4/RWnhk+ERERqVlnEvCe9vj8eJxQkwxci9P8PCDW2lPAemCQ16lBwMpSPvaVj/GDPcan4wS4wjGuvX5XeYz5CogxxvT0GNMLJ3Ct9HivP/Ax8Ki1dloZ38dP1trvcWZHRwALyhh70lp71P0CfixtrAS5yEj+MhhiliaTPXQA2xbOYsP2ZLYtnEX20AHELE3mocHOOJFgEei+PW/ege+uu+5i7dq1JZZwalmniIhI9anUPnjGmHNxKlhW6KIebRL+gBO87sRpO3CxtXa3MWY28L27oqYx5nIgCacNwgKcPW9PU7JNwmM4SyW3A+NwisB4t0logdOWAZw2Cbs92iT0xwl3r1B8f+Epa+1h15heOP3vNri+/gOnyEs3dz+9cnz/qqIZosrqg7crFh5SHzwJEWX12itPZU53Tz73Ek6AO++8U8s6RUREAlStbRJcTb2XAHdZa9MCvkDZ174b+CtOcZLNwAPW2iTXueU4/elu8xh/I06oa01Ro/P3Pc67G53fRfFG55s9xpx0Ui7XAAAgAElEQVRLyUbnf/JodD4Lp4G5txXW2v6uMVcB/3E9xzHgE5zZvn0BfO8KeCEsIyeDrNwsyM+nwepUjmfsICsmiqzO7YjbmEZcTh71E9o4yzQjI4mLjlPYk6B3JoEvwlVR1nOfn6+G6wp8IiIiJdVEH7xDOE28t1foAlKCAl74KGtGLz0W/qIZPQlRZQW+QBqtuynwiYiI+FYTAe9FIM9a+2iFLiAlKOCFj5T9KTx9f3fmzzXkDOzLgXtv56cOF1Fv606aTXmdmKXJjBhpGT95Pd2ad6vpxxWpMHfgq1+/Pr179y4W8nzN4PmjwCciIuKoiYD3L+D3wA6c5ubHPc9bax+s0IVrMQW88JGydy2NOvWkUY9+xC5KLN78vKCA7KEDOLw2iexNa+jWskfNPahIJZo5c2bhjF5kZCRTp04FCHgfnycFPhERqa0qGvDOpA/eJUCK65/beZ2rvMotIiGowepUWmXD1ntvJzbCq1htRASZfx5N++FJpK1OBQU8CRPevfbc4cvzvUD38ZWnF9+YMWPYu3dvsdDnfSwiIlJbBBzwjDGtgXRr7YAqeB6RsBCVmQXATx0u8nn+hOt99ziRcOHZXN3Xe94h8EwD31133cWRI0d45JFHCkPfrbfeypw5czTrJyIitVJF+uBtx2kCDoAx5l1jjK9G4SK1Vl58HAD1tu70ef5s1/vucSK1iWfD9TPtxZefn18Y7sAJfW+++abfhuzevfnUq09ERMJFwHvwjDEFQDNr7UHX8Y9AZ2vtrip4vlpFe/DCh/bgiVRcIK0ZKlK903tfn68ZPy37FBGRmlZtRVYU8KqOAl748K6imfnn0aS3rI/55hsunr6A85I28HJv6DR2HI0HX6++eCJlKC3wRUZG8uyzz/Loo49WqEVDaSIjI5k0aVLAyz4VAEVEpDJVZ8DLxwl4h1zHPwKXWmvTA7qQlKCAFz7K6oOXFwFRHn8XVV88kcB4Br6WLVuWqN55yy238NZbb1W4cif4nxkszyygAqCIiJyJ6p7B+xQ46XrrOmAZJdsk/CqgC4sCXpjJyMkgKzcL8vP5YcmHbJo+kQdWw/d9u7J57C/hkou5cO9x9cUTqQTeoS+QZZ7eKtq03ZOWgYqIyJmqzoD3RnnGWWtHB3RhUcALY9qTJ1Kzylrm6TnjV1XLPr1V1jJQBUIRkfBV7Y3OpfIp4IWvtPnTaHfjXWxdOIsOw0aVOL9t4SzaDx9N2ryptBtxZw08oUjtUtaMX1Ut+/R2pstAy9sOQqFQRCQ0KeCFAQW88JX+2kRa3fM3NmxPpkubK0uc37A9mS7t+pH+6jO0untcDTyhiHgr77LPigTAylgG6s07EE6bNg2AO++8U7OEIiIhSAEvDCjghS/N4ImEn4oGwOpaBhrhWgoeDLOECokiIoFTwAsDCnjhS3vwRGqfYFgGWtkqMktYWbOGCpEiUtso4IUBBbzw5asv3okOF3H21p3E/+sNVdEUqaXOZBbQXyAszwzemarIPSoyawgKkSJS+yjghQEFvPBVVl+8XTHwRlfIaBLFH4Y/Qd3+A9X4XEQA/7OAZQXCqVOnAoTcLKG32h4iKxI6FURFwkNFA17hb+561fwLaAjYnJwcK+Fnd/Zuu37fert+zxq7cs5E+/uRUXZ8f+yuWKyl6LUrFnvDTdjoZ6Lt7uzdNf3YIhJC9uzZYxMTE+2ePXtKfc/zeMaMGTYyMtICNjIy0o4aNarU44iICGuMsUDhKyIiwkZERBR7LxRfFfk+jDGFn4mIiLCjRo0q83jGjBl2xowZAX0m0GNf95gxY4bds2ePXbZsWbH/Bs7kuDKuESr3EKlJOTk57t9zGtpAMkUgg/VSwJPKsX7fenvDTdgCY+yRQf3sloWzbOr2ZLtl4Sx7ZFA/W2CMveEm7Pp962v6UUUkzJUVAL2PvQOhO1CcSUisivAVjK/q+D583SPQIBqsQbUm7lEZ4bginwmV8Ftb7lGTFPDC4KWAV3us37PG7orFHhnUz9r8/OIn8/PtkUH97M5Y7Po9a2rmAUVEShHoLKH3cSCBUCEy+F41FVRr4h5nGo6rIqgGS/itLfeYMWNGjfw+61bRgKc9eEFEe/BqD7VNEJHaLJC9hZ77yiq6H7GsAjXl2a9YGfsXI4K06I1Unar49xEu/x2Fyj0iIyP57rvvamwvq/bghcELzeDVGrtefcZasKnbk32eT01LshaccSIiErBAZhUr8pmqnomsyLH3PSoym+nvFSyza6FwD73C45WYmFi9v3l50BLNMHihgFdrbJs31VqwWxbO8nl+60dvWAvOOBERCUpVHSIr4x6VHSprIqjWxD0qIxxXRYgMl/AbKveIjIys0b14Cnhh8EIBr9bQHjwREakuVR0iw/UeZxoyqyKoBkP4rU330B48OWPag1d7+Gp8nt6yPuabb7h4+gLOS9rAy72h09hxNB58vfriiYiI1IBA94ue6f7Rmrqm7lH2NWqKGp2HAQW82qOsxud5ERDlsR84PRb+MhgWd45myz1bFPJEREREaoGKBrw6VfdIIlKahJgEttyzhazcLI7k57NjyYdsmj6RB1ZD5pVd2Tz2l3DJxVy49zjNprzO/LnJjCCXrNwsBTwRERERKZVm8IKIZvBqr5S9a2nUqSeNevQjdlEiuEr7AlBQQPbQARxem0T2pjV0a9mj5h5URERERKpFRWfwIvwPEZGq1mB1Kq2y4cC9txcPdwAREWT+eTSts51xIiIiIiKlUcATCQJRmVkA/NThIp/nT7jed48TEREREfFFAU8kCOTFxwFQb+tOn+fPdr3vHiciIiIi4ouKrIgEgWO9upIeC82mvA7X3lq4TDMjJ4OsYwdp+sIr7KsPh9I2wPxpHOvVVa0TRERERKQEBTyRYBAZyV8Gw/y5yWQPHVDYF2/Sf2/h+YWnOG8/GKDFuP8Aap0gIiIiIr4p4IkEgbjoOBZ3jmYEuby4JIn2w5NoDwwFLLCuBTx03Vk89oe31TpBREREREqlNglBRG0SareMnAyycrMgP58Gq1M5mJbKRRP/S363rhx8ZxpxDZoWBTm1ThAREREJa2p0LhLiEmISigJcyx4wfxrNj8HWh++j23mXFR/sap3QfngSaatTnfEiIiIiUuupiqZIkFLrBBEREREJlAKeSJBS6wQRERERCZSWaIoEKV+tEwr36eXlcf6EZ8iMhowj33Fs71q1TRARERERBTyRoOXVOuGbO67j+s3jGbPyJBNWQP3TzrD4sc+SHvus2iaIiIiIiAKeSLDybp1wxWdJHHKdO14HHr0GZlxelwWdnuHi6R+pbYKIiIiIqE1CMFGbBPHm2Trhh0Xv0/m+SZi2bdnz0RyIiipakqm2CSIiIiJhRW0SRMKQZ+uEtEapNM2FrU//jW4JvYoPVNsEEREREUFVNEVChtomiIiIiIg/CngiIUJtE0RERETEHy3RFAkRapsgIiIiIv4o4ImECrVNEBERERE/FPBEQoTaJoiIiIiIP2qTEETUJkH8UdsEERERkdpBbRJEagG1TRARERGRsqiKpkiIUtsEEREREfGmGTyREFWsbUKbK4HiSzhPz5oJwA/ffcsRVdUUERERqRW0By+IaA+eBCJl71oadepJox79iF2USMaPe+n4akeGbMzlxSXQKrtobHosqqopIiIiEkIqugdPSzRFQpWrbULMUqdtwpaFr3P9+lzmz4VmkQ2xwO9ugEVz/kGjHv2YP9cwZKNTVVNEREREwpMCnkiIKmybMNJyZG0SQ259grffB2Nh/+mjjLgJFlwWzc+uG03sokRyBvblhSVAfn5NP7qIiIiIVBEFPJEQlRCTwJZ7tjB+8nqObFrDuodvBmDNuFFkb17D+Mnri5Zjuqpqts6GBqtTa/jJRURERKSqqMiKSAjzbJuQfuHPADhr9B108dEWQVU1RURERMKfZvBEwkSxqpre8vM5d+7HANQ59IOWaYqIiIiEKQU8kTBxrFdX0mOh2ZTXoaAAcNom7Jr5AidbJZDwt+cAOP8fL3GyVQK7Zr5ARk5GTT6yiIiIiFQyBTyRcOFVVfPL917g8Tsu4sI7HubI4X0U4FTV7D0GFp+9jwvveJhH7m6rkCciIiISRrQHTyRMFFbVJJcXlyRxxWdJXOE6l1sHbrwJPr20HvNumkfzJ+LZd/OdPPNJKlk/ZqovnoiIiEiYUKPzIKJG53KmMnIynD53+fkUTHmFy55/mzXjRlHnj/dAZCRx0XGFYW7bwlm0Hz6atHlTaTfizhp+chERERHxVNFG55rBEwkjqqopIiIiUrsp4ImEqWJVNdtcCRSf4Ts9ayYAP3z3LUf2ri0xwyciIiIioUdLNIOIlmhKZUrZu5ZGnXrSqEc/YhclkvHjXjq+2pEhG3N5cQm0yi4amx4LfxkMiztHFzVHFxEREZEaU9ElmqqiKRKuPKpqcv31nEhaxvXrc5k/F1rWOReLU1Vz0Zx/0KhHP+bPNQzZmOvM8ImIiIhISFLAEwljH/wMkl+4l5Mb1tN++Gjefh+MhYKz65H84n38X2does11xC5KJGdgX15Ygpqgi4iIiIQwBTyRMBUXHUd0VDRX/fgK0aP3cf8Q5/27r4Xo0fuc96OiiYuOg4gIMv88mtbZ0GB1as0+uIiIiIhUmIqsiISphJgEttyzpXDJZW70TFj8Glc9PoM7EroCFCuqoqqaIiIiIqFPAU8kjHm2TUhrsw6Azofq0KFXt8Ix7sqah776DIBjG9eQNn8ax3p1VWVNERERkRCjKppBRFU0pSp5V9UkIoKMnAw6vtqRoRtymf0B1D9dNF6VNUVERERqjqpoikjZPKpqZg8dwLaFs/hqyxL+vCyXeXMh+jQ8eg28u2oGWxfOUmVNERERkRCkGbwgohk8qUru2TpfffCO14Hf3wCLunjM1hUUkD10AIfXJpG9aQ3dWvaouYcXERERqWUqOoOnPXgitYRn0ZUj+fnkrU7l5OJP6DR9AV/MfJy/DfolL3vut3NV1mw/PIm01amggCciIiIS9BTwRGoRz6IrtOxBemYWsID4ywfRpblTeMVddIX8fLL3fEN74OTiT0hR0RURERGRoKeAJ1KL5cXHAVBv605oc2WJZZzdXMs4O01fQPrcBSq6IiIiIhLkVGRFpBY71qsr6bHQbMrrUFBAVm4WQzbmMn+uoVGPvhzs2o70GFj85uMquiIiIiISAhTwRGozr8qahz77kJcWw6EubcFCkw3b+csQaDLol8QuSiRnYF9eWALk59f0k4uIiIiIDwp4IrVYXHQciztHM2Kk5cjaJIaMeooLc6BpahqH1yUzYqRlcedo4qLjCouutM6GBqtTa/rRRURERMQH7cETqcW8K2see+oZOk1bwLJXHyJ2+E2Mj4zk4dMnycrNIuvHTBVdEREREQly6oMXRNQHT2pa2vxptLvxLrYunEWHYaPK7J2XHouKroiIiIhUkYr2wdMSTREppKIrIiIiIqFNAU9EiqjoioiIiEhIU8ATkULlKbry6aX12H9sPyn71pPWoxWts6Fgyiuk7F1Lyv4UMnIyavrbEBEREam1tAcviGgPngSDjJwMZ8llfj5RXkVX9p84yMj3RjL06xPakyciIiJShbQHT0QqRUJMAt2ad6Nbyx7UHXwtAC0SLqFbyx40b9CcoV+fcO3J68eqv48BYM24UdqTJyIiIhIEFPBEpFTeRVfIz+fFJZAzsC+xn3xOh5Xb2RULdf54j/bkiYiIiAQBBTwRKZ1X0ZXT/3mVVtmw9fK2ZF97DTFLk3losDNOjdBFREREap4anYtIqQqLrpDLi0uS6PlZEgC9n5jJrli4fSR8emk9xhzbT8retWqELiIiIlLDVGQliKjIigQjz6IrBVNe4bLn32bNuFHU+eM9KroiIiIiUkVUZEVEqoRn0ZWIe+8jPRbarU2nW4vuXkVX1AhdREREpKYp4IlI+akRuoiIiEhQU8ATkXJTI3QRERGR4KY9eEFEe/AkFKgRuoiIiEjV0x48EakWaoQuIiIiErwU8ESkwtQIXURERCS4KOCJSMWVsxH6/hMHScncwOpbrqJ1NkQ99Qxp86dpX56IiIhIJdMevCCiPXgSajJyMuj4akeGbMwtseduVyw8NNhphG4wDP36BC8thgtzisZoX56IiIiIb2GzB88Yc7cxJt0Y85MxZr0xpq+f8SOMMd8aY066vt7gdd4YY/5hjNlnjDlhjFlujLnYa0wjY8wcY0yO6zXHGBPrcb6/MWaBMWa/Mea4MWaDMeZmH89yvzFmm+s+e4wxLxtj6p3pz0QkWCXEJLDlni2Mn7yeI5vWsO5h55fFmnGjyN60hvGT1zPvpnmF+/KiW7cDYNmrD7F14SztyxMRERGpZEEV8IwxvwYmA88AXYFk4FNjjM//rW+M6QO8C8wBOru+vmeM6eUx7K/Ag8CfgB7AAeAzY8w5HmPeAboAQ12vLq5ruV0OfA2MAC4FXgdmG2Ou83iWm4FJwBNAR2AM8Gvg2UB/DiKhpKxG6N2ad6P52U1d+/Ku5KzG8eyKhdjhN9Fh2CjtyxMRERGpZEEV8HCC2Exr7Qxr7RZr7f3AHuCPpYy/H/jMWvustXartfZZ4HPX+xhjjOufn7HWvm+t3QyMAqKB37nGdMQJdXdYa7+y1n4FjAWGGWPaA1hrJ1prJ1hrV1prd1prpwCLAM/Zwj7Al9bad6y131lrlwD/B1xWeT8ekSDntSdv28JZZH/0Hq2y4VRWJjGff1G0J29/inrliYiIiFSyOjX9AG7GmLOA7jizYJ6W4Myg+dIHeNnrvcW4Ah7QCmjmugYA1tqTxpgVrmtOdV0jx1q72mPMKmNMjmvMtlLuHQNs8Tj+ArjFGNPTWrvGGNMauBZ4s5TPY4ypC9T1eOuc0saKhILCRujk8uKSJNoPT6K969zxXWn8YaSzJ2+Rj155lz3/NunT39aePBEREZEzEDQBD4gDIoFMr/czcUKaL838jG/m8Z73mAs8xhz0ce2Dpd3XGHMjznLPu9zvWWv/nzGmCfCFa+awDvAfa613YPX0GPD3Ms6LhBT3nrys3CyO5OeTtzqVk4s/odP0BaRNeZzxg37JmGP7mTl+GPPnGnIG9mXV5W3p/cRM1owbRbu16cyfm8wInD15CngiIiIigQmmgOfmXdbT+Hgv0PH+xvi6vs/7GmP6A7OAsdbab7ze/xtwN7AaaAO8YozZb619qpRnfxZ4yeP4HGBvKWNFQkJCTEJRMGvZg5ReXUmfu4Beby0n9pa/k+LdK+/aa9gVCztGXkOduzvS9OY7eWFJKqsyC395ERcdp7AnIiIiUg7BFPCygHxKzpo1peQMnNsBP+MPuL42A/aXMSbex7WbeN/XGHMVsBB40Fo722v8U8Aca+0M1/EmY0x9YJox5hlrbYH3Day1J4GTHtf38RgiIc61L2/+XFevvB6taJUNqy5vSwdXr7zbR8IHC35PRAHcVR9ey4Ypj/6eW3tBQQRER2nJpoiIiEh5BE2RFWvtKWA9MMjr1CBgZSkf+8rH+MEe49NxAlzhGNdev6s8xnwFxBhjenqM6YWzx26lx3v9gY+BR62103w8SzTgHeLycWYCldyk1irclzfScmRtEj0nOttSez8xk8Nrkxgx0vLBz2Bh3dHkvtGC1z5xPjd5MeS+0YIV59xHbp7aKIiIiIiUR9AEPJeXgDuMMbcbYzoaY14GEoD/AhhjZhtjPNsOvAIMNsY8YozpYIx5BBiI02oB63RxnwyMM8bcYIy5BGd5ZS5OawSstVtwKmJON8b0Nsb0BqYD/7PWbnPdtz9OuJsCzDfGNHO9zvV4loXAH40xvzHGtDLGDMKZ1fvIWqv671Jr+euVN2L8W9zwLfxi3CzqdunO7n+OByBj4iPU7dKdvg9N4YZva/I7EBEREQkdxslAwcMYczdO77rmwGbgAWttkuvccuA7a+1tHuNvBJ4GWgM7gb9Za9/3OG9wCpncBTTC2R93j6tlgnvMuTjhbbjrrY+AP1lrs13nZ+G0V/C2wlrb3zWmDs4evFuB84BDOKHvb+7rlON7bwjk5OTk0LBhw/J8RCTkpOxdS6NOPWnUox+xixJJ2be+6PiTz8m+9hoOr01iVeJsOpzbjvOH30LB9h1seuUxzh16A0RGak+eiIiIhL2jR48SExMDEGOtPVrezwVdwKvNFPCkNkjZn8LT93cvrKKZ1qMVPSe+yaq/j6HDyu3ELE1mxEjn9yXPNgoA6bGojYKIiIjUChUNeMG2RFNEwlx59uQBzJ9raNSjH0unPwrAxrt/RaMe/Zg/1zBko/bkiYiIiPiigCci1crfnrwbH5td1EZhUSLnxzut0g9278CuGf8k69KL+M//4PDH80jZu5aU/Slk5GTU5LckIiIiEjQU8ESk2iXEJNCteTe6texBxL33kR4LLb78GoyhScpWp43C768mZX8KUf98gV2xMHXRRBp17k2TjTuIz4WBY5+lUaeePH1/dzq+2lEhT0RERAQFPBGpYXHnxDPu2rNosSKVvVf3IHnORAD++dk/2Ht1Dy784hvm/gzmztOSTRERERF/FPBEpEYlxCTw3Gvb+W7G8ww50YInlzvvL5sNQ346jy9e+DM3faslmyIiIiLloYAnIjUuISaB1mMeom56Bmnv/oeD0XDsskupuyOdZhdeQqtsOHDv7QDETv6PlmyKiIiIlEIBT0SCR2Qkx/r25A/DoP76TWT/YiAnli0GYO+BbWQPHUDTxLVasikiIiJSijo1/QAiIp4K2yiQy4tLkuj8mfP+wLHPsisW7hgBzy+FgwN6EL8okfM/ng1Abp/L2DVuEE1/N5Z/f7yB9C4zSGvXhWO9uqo5uoiIiNQaanQeRNToXMSRkZPhzMDl5/PDovfpfN8kTNu27PloDj8s/YhBYyaydeEsOlx7K9lDB3B4bRKdHqzLkM0n+fcn0OJY0bXUHF1ERERCkRqdi0jY8Gyj0PgXI/nDMIj7eget7/grTddvBYqWbMYsTeahwTBk80nmzzXYLp0BWPnEWLYunKVlmyIiIlKrKOCJSFArXLI50nJkbRKdX3sfcJZsHl6bxIiRlsWX1C1sjn7soXsBMK1bkdu9kyptioiISK2iJZpBREs0RXwra8kmUVGc/HwxfW4dx9YFr9Ps37OKLdl8cQm0yi66lpZsioiISCjQEk0RCVtlLdmsv+5r2LULgHOen1xiyaYqbYqIiEhtoiqaIhJSvKtsth+eVHRyw9eMGAmLL6nL5pdOFjVHd1XaPNi9A/mPDOf84bfwn//tYNOgeaQMzVeVTREREQkbWqIZRLREU6R8PJdsNlidysG0VC6a+F/yu3Xl4DvTOJn4mbNk01VpM3NQH46nrOGvg+D5z7RkU0RERIJfRZdoagZPREJOQkxCURBr2YNj+1O4Z8N/mT93Aw1G/4XdbeMAp9JmM1dz9H/2cZqj5wzsy9KbLmfg2EksH301bXYeZv57G3g5I5dtzaaSNfh6zeiJiIhIyNIMXhDRDJ5IxWTkZNDx1Y4M2ZhboqjKrlj460CnOXp0t57Ef/YVX857iSt+/TAT+sPtGzSjJyIiIsFHRVZEpNZKiElgyz1bGD95PUc2reGz6Y9yMBoOdW5L9sZV3PXzcbTKhiMP3A3ABa+9w4FoeHKFU4Rl1d/HALBm3CgVYREREZGQpoAnImEhkObo561IxRj4vl8XYhclUu/mUQCcalhfffNEREQkpCngiUjY8dcc/fH+EH8cdt9zM0REcDx1NQCLF71Go869abJxB/G5zvhGnXry9P3d6fhqR4U8ERERCXoKeCISdvwt2Rwy1FmqWb9rLygoKLFk0903b/noq4m6tAvz34OnFuaybf5UzeiJiIhIUFPAE5GwVNaSzbOOHgfgp7dm+VyyeXbDxgB8nr6MvK83YIAHV8GgMRM1oyciIiJBTVU0g4iqaIpUjTKrbMbAG13hqeXw5XsvcMWIB9h79WXUWZtK/AmnrcLWy9vS+4mZLHtoBO3W7uK8Fak83h+GDL2bpm06c6xXV7VWEBERkUqlPngiIqVwL9nMys3iSH4+O5Z8yKbpE3lgNZzVuSvXtIqF5YmcyPmhcEbvYH1nRq/lokTq7fwSnpjJm7s/4ljTPGbXcQIhy18D1FpBREREgocCnojUCp7N0TNGxHP9gcl8kZDLi0tS6Z/kjBk49ll2xcKL/V0zevfcTMuICM7eutO5xqE8nlxhONSlLfVT0/jgxbGc3fQ8LpmxgPlzNzCCXJIzkukY1xFAM3oiIiJS7bREM4hoiaZI9cnIyXD63OXn88Oi9+l83yRM27bs+WgOuf83mysffY0N25Pp0vpysocO4PCaJIyBRj368d2/nqRLh/6MGhnF7IvziDwNK2ZBm8Pw2xthxYVQEAHRUZrRExERkYpRo3MRkQAEUoQlZmkyb3R19u4duPd2zk5LB2B3dB4rzrmP42+24Iq9EJ8Ly2ZDzowmvBf5G3LznBm9lP0pqrwpIiIi1UIzeEFEM3giNcNfEZaHhsA5Noo35+axYdsKLvzTBA6vTeKvg2DuPIMZNoyvRvSiz23jmdAfenwPw7bD5N7wUXtIvkAzeiIiIhIYFVkREakgf0VY7rpuOCcO7oO502nxm7HEbNjOHSPg+c8gZ2BfYj/8kKPvPAnANa2ups/OrUSwjwdXOe0VjjWPY93POzE1J5Ft86eSNfh6Vd0UERGRKqEZvCCiGTyR4FDWjN7xOvD7G+DHc6JY8noeWxfOosO1txZrrWCGDWNjzwvoPOHfTOsGN38N9U8XXUNVN0VERMQfzeCJiFQS7xm9vNWpHNyxkcWLXuPJFYZXDnZhT0w8sIi9B7bRzLu1wocfsnXN63SeAGNTIGdQXw5mZXJ8VxrLn7mDQe+tY/57G3g5I5dtzTSjJyIiIpVHM3hBRDN4IsGrzH16sfBGF49m6SP/wi7QkZYAACAASURBVOLZjzNk1FMc6tyWJilb+XLeS1zx64eZ0B9u31D885rRExEREW+qoikiUoXcs3rjJ6/nyKY1fDb9UQ5Gw56Lz2fV57Po1nckAHsTYkn5fh0/++csAFIe/C1ERLA3IRaAJ5c7rRZW/X0MAJ/eP4yoS7sw/z14amEu2+ZPJWXvWlXdFBERkQrREk0RkXIq1ix9ZDz3Jb7E2+/socFvb2NRG7gB+OyZOzh7G3RJcz5jL+0EQGyaE9ayOrelyaJEsjfOhydmsmXV/+iwFQxOQRZWTSQ9dqJm9ERERKRCNIMnIlIBCTEJPPfadr6b8TxDTrTgtU+c92cshAHH4ki6fYDzxuZvfM7omW++AeCB1cVn9JY9NIKozl2Z/x48+FkuGf99jrT50zSrJyIiIuWiPXhBRHvwREJUfj6Zn87jvWdv4Z6Vp/m4HUy6At5+H/bEwJG6Tl+8CGBR6lyGXvor9g7oTvwXG8i8sistE9exYeeXdGnXj1EjozhGHrM/8Kq8GQOvd4WMJlH8YfgT1O0/UIVZREREwpj24ImI1JTISOKH/ZpffrKT72Y8z+ATLfjyDbgwB/pmwLV7ziL1F90AiP1wEdlDB3Be0gaiCmDz2F9CRARnb90JQMKhPObNMxzv1A6A4bfW4dFroOlxp4jLm3Pz6HPrOBp16snT93en46sdNasnIiIihTSDF0Q0gycSJlwzeo/M+T3nHzxVomrmrhj4sKOz5849o5c9dACH1yRhjLNk87t/PUmXDv15qTc8sNqQM/BKTnm1WjgvaQMv94ZOY8fRWK0WREREwkpFZ/AU8IKIAp5IeMnIySArNwvy8/lhyYdsmj6RB1bD9327sqlrC37+yses+vsYOqzcTszSZB6/yvLUcti6cBbGWtoPH83+BnB2n37ELkosu9WClnCKiIiEFQW8MKCAJxK+yuyjFwMPDYFzbBRvzs1jw7YVXPinCeSuTKLFcSfwdRg2indXzeDXfcZigZxB/VjXvRkDJ73HtG5w89dee/ZcvfU+vbQe826aR/MGzQEU+EREREJERQOe2iSIiFQDdx+9rNwsjuTns8NjRu+szl2567rhnDi4D+ZOp8VvxhKzYTuv93KWcf7U4SKgZKuFH9a8DpPeY2wK5Azqy/eZezm1O52bR8CjyTDvPZic8RPPbx9G8gVQEAHRUWq9ICIiEs4U8EREqkmxPnoj4rn+wGS+SMjlxSWpDLk1tXBc/U1p3Hgj/HhOFA+uyqPe1p3Q+nK6vfR/gNNqYUhEhFfgW87qd55kyK1PMNFeTZ+fthLBPh5c5YTEY83jWPfzTkzNSWTb/Klkac+eiIhIWNISzSCiJZoitYvnHr0Gq1M5uGMjixe9xpMrDN/368LK311Jz7/+i+jW7TircTwxS5Mx4CzV7DGaQ93a02TjDha/+ThDfv9E0RJOA2bYdWzseQGdJ/y71CWcDw+Eow2jeO6S+6mf0IZjvboq9ImIiAQJLdEUEQkxnjN6tOxBvZwMXsqfxTdNnVm9m1a4ZvVS0zheJ43pXeHOVGj84RKyJ8wmbuMOALLbO9conNG7tC1NPvyQrWtep/MECpdwHnRV4bxtZB1e+Pg0c+eBIQ94HlChFhERkXCggCciEiS89+kdWL6U/370dxIO5XH7BifcAQyc9B67YuDF/k5vvJYZ2dCjwO8Szm0fz6b98NH023Gayw4Yfmp8DodPHqXLvVGMWZ3HhBXO9SAP5o4jPWacAp+IiEiI0RLNIKIlmiLiraxWC0tHdqP/+JnlXsK5YXsyXdr142A0nHVFPzLvGUX768cwoT88ucLptXfcVahlWncYn6TKnCIiIjVFSzRFRMJQWYVZbksKbAnn2Vt3AtA0F7beezs/tW8NwJ/XQM7AvsQuSiwq1JLovFeeypz16ijwiYiIBAsFPBGREFHRJZxs3kxKy3U0fXEKmdEQn+u0Xjh7ixMA3YEvNiKCnFYtADjc4UIa+6nM6d6zt6OxAp+IiEiwUMATEQkhxQqz3NKD8667uVjgW/vaBP70VT7fxMOyVjAmFVo8OZm9z02my3Z4+upIHl+WT71vtxP/71nFAh/AhZ+sBGDnDVfROCKC7DYtAbhq1jLMsOtYdfvP6f3ETFKGdafz0s08tfxk4bP5CnwA1+xVpU4REZHqoj14QUR78ETkTGXkZHB63nuc98TL1N2zr/D90/XOYtOd17NqWBd++atxNKrbkHo/HOXx/s4s39aFs+hw7a38cElrGm/ZzXtfTuOmy8eyePbjDBn1FIc6t6VJylbeXfN6USuGXwzj4PdpHN+VRvrIa7jqrS+I/Kko8GVGAwbijxc9nyp1ioiIlE9F9+Ap4AURBTwRqTT5+WR+Oo9H5vye8w+e4vYN0Cq76LQF1rWAh38eyax5+SUKtSya8w+G/m5CiUIt3oFvsWsJpzvw/Zi5l6y0DUzrDhOXOfd67BqY3ucsxn51igkrvAq3KPCJiIj4pIAXBhTwRKSyeTdTP56xg0c2T6bhj3k8/1nx0He8DjzdF+5KgagLW1G/SUu/lTnf+3IaN115Fz90vJDGm3cWtmLY3wDO7tMXLBxel8xfB8HceeWo1KnAJyIiAqiKpoiI+ODdTB1gRs6fSi3U8myi64Mb0zleJ91vZU7vPXsnXHv5mh+DrfeOwVhL++HJ/OtT/5U63YHPVy++3U3qMLz/XZy6vBc2MoLYerGFRVxAhVxERETcFPBERGoZf4VaAqnMef7cJQB894sr6ElRKwZwFW5xrRJxAp+fSp1lBr7TMPdV0mNedRVygf0NUCEXERERLwp4IiK13JlW5gSwW74l5QKnFcO++tDiONTbuhPjsQ2gtEqd/gJfxoHd5GdksHF4T4bN3cBTy08VXrOokEse8DxQtMxTs34iIlIbKeCJiEgxvgLfd/PeY/ATL3PdG05lzgtznD17fxvg7NnzDHy/vSmSSUvyafDCK2BtscBH68u56IPlQNGsX3kD34VvrSm1kMujXoVcypr1+/J8uGIPXJCrfX4iIhJ+FPBERKRMCTEJMOYhuO0BSE4ma+cmTm39hsbvfsSzifuBosA37mr45KJ8WnWHZz931ndOuCaCO9YVcO7jE8l+ZSbnbtkNQMNd+6B3QWCBb8EC9rkKudy7BnIGOYVc7lyXzI5zT/HsMqeQS1mzfnkREFUA3vv8MppE8ZvBD3DksksAaLV5L82OWvLi47TsU0REQoaqaAYRVdEUkZCSn18i8NXds7/w9IFoMF598Mqq1OluzeDdi2/N326j58Q3WTNuFD2fmcWG7cl0adcPcPr3OYVc3JU7+xG7KLFE+4aD36dht6XR9AScbnwudbIOc/MNkHCUEq0byurf5172mderB3Eb04jLydO+PxERqRKqoikiItUrMhL69yeuf3/neNKrkJwM+/eTeU4E+7q0BmCXn0qd41zLPDu98CbZb37ud4Yv4EIuCxaQ+tY/ivr3rfuWvQN78tLiVOJPODN+B7MyOb4rrdzLPotmAR0KgCIiEiwU8EREpHK4Ah9AvOsF+K3UGWjgi//XGwEXcok6dgKAfVd0okmdOnxz+zCGrEjlUOc2NFm0vLB/n79ln3V3ZjizgI0aEvnDUW7xmAUsTwD0tQy03qEjZMVEcahbBxWDERGRM6aAJyIiVS6Q1gylBb52k6azd/qHnJe8kTtGwPNLKXchl8bf7ALgh4udWcViga+8/fveKnsWsHwBMA/m/rPMZaDexWAScovPCkZlZpEXH6dAKCIiPingiYhItatQ4Mv5nuN1vuexAbC4LbQ5Uv5CLi2+/BqAvAbRQMnAV55ln/5mAf0FwNKWgf67J3yUNYh+c1aUUgym7FlBX9VBNUsoIlJ7KeCJiEiNKyvw5a1O5XjGDiJ27OSiD5OYtCyLSa6A5C7k8vTnruSTmsbxOmklZv1abNxBZn1oNfVdUgb8giYr1gKuwFdQvmWf/mYBK74MFAbMW4r5xS+KFYPh3HOxWYeZ3BPuX1t8VnBkw55c925Z1UErZ5Ywq3M7zRqKiIQYBTwREQk6xQJfyx5FJ6bkB1bIxTXrN+5q2BMLc97fxsGOvWh6HA5GwyUvzSF7TiIxn39RuOyz2ZSZYCmx7NPfLOAZLwP1VQzmmh786YsNfN+3Ky0/X+MxK7i21EDorg767OfOj+BMZgn9zRomX+C8f83eKMa1Ge0zFCokiohULwU8EREJHeUs5OJr1s+t8QmIAJrmUrjP77EBkNghiqlH8nj2s2QAnnPNArqXfca5ZgEvfn0h/G5C8cBXUDXLQPdd2ZmWSRvYd+WltPSeFfQRCLOvvYanlyVhzJnNEr5SzlnDolnCPGCa8/0HGBJLm0WMy8njpyaNSL+kJVB8qWlpofFU/inOijyr8F4KkSJSGyngiYhIWPA365e1cxOHY+ty7LJLOZmcWGzGb9IymLQsDyha9lk4C+ha9vmYaxbwrQ9SOdGsMY1/OMrBaOj4wiyy5yT6DYAVWQaaXzcKgNN1ndDib1lo5p9H0354EnAGs4R+Zg1/zNxLVtqGEnsJM2Lg7Q8CD4n+ZhFb+1hqWt7Q2PxY5YXI8s5MKmSKSE1TwBMRkfDm0a8vzv3eBb1LzPhFZWZxoKEp/Mt+o3Wb+X9LXi4WAt3qHDlaNAu4KYPjWzL8BsCKLAONPOmEzjonnUDkb1moexkoVHyW0N+s4T5fewnXJjuzhgP7EfvJ5xVaWuo5i1jnh6M+l5p6h8jSQmNBZAQR+UUJsDJCZEVnJt0hsyLLWct7fCZBtbRgqqAqEroU8EREpFbyNePXCujjHtAFLh55T4lln+6/NEetXstHy6dywaHT5QuAZSwDjR73OHufn1yiGExs4lfkRUCLL76G06f9Lgv1XAZa0VlCf7OGpe0lBFeIrMDSUu9A6HOpqXeILCM0RsQ1wWZmFobGMwmR3jOR5Z2Z9A6ZFVnOGuhxRYJqeWc/gz2ohuo9AgnYANk/Zfs89vWZQI8rcg8F/+CkgCciIlKKUpd9AnQfRc+b/xpQACx1GeimDI7XyfBZDOaVnnB/cvFZwYuem8bemR+VCIRNX5zCrhjn2hWdJfQ3a1jaXsLCYwJfWuodCEtbauocOyHSX2j83s/S03KFyACXr/oKmZURIss6rmhQLW8wDZWgGqr3qGjA7ru79DFnenwm9/BXkTfYAnZZ16if0IZjvbpCZGToBVdrrV5B8gIaAjYnJ8eKiEjo2529267ft96u37PGbps31e569Rm7cs5E+3bqbPt26my7cs5Em/LSw3bD3b+yP7aIs9aJS9aCPRVBmcfH6mAfuRr7u19h88Hur+98vXVEpH3kGmwBzuvRAdj0GOzuTgl2T78uNh/sgfrYbZe3t+szVtttfdrZUxHYPf26WpuXZ/f061Ls+GDnNtaCXfTm49bm59sjg/rZ7+s7z7Bl4Sy79aM3Cp9py8JZ1lprV48bZS04X621G+7+lbVgP3/1IZ/HK5+4w1qwXz4x1lprbWpaUuE1U7cnlzi21jqfBedaPo69n8H72Pu5y/N9eB8venOCtWAPdm5rbX5+8eO8PHtkUD+7Mwa7KxZ7ZFBfe2RgX4/jfj5/3oEeV+geV3W1+6OxBcZYO2yYzezazh6IxhYYrI2PtwVgX+pZ/Pi3N1Dsv6tHrsH+9lfOmNzGDW2+x2cqclzb7vHbG7Dvj+pp8+qdVezXdX5kRJnHx2Kj7bHY+gF9JtDjitzD3+9X3scHop3fh87kGtVxj12x2BtuwkY/E213Z++ujD8WApKTk2MBCzS0gWSKQAbrpYAnIiJV5PRpaxMT7aEZU+y2eVPt+u++stvmTbUpLz1sl8wcZ99ZN8sumTnOJk68s1yBcL+Pv9yUFgr9/QU2Mxq7/WfN7J5+XWyBMXbEjc5ffPZc1dXu6dfFb6DwDonFjm3FwlegobEiIdLfNfyFzMoIkVURVP0F00oJkdURVEP1HpUasE2pnwn0+EzucSru3GLHwR6wy3ONT+f8wx4Z1M8WGGNvuAm7ft/6AH5DrxwVDXhaoikiIhIMSikGU0x3j3/2UR20wbqvSxSLcS9PKqtlxANrnGP33kHv46a50PTbAxyvc4DHBsDittDmCDz7eSoA4wdG8l3DfN76IIkTzRrTwr0ksJxLS733Gsb/640SS02Ljl+HoTf73Y/ob+lpWfsV623dCW2uDHj5anmL3hQe438PpL/jityjKpbM+ivW4++4Nt0j0OXFOWUuJ+5L7Cefl/hMoMeVcQ9/S5orZVl0Ndwj+9preDoxiewp1xL7uwlkDx3AC0uSyM7PJ1Qo4ImIiISiMgKhd7GYQqWEQs+9g6XtT2m0N6swILoLyrj3Ej6ztOgvPuUJif72Gsb8cJS73fvKXAVpJhVWKU0qMzQ2f/VN3u7Umk6fJZIXAbGJq0jZs6ZiIfKLjcWL3Hgfn0HRm/KGyKoIqv6CaWWEyOoIqqF6DwXs4L6H+xppq1NhRI/ix957sYOUAp6IiEhtEegsofexKyCyfz+Z50Swr4sTCHK8CsyUJyS6+ZpFNMA7HzjH7hBZWpXSkqFxN0373lYYGu/7quIh0nsmsrwzk+6Q2WPSpMLQ2OCFV8DawEOkn+MKBdUAZz+DNaiG6j0UsIP7Hu5rRGVm+TwOBQp4IiIiUj6ugAgQ73oBPiqMUvpxOWcRy1sJz1dobPpTBBEUFIbGMwmRgSxf9RUybymscFm+5ayBHlckqJZ39rPeZ8t5+8Y3gzeohuo9FLCD+h7ua+TFx/k8DgmBbNjTS0VWREREgo6rQI195x3n68mT5SpYk/LSwz6rmnoXtfF37KvojXeVQV9Fbyq7amBF7lFW4R3PY+/CFeMGRtrfVXVxDNdzheM9PAsXuSvbbux5gX0rZZbd2CPBnorAbuzhHG+7vH1hoZZtl7e32/q0K3bs6zOBHp/JPbb1KV9F3qApclOea8Ri1+9ZU1g5uPC4mlW0yIqx1pYZAKX6GGMaAjk5OTk0bNiwph9HREREyiu/aPkqzZvD5ZfDypWFy1m/dy1nbVDO5azV0ffLPfvZYF/R7Ke/Pnju2c6q7B9Xm+5xvA481c898wsH61O0vHhN0fEtXr0OH7va/2cCPa6se9y/Fn46tyF1Pfov/nRuQ+r56NnovsdbH/j+TKDHlXEP9zVG/erv9JqdSMzSZEaMtIyfvJ5uzbtRnY4ePUpMTAxAjLX2aHk/p4AXRBTwREREpFqVEUxDJaiG6j0qErBPnNsQA9Q7fLTcnwn0uCL3CNWA7e94Vyw8NBgWd45myz1bqr3ZuQJeGFDAExEREalFAgjYNG8Offs6nwvkM4EeB3CPQCvyBlPA9neN+gltONarK0RGEhcdV+3hDhTwwoICnoiIiIiIQMUDXkTVPZKIiIiIiIhUJwU8ERERERGRMKGAJyIiIiIiEiYU8ERERERERMKEAp6IiIiIiEiYUMATEREREREJEwp4IiIiIiIiYUIBT0REREREJEwo4ImIiIiIiIQJBTwREREREZEwoYAnIiIiIiISJhTwREREREREwoQCnoiIiIiISJhQwBMREREREQkTCngiIiIiIiJhQgFPREREREQkTARlwDPG3G2MSTfG/GSMWW+M6etn/AhjzLfGmJOurzd4nTfGmH8YY/YZY04YY5YbYy72GtPIGDPHGJPjes0xxsR6nO9vjFlgjNlvjDlujNlgjLnZ6xrLjTHWx+vjyvi5iIiIiIiIlCXoAp4x5tfAZOAZoCuQDHxqjEkoZXwf4F1gDtDZ9fU9Y0wvj2F/BR4E/gT0AA4AnxljzvEY8w7QBRjqenVxXcvtcuBrYARwKfA6MNsYc53HmF8BzT1elwD5wNyAfggiIiIiIiIVYKy1Nf0MxRhjVgMp1to/ery3BfjQWvuYj/HvAg2ttT/3eG8RcMRa+1tjjAH2AZOttc+5ztcFMoFHrLVTjTEdgW+B3tba1a4xvYGvgA7W2m2lPOvHQKa19vZSzt8PPAk0t9YeL8f33hDIycnJoWHDhv6Gi4iIiIhImDp69CgxMTEAMdbao+X9XFDN4BljzgK6A0u8Ti3BmUHzpY+P8Ys9xrcCmnmOsdaeBFZ4jOkD5LjDnWvMKiCnjPsCxACHyzg/Bvh/pYU7Y0xdY0xD9ws4x9c4ERERERGR8giqgAfEAZE4s2ueMnFCmi/N/Ixv5vFeWWMO+rj2wdLua4y5EWe55xulnO+Js0RzRinPDfAYToh0v/aWMVZERERERKRMwRbw3LzXjRof7wU63t8YX9f3eV9jTH9gFjDWWvtNKc80BthsrV1TynmAZ3FmAd2vlmWMFRERERERKVOdmn4AL1k4RUm8Z82aUnIGzu2An/EHXF+bAfvLGBPv49pNvO9rjLkKWAg8aK2d7euBjDHRwG+Ax0t5ZqBwqehJj8+VNVxERERERKRMQTWDZ609BawHBnmdGgSsLOVjX/kYP9hjfDpOgCsc49rrd5XHmK+AGNeySveYXjizais93usPfAw8aq2dVsa3chNQF3irjDEiIiIiIiKVKthm8ABeAuYYY9bhBK87gQTgvwDGmNnA9x4VNV8BkowxjwALgF8CA4ErAay11hgzGRhnjNkObAfGAbk4rRGw1m5xVd6cboy5y3XdacD/3BU0PcLdK8B8Y4x71vCUtda70MoYnKqfP1TSz0RERERERMSvoAt41tp3jTGNcZY3Ngc2A9daa3e7hiQABR7jVxpjfgM8DTwF7AR+7VkRE/gncDbwGtAIWA0Mttb+6DHmZmAKRdU2P8Lpm+d2GxCNUxjFs13DCqC/+8AY0w4nXA4O8FsXERERERE5I0HXB682c/fB27Nnj/rgiYiIiIjUYkePHuX888+HAPvgKeAFEWPMeahVgoiIiIiIFGlprf2+vIMV8IKIccpotgB+9De2mqwBevodVbuF288o2L+fYHi+6n6Gqr5fVVy/sq55Ds7/9GpJ8Py+KFUvGH6dB7tw+xkF+/cTDM+nP3uq75rB9mfPOcA+G0BoC7o9eLWZ619cudN5VTPGFAQyHVwbhdvPKNi/n2B4vup+hqq+X1Vcv7Ku6dE65sea/vcu1ScYfp0Hu3D7GQX79xMMz6c/e6rvmkH4Z0/AzxBUbRIk6Lxa0w8QAsLtZxTs308wPF91P0NV368qrh8M/54kdOm/H//C7WcU7N9PMDyf/uypmWuGJC3RFBGRoOQuPEWAm8tFREQqKhz+7NEMnoiIBKuTwBOuryIiItUh5P/s0QyeiIiIiIhImNAMnoiIiIiISJhQwBMREREREQkTCngiIiIiIiJhQgFPREREREQkTCjgiYiIiIiIhAkFPBERCVnGmGhjzG5jzAs1/Swi8v/bu/dgO6czjuPfXxNUhdKGSutyENVkxC0tpUXi0popinFp1SXul7pPqlI6kzFuNWRcB5UgJDopad1DyhBxCRKlLiEIwpCIoZpUQiNP/1hr83qzz3FOcs4+J+/5fWbO5Oy11rv2s9/8sfdz1rPWNqs+SYskPZN/RnZ2PPX07OwAzMzMlsGZwBOdHYSZmXUb/46ILTo7iJZ4Bc/MzJZLkjYGfgDc09mxmJmZdRVO8MzMrOEk7SDpTknvSApJe9UZc7yk1yUtlDRN0valIRcBwxoTsZmZLe/a6b1ntdz+iKQdGxR6mzjBMzOzzrAK8CxwQr1OSQcAlwDnAlsCk4EJktbL/b8EZkTEjMaEa2ZmFbBM7z1ZU0QMBI4FbpS0WseG3HaKiM6OwczMujFJAewdEbcV2p4Ano6I4wpt04HbImKYpPOBg4DPgF7ACsDFEXF2Y6M3M7Pl0dK899SZYwLwx4iY2oiYW8sreGZm1qVIWhEYCEwsdU0EtgOIiGERsW5ENAFDgWud3JmZ2dJqzXuPpDUkrZR/XwfoD8xsZJyt4VM0zcysq+kN9ADmlNrnAGs3PhwzM+sGWvPe0w+4RtJiIICTI+KDxoXYOk7wzMysqyrvIVCdNiLihoZEY2Zm3UGz7z0R8RgwoOERtZFLNM3MrKt5n7S3rrxatxZL/mXVzMysPVTmvccJnpmZdSkR8SkwDdi11LUr8FjjIzIzs6qr0nuPSzTNzKzhJPUC+haaNpC0BfBBRMwCRgA3SZoKPA4cDawHXN3wYM3MrBK6y3uPvybBzMwaTtIg4ME6XaMjYkgeczxwOtAHeB44NSIeblSMZmZWLd3lvccJnpmZmZmZWUV4D56ZmZmZmVlFOMEzMzMzMzOrCCd4ZmZmZmZmFeEEz8zMzMzMrCKc4JmZmZmZmVWEEzwzMzMzM7OKcIJnZmZmZmZWEU7wzMzMzMzMKsIJnpmZmS13JPWTNFXSTEm7d3Y8ZmZdhSKis2MwMzMzaxNJ44HJwMvAVRHR1LkRmZl1DV7BMzMzqyBJ50ia2tlxAEjqKSnautIm6e18XUjqVer+CHgTeAV4r861jxSu3XTpozczW744wTMzs2Um6U5J9zfTt23+kL1Vo+PqSJJ2l7RY0pqFNkmaK+n10timfA92anykjdUBieUfgD7Af0vtZwHjSSt459a5bk9g23aMw8xsueAEz8zM2sMoYCdJ69fpOxx4JiKebnBMHe1hYDGwY6FtU6AH0FtSU6F9MPAJ8HijgquQeRExO5bcU7It8AZwC/CT8kUR8QHwfseHZ2bWtTjBMzOz9nAXqUxuSLFR0jeAA0gJIJJWkHSdpDckLZD0sqQTy5NJOkrSi5I+kfSOpEtze99yyZ2k3rntp/nxkZLeL823r6RFhcfn5AM6jpL0lqR5kq6Q1EPSGZJmS5oj6YzmXnBE/Ad4GhhUaB5ESvweq9M+JSIW5Oc/VNI0SfPzc42prQTmGN6VdGTpNWydVwzXz49XlzQyrxh+JOl+SQOai7dwb16StFDSdEnHFPpq93YvSZMkfSzpGUnblOY4NpdOfizpVklDa/c7x3wmMLBQHnlQ4fK1JN2Rr50h6RctxfsVDgPGAmOAHJNCuAAABmZJREFUgyX1XIa5zMwqwwmemZkts4hYBNwIDJGkQtd+wIqkD+KQVrdmAfsC/YFzgD9J2qd2QU74LgWuIq2I7QW81gFhbwLsDPwcOAg4Grgb+A5pVe5M4HxJP2xhjgdJq3M1g4GHgEml9kF5bM0Kef7NgL2BjclJcER8BowDflN6rgOBRyLiTUlfAyYAvYHdgB8BzwMPSFq9XqCSjgOGA8OAfqQSxwsklZ/nXOACYAtgJnCzpB55jh2BK4ERuf8hUgllzVjgEuBZUlllH+DWQv/wPGYz4B957rrxtkTS2qT/tzHAvUBP0n0wM+v2nOCZmVl7uQ5o4ssrV4cDf4uIDwEiYmFEDI+IqRHxekTcBNwE7A9pDxsp8bkwIi6PiFci4smIuKyDYj4iIl6MiNtJK299gdMi4uWIGElKLAe1cP1DQH9Ja+XYdyAld5Nq10naEFiPQoIXESMj4t6ImBkRjwOnAHtIWjkPGQvsIGmdPEcP0kromNy/CylB3T8ipkXEDOBU0j61z5PlkrOAUyPi7/nejycl0seUxl0YERPynMOBDYENct+JwJ0RMSIiZkTEFcDEwutakGNYlMsqZ0fEwsLcoyJiXES8Sko0VwNaSqCbcwip7Pfl/MeFcaQVPTOzbs8JnpmZtYuIeIlUmng4gKSNgO1Jid/nJB2fyyPnSppP+mC+Xu7uQ1pBe6ABIc+MiOLBHXOAF0p7veYAa7Uwx2RgEWnFbwBphfJZ4ClgTUkbkBK9BcCU2kWSBuZSxVmS5gG1A2rWBYiIp4BXgV/l9p2Ab5H2mwEMBL4JfJDLPOcD80j3caNykJL6AN8FRtfG52vOqDP+X4Xf383/1u7BJsCTpfHlxy35fO5c4voxLd/f5gzhi2SX/PseknovxVxmZpXienUzM2tPo4ArJP2WlLi9SSFZk3QgcBFwGvAEKSk5g1TuBykRasni2lSFthXqjFGprTwG4H+lx9FMW7N/DI2I+fnEyMGkBGpyRCwGPpX0eG4fDDwaEZ8CSFoVuA+4h1SG+R4pybqbVM5aczOpLPOi/O89tZXQHNPbpBLTsg/rtNVew2HAtFLfZ6XHxXtQS3Zr16vQRqGttdp0f+uR9GNSiekISRcXunqQ7uelbZnPzKxqnOCZmVl7+ivpA/aBwKHAtaUVse1JSdDVtQZJfWu/R8SHkmqJy+Q689e+76wP8Fz+fYvSmLnA6pK+XigPLI9pTw+S9gn2IZVs1tTKNHcEri609we+Dfw+It6F9FUSdeYdCwyXtCWp7PKIQt/TpITyk4h4qxUxvkNajdwwIsa1YnxzXgK2LrWVSyw/JSVbHeUw0j0/qU77YTjBM7NuziWaZmbWbiJiPmk/1HmkBOSG0pBXgW0k7Srp+5LOA7YsjRkOnC7pBEkbS9pK0gmF+acCwyT1kzQIOLt0/RRgIXBePhnyIODgdnuRS3qQtKK0Cympq5lESvzW5csHrLxJWsk6SdKGkvbiyweVAJD3qT0JXE9a6bqr0H0fqQz09nwvmyRtJ+m8nBCW5wrSfT1L0on53m8m6XBJp7ThtV5OKoU8Of/fHA/8jC+v6r0BbCRpc6UTTldqw/wtynsUDwBujojniz/ASGDzeq/fzKw7cYJnZmbtbRSwBnB/RMwq9V0J3EHaSzaFdMjGNcUBETEKGEo60OMFUmJT3Cc2BFiZVGo4gnR4SPH6uaRDOPYk7fnajyWTwPb0KGnV6jPgn4X2KaTS0PmkZKwW32zSPsVfAy+SXuvQZuYeC2wOjC8eVpLLQHcj7XkcDcwA/kJKJt+rMw951fRY0krgc6Sk8xDg9Xrjm5ljEnACcDppr+HOpFMziwep3ELaUziJtJq6X2vnb4V9gF7A7XVimw5MJ+8BNTPrrrTk94aamZmZtY6k64GmiBj8lYPbPvfbwAX5tM6lub4v8AowIK/ymZlVnlfwzMzMrNUk/S6XX24s6WTSdwiO7sCnvDif+rlKWy6SNJG0ymhm1q14Bc/MzMxaTdJ40mE5q5K+J/CyiPhzBz1XE18cCPdatOFDi6TvkUp5AWbVTjE1M6s6J3hmZmZmZmYV4RJNMzMzMzOzinCCZ2ZmZmZmVhFO8MzMzMzMzCrCCZ6ZmZmZmVlFOMEzMzMzMzOrCCd4ZmZmZmZmFeEEz8zMzMzMrCKc4JmZmZmZmVWEEzwzMzMzM7OK+D+8cDrrIZrT0gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAANNCAYAAADF2dxQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8XGW9+PHPN9OyBEiKlKUYG4oJFZCt7IIKRZarqKhcEOQq0p+twvUqgnpdQJTFCwp6XdCGG0Bc4SpyFVARLFoEgbIJ0kICjWWgbEJToBZK8vz+OCdlMk3StEw66fTzfr3mNZ3nfM9znjlzks43z3IipYQkSZIkae1XV+0GSJIkSZIqwwRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaYYInSZIkSTXCBE/SOiEido6ISyJifkQsjYjnI+LOiPhMRLym2u0baRFxaUR0Vbsdr1ZE7BYRf4yI7ohIEfHJAWLenW/76BD1HJzHfGpkWzy6RcS/R8QHR/gY9wz2WeXb/1++vakCx3prRPxvRDwaES/l18mfI2JGRNS/2vrXFhFxVkS8XO12SKqOSClVuw2SNKIi4iPAhcAD+fP9wFhgD+AjwD0ppfdUr4UjLyJeDzSklO6qdltejYi4C9gI+ATwLNCVUnq8LGYM8AjwSEppr0Hq+QlwJPDalNJTI9vq0Ssi5gHFlNLbRqj+PYHb8pf3pZR2GiBmc+D1wJ0ppZdexbHOBj4P3ARcAnQCGwNvAqYDP0gpfXp161+b5Mnya1NKt1a7LZLWPBM8STUtIvYFZgO/B45IKb1Ytn094LCU0q+q0b6RFhH1KaUl1W5HpUTEMuCilNKJK4k7F/gMsFNK6b6ybeOAhcA1KaUjR6yxa4E1kOB9H5gBXAu8Hdg7pXTb0HsNWteg13JEHAP8BGgDPprKvtxEREN+7N+vzrFHg/x3VW9KyZ45SUNyiKakWvd5IAHTy5M7gJTSS6XJXUTU5cM250XEixHxZERcVj58LCJujIj7ImLfiLg5Iv4ZEV0R8eF8+zvyIaBLIuLeiDisbP8z8mFpu0XElRGxOB9O9qO8R6M09uiIuC4iFubHmRsR/xURG5XFXZoPPd0pj38OuKFkW1dZ/L9GxK35cZdExMMRcXFZzMS8TU/m52NuRJwSEXUlMdvk7+XUiPhUPgz2+Yi4JSL2Gc6HFBFvjIj/i4hn8yG0d0fEh0q2Hx8RCRgDfCw/3lB/oWzPnz88wLZjgA2A5e81Ig6NiF9FRDE/xx0RcWFEbDZAW3eIiMsj4on8nPw9P79j8+0DDo8rH4oYEWPy118cILYYEf8zwL4HRER7RDyTf26XRkR9RGwdET/Pyx6LiHMj68kcVEQUgcnAQX3nMyI6S7Y3R8SPI+Kp/H3eHxEnR0QMVW/J/hsC7wduBU7Ni09Y2XnJy27Kr4ED8+toCVnyNpjTgX8AnyhP7gBSSotLk7uI2DA/R12RDeUsRsS3I6Kx/BxFxFUR8faIuKvk56/02twjb/+HKBMR78y3vb2kbHJE/KzkZ+r+iPhY2X5vy/c7NiK+ERGPAUuBbSJio4i4IF4Zbv5MRNweEUeV7L/CNRgRhYj4z4h4ID/uExHxg4jYuiyu79zvHdnw1iUR8VBkvxejrL7T8/r+GRGLIuKvEfHvQ3xOktaAIX/5S9LaLCIKwFTgjpTSI8Pc7Xtkw7m+A1wNbAOcCRwQEVNSSk+XxG5FNhTsPKAIfBy4OCJeRzb87xygm+zL51URsW1K6bGy4/0SuAL4PrBjfqwdImLvlNKyPKaVrAfkm8ALwBuAzwJ75e+v1HrAr4CZwH8xyO/5yHo2L88fZ5B9eWwurS+yRPPmvM7TgC7gcODrZEPqynvRTgLmAX1zrc4Ero2ISSml7oHakR9ncn6cJ4H/IPuifhxwaURsmVI6D7gG2Be4Bfg5cP5g9QGklB6MiJuA4yLiP0vOJWRJ36PA70rKWoA/AxeRfWaTgFOAP0XELn29JhExBfhT3tbTyIYBbg28m2zYb+lxRkI78AvgaGB34CygALyRV66jQ8l6Lx8FvjVEXe8ku/76zjtk1wERsSXZua4DvgD8new9XkB2bv6jvLIB/CvQCFycUpobEX8BjomITw2zV7kJ+AHZdfw5oGegoPzn7Q3Aj1NKS1dWaWR/nPgV8Fayn9E/A7uS/RzsExH7lQ0VnUL2M/5fZOdqBtm12ZFSujmlNCci7iW7rn5QdrjjyXqLf5cf+4358eYDnwKeIOvZ/E5EvCaldHbZ/ufl8dPz1/8A/psscf4CcDfZMNSdgBX+GFGmLW/jt8l+n0wi+xl9S0TsnlJ6piR2a+Aysp+zL5H9PjuX7PfcT/KYz5H9DJxJNix2PbLPYdOVtEPSSEsp+fDhw0dNPoAtyXrvfjrM+Dfk8d8tK98rLz+7pOzGvGz3krLXAC8DS4CtS8p3yWM/XlJ2Rl52Qdmxjs3LPzBIG4MsaXtLHrdzybZL87IPD7DfpWTz1fpen5LHNg5xPr6ax+xVVn4h0Atsl7/eJo/7K1AoidszL3//Ss77T8kSi9eVlV9LltA2lpQl4DvD/DyPz+PfU1K2Y1521hD79Z3jbfPYt5ds+yPZl+zNhtj/LODlAcr/X15fU/56TP76iwPEFoH/GWDf8uvl1+XXVl5+L3DrMM7RPOD6Acq/ln/Gu5eVt+Xlrx9G3X/MP7+GsvfwwaHOS152U172lmEcZ7889sxhXhfvyONPHuRn78MlZcX8Pby2pGxDYFHpdQicXH5eyBKuF4H/Kim7nixZ3qTs2N8j+73RmL9+W96WGwZo/1zgf1fyHvtdgyXX/X+Xxb0pL/9y2bnvBaaU/UzMA64uKfsNcPtwzrkPHz7W7MMhmpL0igPz50tLC1M2Z2gucFBZ/MKU0h0lcc+Q/YX/7tS/p25u/tw8wDF/XPb6CrIksa8tRMS2EfGTiHicrBdjGdmXZ4DtB6jzFwOUlbu973gRcVREvHaAmKnA/WnFOVOXkn3hK+89vCalVNrL8tf8eaD3XX6cG9KKvayXAvVkPXer4wrgOfoPCzyB7AvtJaWBEbFlRLTlwxZfJjvHD+Wbt89jNgb2B36WUvrHarbp1bq67HXftXXNAOUrO+9DmQrcW3p95y4l++wPXGGPEhHRQvZHiJ+nlBbnxZeTJUsrDNMcxFMppT8Nu8XD13fdXlpW/jOyPzSU/5zfmVJ6tO9FSumfQAf9z++PyK6b0mGaHyDr1boEILIh1QeQ/Xz+M7IhumPyobTXkiWO5YsCDfSzfBtweEScE9mqoRsO/laXG/A9p5Ruzt9L+Xt+NKV0Z0lcIvujQel7vg3YPSK+ExGHRDbPUdIoYIInqZY9TfZX8UnDjO8b4rRwgG2PseIQqGcGiHupvDy9MtxrgwHiHy+LfZm8hwiWJxWzgb2BL5J9QdwTeG++S/mXuyUlX6gHlX9xPoKsF+kyoBjZnMJjSsI2Y/Bz0be9VL+kJ70y53FlX0BX9TjDkrJhgD8DDouIrfIv0scBf0wp9SVvfUN5rwfeRTYM7yCyL9r7l7V/M7L/N4ur054KKb/mXhqifKDrbbhe7WcyLX/+eUSMi2xhmwJZgvrWPAFcmYGOP5AF+fOq/Jy/mFJ6trQwpdRLNmRyyOs69yIl13XKVmK9GvhQvDI/9Xjg5pTSA/nr8WTn4GSyPyCUPn5VElNqoHNwEtkw6feRjSR4JiJ+GdlKuYNZ1d9tK33PZL2EnyH7Ofkt8I+IuD4fxiypikzwJNWsvDfpBrK/Mg/nHlt9X2omDLBta7KEsdK2Kn2RJyGblbRlan7sE1JK/5NS+lNKaQ5Zz9RAhr00ckrp/1JKB5HNkzqAfH5NPj+PvA2DnQuo3PkYyeO0kyWxHySbP7gFryzA0mcXsjlsp6SUvpNSujGldDsrfsn9B9nQtZVdS0uBulhxkZPyL+99vbHrlxbmC1lU+96Mq/2Z5AlzX0/Wr8huZ9H3ODovH04v3rCu5bzndy5waEQMJ6n9B7B+RPSbK5YnZluy+tfbJcBEYGpE7AzsRv+e4mfIrp92sj/SDPQonRcKA5yDlNLzKaXTUkqTyT6jE8mGqf7fEG2r+O+2lNKylNLXU0q7kv3OOpZsuPbvhvk5SBohJniSat1XyYaUXRTZMuP9RMTYiHhn/vIP+fNxZTF7kg3Tu2EE2veBstdHkSUkN+av+77gla8AOqNSDUgpvZhS+iPZwi2QfTGF7P3uMMBf5D+Yt2tWhZpwA9mX4q3Lyj9I1gP7l9WtOGX3AbuPbHGJD5MtoFI+7G1Y5zil9DzZ/KSjI2KoBKyL7Jorv+fbO0tf5MPeFgA7l8UdzMp7PSulvFemzw3ATnmiUuqDZEnKUJ/928kSiW+RDeUsf8wj6+kqvLqm93MmWQL9zdKVHvtExCYR0XcriL6f4+PKwo4i6/Vc3Z/z35D1yPdda0vIhqUCkFJ6jmyBnt3I7r05Z4DHQKMCBpVSejyldEl+nB0jYv1BQgf73bYP2SJOr+p3W0rp2ZTS/5LNJRxPluhKqhJX0ZRU01JKt+RLkF8I3BER3wP+Rrbi4W5kq9PdB/w6pfRARLQBH4+IXrIvbNuQfXl8BPjGCDTxvfly5r/nlVU07yGbPwbZ6pLPAt+PiC+T9fh8gKzXabVFxFfIeqJuIOu5G0d28/DS+X3fIPtCf01EnE62OMQ7yHoMvpdSevDVtKHEl8l612bl7XqG7D2+A/hMGmIFzmG6mGz1x8nAzHwOVam/kSVl5+W9bovIhmuWz0uCbHjdn4DbIrvXXidZr88RZL2sS8iG6i0CLomIL5ElRCcwcO/JD4HTI+KMvN43kg3BG6yHttLuBd6XL7E/H/hnyu4beD5ZMvCb/LN/hCxBnQF8K6X08BB1TiO7js5JKT1RvjH/GbsAOIwV5w6ulpTST/MVKj9P9keJS8jmUPbN4ZxBdq6vJ/u5vh74ej509Bayn6cvA3N4ZZXIVW3DyxHxQ7LVdJ8nm39Y/jn+B9mQ6z9Fdo/ALqCBLMl6R96jPqSImANcRfbZPUv2e+MDwJ/SALeCydv2t8hugXJynv/+jldW0fw7Q6+2Olg7riVbxfMO4Km8vo8DD+cPSdVS7VVefPjw4WNNPMi+wF1K9mXmRbIvYHeSfanbvCSujmxeyQNk85ieIvti2FRW343AfQMcp4uSleZKyvut/sgrq2hOIRvG9hywmOzL5RZl++5Llui9QLaIy0VkyWkCji+JuxR4fpD3fyn9V9F8B9nCDsX8fDxB9mV7/7L9JpItBPN0fj7mkd3TrK4kZpu8LacO8r7PGMbn88b8PCzK23N36Xsb7DwO87Mfn9eZgD0HidmRLMleTJZg/oxsQYkVVrnMY3+en5MX88/8YmBsScw+ZInD82TJ0Wlkf0woXy1yfbIVKx8h6/H5A1nP32CraO5a1paz8vJxZeU/AhYN49xMAq7Lr78EdJZ9rj8p++w/BcQQ9W1JltwNusoj2fDTpcCVZe+tfBXNu1fj5/yA/LN5LG9HN9ltBk4BNi6Jqye7BcHf8/f2KNmtURrL6isCVw1wnJsYePXR7fP3koADBmnjtmRDN4v5sZ/M6/vPkpi+VTSPGGD/88gS0WeAf5IlsucDrym7Ll4u269AdmuDB3nld9tllKz4O9S5z6+p0uvj0/m5fYrs5+DvZKusvm6g9+3Dh48194iUhj1dQ5JUIXmPzZfIksuRmNsnSZLWQc7BkyRJkqQaYYInSZIkSTXCIZqSJEmSVCPswZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqENzofRSK7++jWrLkb3EqSJEkavTYBHkursHCKCd7osjXZjU8lSZIkCaAJeHS4wSZ4o8tzAI888ggNDQ3VboskSZKkKlm8eDGve93rYBVH95ngjUINDQ0meJIkSZJWmYusSJIkSVKNMMGTJEmSpBphgidJkiRJNcI5eJIkSdI6oqenh2XLllW7Gcqtt9561NVVts/NBE+SJEmqcSklHn/8cRYtWlTtpqhEXV0dkyZNYr311qtYnSZ4kiRJUo3rS+622GIL6uvriYhqN2md19vby2OPPcbChQuZOHFixT4TEzxJkiSphvX09CxP7jbbbLNqN0clNt98cx577DFefvllxo4dW5E6XWRFkiRJqmF9c+7q6+ur3BKV6xua2dPTU7E6TfAkSZKkdYDDMkefkfhMTPAkSZIkqUaY4EmSJElaJx1wwAF88pOfrHYzKsoET5IkSdKo9fjjj/OJT3yClpYWNthgA7bcckv2339/vv/977NkyZJXVfeVV17JmWeeWaGWjg6uoilJkiRpVHr44YfZb7/9GDduHOeccw477bQTL7/8Mg8++CAXX3wxW2+9Ne9617tW2G/ZsmXDWpXyNa95zUg0u6rswZMkSZI0bMVikVmzZlEsFkf8WCeeeCJjxoxhzpw5HHXUUWy//fbstNNOvO997+Oaa67hne98J5AtVvL973+fd7/73Wy00UacddZZANx///28/e1vZ+ONN2bLLbfk3/7t33j66aeX118+RPPCCy+ktbV1eU/hkUceuXxbSonzzjuPbbfdlg033JBddtmFn//858u333jjjUQEN9xwA3vssQf19fW86U1v4oEHHhjp09SPCZ4kSZKkYWlvb6e5uZmpU6fS3NxMe3v7iB3rH//4B9dddx0nnXQSG2200YAxpatQfulLX+Ld73439957LyeccAILFy7krW99K7vuuitz5szht7/9LU888QRHHXXUgHXNmTOH//iP/+ArX/kKDzzwAL/97W95y1vesnz7F7/4RS655BK+973v8be//Y2TTz6Z4447jj/+8Y/96vnCF77A+eefz5w5cxgzZgwnnHBCBc7G8DlEU5IkSdJKFYtFpk+fTm9vLwC9vb3MmDGDQw89lKampoofr7Ozk5QSkydP7lc+fvx4li5dCsBJJ53EueeeC8Cxxx7bL5k6/fTTmTJlCuecc87ysosvvpjXve51PPjgg2y33Xb96l2wYAEbbbQRhx9+OJtssgnNzc3stttuALzwwgtccMEF/OEPf2DfffcFYNttt+Wmm25i5syZvPWtb11ez9lnn7389X/+53/yjne8g6VLl7LBBhtU6tQMyQRPkiRJ0kp1dHQsT+769PT00NnZOSIJXp/ye8Xddttt9Pb28oEPfIAXX3xxefkee+zRL+6OO+5g1qxZbLzxxivU+dBDD62Q4B188ME0Nzez7bbbcthhh3HYYYfxnve8h/r6eu6//36WLl3KwQcf3G+fl156aXkS2GfnnXde/u8JEyYA8OSTTzJx4sRVeNerzwRPkiRJ0kq1trZSV1fXL8krFAq0tLSMyPFaWlqICObNm9evfNtttwVgww037FdePoyzt7eXd77znct7+Er1JV6lNtlkE+68805uvPFGrrvuOk4//XTOOOMMbr/99uXv+ZprruG1r31tv/3WX3/9fq9LF3fpS07LE+OR5Bw8SZIkSSvV1NREW1sbhUIByJK7mTNnjljv3WabbcbBBx/Md77zHV544YVV3n/KlCn87W9/Y5tttqGlpaXfY7A5fWPGjOFtb3sb5513Hn/961/p6uriD3/4AzvssAPrr78+CxYsWKGu173uda/2rVaUPXiSJEmShmXatGkceuihdHZ20tLSMqJDMyFb1XK//fZjjz324IwzzmDnnXemrq6O22+/nXnz5rH77rsPuu9JJ53ERRddxDHHHMOnP/1pxo8fT2dnJz/72c+46KKLlieqfa6++moefvhh3vKWt7Dpppty7bXX0tvby+TJk9lkk0049dRTOfnkk+nt7WX//fdn8eLF3HzzzWy88cZ86EMfGtHzsCpM8CRJkiQNW1NT04gndn1e//rXc9ddd3HOOefwuc99jmKxyPrrr88OO+zAqaeeyoknnjjovltvvTV//vOf+exnP8uhhx7Kiy++SHNzM4cddhh1dSsOZBw3bhxXXnklZ5xxBkuXLqW1tZWf/vSn7LjjjgCceeaZbLHFFnz1q1/l4YcfZty4cUyZMoXPf/7zI/b+V0eklKrdBuUiogHo7u7upqGhodrNkSRJUg1YunQp8+fPZ9KkSWtsJUcNz1CfzeLFi2lsbARoTCktHm6dzsGTJEmSpBphgidJkiRJNcIET5IkSZJqhAmeJEmSJNUIEzxJkiRJqhEmeJIkSZJUI0zwNKhiscisWbMoFovVbookSZKkYTDB04Da29tpbm5m6tSpNDc3097eXu0mSZIkSVoJEzytoFgsMn36dHp7ewHo7e1lxowZ9uRJkiRJo5wJnlbQ0dGxPLnr09PTQ2dnZ5VaJEmSJA0sIrjqqqsG3d7V1UVEcPfddw8ac+ONNxIRLFq0aCSauEaNqXYDNPq0trZSV1fXL8krFAq0tLRUsVWSJEmqlgXdC3h6ydODbh9fP56JjRNH5NiPP/44Z599Ntdccw2PPvooW2yxBbvuuiuf/OQnOeigg1i4cCGbbrrpiBx7bWSCpxU0NTXR1tbGjBkz6OnpoVAoMHPmTJqamqrdNEmSJK1hC7oXsP13t2fJsiWDxtSPrWfuSXMrnuR1dXWx3377MW7cOM477zx23nlnli1bxu9+9ztOOukk5s2bx1ZbbVXRY66ul156ifXWW6/azXCIpgY2bdo0urq6mDVrFl1dXUybNq3aTZIkSVIVPL3kaZYsW8KP3vMj7ph+xwqPH73nRyxZtmTIHr7VdeKJJxIR3HbbbRx55JFst9127LjjjnzqU5/iL3/5C7DiEM3bbruN3XbbjQ022IA99tiDu+66a4V6r732Wrbbbjs23HBDDjzwQLq6ulaI+cUvfsGOO+7I+uuvzzbbbMP555/fb/s222zDWWedxfHHH09jYyMf+chHKvvmV5M9eBpUU1OTvXaSJEkCYPvNt2fKhClr7HjPPPMMv/3tbzn77LPZaKONVtg+bty4FcpeeOEFDj/8cKZOncqPfvQj5s+fzyc+8Yl+MY888gjvfe97+ehHP8rHPvYx5syZwymnnNIv5o477uCoo47ijDPO4Oijj+bmm2/mxBNPZLPNNuP4449fHve1r32N0047jS9+8YuVedMVYIInSZIkadTp7OwkpcQb3vCGYe/z4x//mJ6eHi6++GLq6+vZcccdKRaLfOxjH1se873vfY9tt92Wb3zjG0QEkydP5t577+Xcc89dHnPBBRdw0EEHcdpppwGw3Xbbcf/99/O1r32tX4I3depUTj311Ff/ZivIIZqSJEmSRp2UEpANwRyuuXPnsssuu1BfX7+8bN99910hZp999ulX70Ax++23X7+y/fbbj46ODnp6epaX7bHHHsNu25pigidJkiRp1GltbSUimDt37rD36UsKKxFTnlgOtN9AQ0erzQRPkiRJ0qjzmte8hkMPPZTvfve7vPDCCytsH+iedTvssAP33HMP//znP5eX9S3GUhpTXjZQzE033dSv7Oabb2a77bajUCis8ntZk0zwJEmSJK3U3KfmcufCO1d4zH1q+D1sq+rCCy+kp6eHvfbai1/84hd0dHQwd+5cvvWtb60wrBLg2GOPpa6ujmnTpnH//fdz7bXX8vWvf71fzEc/+lEeeughPvWpT/HAAw/wk5/8hEsvvbRfzCmnnMINN9zAmWeeyYMPPsgPfvADvvOd74y6+XYDcZEVSZIkSYMaXz+e+rH1HPfL4waNqR9bz/j68RU/9qRJk7jzzjs5++yzOeWUU1i4cCGbb745u+++O9/73vdWiN9444359a9/zUc/+lF22203dthhB84991ze9773LY+ZOHEiv/jFLzj55JO58MIL2WuvvTjnnHM44YQTlsdMmTKFK664gtNPP50zzzyTCRMm8JWvfKXfAiujVQxnDKrWjIhoALq7u7tpaGiodnMkSZJUA5YuXcr8+fOZNGkSG2ywwWrVsaB7wZD3uRtfP77iNzlfFwz12SxevJjGxkaAxpTS4uHWaQ+eJEmSpCFNbJxoAreWcA6eJEmSJNUIEzxJkiRJqhEmeJIkSZJUI0zwJEmSJKlGmOBJkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEnD09MDN94IP/1p9tzTM6KHO/744zniiCP6ld18880UCgUOO+ywFeJvvPFGIoJFixatsG3XXXfljDPOGKmmjhomeJIkSZJW7soroaUFDjwQjj02e25pycrXoIsvvpiPf/zj3HTTTSxYsGCNHnttYIInSZIkaWhXXglHHgk77QS33ALPPZc977RTVr6GkrwXXniBK664go997GMcfvjhXHrppWvkuGsTEzwNW7FYZNasWRSLxWo3RZIkSWtKTw+ccgocfjhcdRXssw9svHH2fNVVWfmpp474cE2Ayy+/nMmTJzN58mSOO+44LrnkElJKI37ctYkJnoalvb2d5uZmpk6dSnNzM+3t7dVukiRJktaE2bOhqws+/3moK0sf6urgc5+D+fOzuBHW3t7OcccdB8Bhhx3G888/zw033DDix12bmOBppYrFItOnT6e3txeA3t5eZsyYYU+eJEnSumDhwuz5jW8ceHtfeV/cCHnggQe47bbbeP/73w/AmDFjOProo7n44otH9LhrmzHVboBGv46OjuXJXZ+enh46OztpamqqUqskSZK0RkyYkD3fd182LLPcfff1jxsh7e3tvPzyy7z2ta9dXpZSYuzYsTz77LNsuummNDQ0ANDd3c24ceP67b9o0SIaGxtHtI2jgT14WqnW1lbqyrrjC4UCLS0tVWqRJEmS1pg3vxm22QbOOQfK/uhPby989aswaVIWN0JefvllLrvsMs4//3zuvvvu5Y977rmH5uZmfvzjHwOvfG+9/fbb++2/cOFCHn30USZPnjxibRwtTPC0Uk1NTbS1tVEoFIAsuZs5c6a9d5IkSeuCQgHOPx+uvhqOOKL/KppHHJGVf/3rWdwIufrqq3n22WeZNm0ab3zjG/s9jjzyyOXrQ2yyySbMmDGDU045hauuuor58+fz5z//mWOOOYbtt9+eQw45ZMTaOFqEq86MHhHRAHR3d3cv714eTYrFIp2+ES2HAAAgAElEQVSdnbS0tJjcSZIkrSWWLl3K/PnzmTRpEhtssMHqV3Tlldlqml1dr5RNmpQld+9976tu50COP/54Fi1aRE9PD729vVxzzTUrxNx5553svvvu3HHHHUyZMoUXX3yR8847j5/+9Kd0dXWxxRZbcOCBB/LVr36VrbbaakTaubqG+mwWL17cN6S0MaW0eLh1muCNIqM9wZMkSdLap2IJHmS3Qpg9O1tQZcKEbFjmCPbc1bqRSPBcZEWSJEnS8BQKcMAB1W6FhuAcPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJEnrABdXHH1G4jMxwZMkSZJq2NixYwFYsmRJlVuici+99BLA8vtNV4KraEqSJEk1rFAoMG7cOJ588kkA6uvriYgqt0q9vb089dRT1NfXM2ZM5dIyEzxJkiSpxvXd4LsvydPoUFdXx8SJEyuacJvgSZIkSTUuIpgwYQJbbLEFy5Ytq3ZzlFtvvfWoq6vsrDkTPEmSJGkdUSgUKjrfS6OPi6xIkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4Gm1FYtFZs2aRbFYrHZTJEmSJGGCp9XU3t5Oc3MzU6dOpbm5mfb29mo3SZIkSVrnRUqp2m1QLiIagO7u7m4aGhqq3ZxBFYtFmpub6e3tXV5WKBTo6uqiqampii2TJEmSasPixYtpbGwEaEwpLR7ufvbgaZV1dHT0S+4Aenp66OzsrFKLJEmSJIEJnlZDa2srdXX9L51CoUBLS0uVWiRJkiQJTPC0Gpqammhra6NQKABZcjdz5kyHZ0qSJElV5hy8UWRtmYPXp1gs0tnZSUtLi8mdJEmSVEGrOwdvzMg1SbWuqanJxE6SJEkaRRyiKUmSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaMSoTvIg4MSLmR8TSiLgjIt68kvj3RcT9EfFi/vyesu0REWdExGMR8c+IuDEidiyL2TQifhgR3fnjhxExrmT75IiYFRFP5O16OCLOioixJTHvjYg5EbEoIl6IiLsj4t8qdV4kSZIkaSijLsGLiKOBbwJnA7sBs4HfRMTEQeL3BS4Hfgjskj9fERF7l4R9BvgU8O/AnsDjwO8jYpOSmJ8AuwKH5Y9d87r6LAMuAw4BJgOfBD4CfLkk5pm83fsCOwOXAJdExKGrdBIkSZIkaTVESqnabegnIm4F7kwpfaykbC5wVUrpcwPEXw40pJT+paTst8CzKaVjIiKAx4BvppTOzbevDzwBfDalNDMitgfuB/ZJKd2ax+wD3AK8IaX0wCBtvQDYM6U0aA9jRNwJXJNSOm0Y770B6O7u7qahoWFl4ZIkSZJq1OLFi2lsbARoTCktHu5+o6oHLyLWA3YHrivbdB3wpkF223eA+N+VxE8CtiqNSSm9CPyxJGZfoLsvuctj/gJ0D3bciGgh6+n74yDbIyIOIuvt+9MgMetHREPfA9hkoDhJkiRJGo5RleAB44ECWe9aqSfIkrSBbLWS+K1KyoaKeXKAup8sP25E3BwRS4EOsuGjp5dtb4yI54GXgGuAj6eUfj9I2z9HlkT2PYqDxEmSJEnSSo22BK9P+bjRGKBsVeNXFjNQ/QPVczQwBTgWeAdwatn258jm7+0JfAG4ICIOGKTdXwUaSx5Ng8RJkiRJ0kqNqXYDyjwN9LBib90WrNgD1+fxlcQ/nj9vBSwcImbLAerevPy4KaVH8n/eHxEFoC0izk8p9eTbe4HOPObufH7f54AbyyvPh4q+2Pc6my4oSZIkSatnVPXgpZReAu4ADi7bdDBw8yC73TJA/CEl8fPJErjlMflcv7eWxNwCNEbEXiUxe5P1qg12XMh6+Mbmz0PFrD/EdkmSJEmqiNHWgwdwAfDDiJhDlnhNByYC3weIiMuAR0tW1Pxv4E8R8Vng/4B3A28D9gdIKaWI+Cbw+YjoIJs793lgCdmtEUgpzc1X3rwoImbk9bYBV/etoBkRHyC7VcK9ZL1uu5MNsbw8pfRyHvM5YA7wELAe8Hbgg8DyFUElSZIkaaSMugQvpXR5RGxGtnjJBOA+4O0ppb/nIROB3pL4myPi/cBZwJlkydXRpStiAucBGwIXApsCtwKHpJSeK4n5APAtXllt81dk983r8zLwWWA7sl65vwPfBb5RErNRfowm4J/APOC4lNLlq34m1j7FYpGOjg5aW1tpanI6oSRJkrSmjbr74K3L1ub74LW3tzN9+nR6e3upq6ujra2NadOmVbtZkiRJ0lppde+DZ4I3iqytCV6xWKS5uZne3uUdqxQKBbq6uuzJkyRJklZDTdzoXGunjo6OfskdQE9PD52dnYPsIUmSJGkkmODpVWttbaWurv+lVCgUaGlpqVKLJEmSpHWTCZ5etaamJtra2igUCkCW3M2cOdPhmZIkSdIa5hy8UWRtnYPXp1gs0tnZSUtLi8mdJEmS9Cqs7hy8UXebBK29mpqaTOwkSZKkKnKIpiRJkiTVCBM8SZIkSaoRJniSJEmSVCNM8CRJkiSpRpjgSZIkSVKNMMGTJEmSpBphgidJkiRJNcIET5IkSZJqhAmeJEmSJNUIEzxJkiRJqhEmeJIkSZJUI0zwJEmSJKlGmOBJkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPI6ZYLDJr1iyKxWK1myJJkiStE0zwNCLa29tpbm5m6tSpNDc3097eXu0mSZIkSTUvUkrVboNyEdEAdHd3d9PQ0FDt5qy2YrFIc3Mzvb29y8sKhQJdXV00NTVVsWWSJEnS2mHx4sU0NjYCNKaUFg93P3vwVHEdHR39kjuAnp4eOjs7q9QiSZIkad1ggqeKa21tpa6u/6VVKBRoaWmpUoskSZKkdYMJniquqamJtrY2CoUCkCV3M2fOdHimJEmSNMKcgzeK1MocvD7FYpHOzk5aWlpM7iRJkqRVsLpz8MaMXJO0rmtqajKxkyRJktYgh2hKkiRJUo0wwZMkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaYYInSZIkSTXCBE+SJEmSaoQJniRJkiTVCBM8SZIkSaoRJnhaY4rFIrNmzaJYLFa7KZIkSVJNMsHTGtHe3k5zczNTp06lubmZ9vb2ajdJkiRJqjmRUqp2G5SLiAagu7u7m4aGhmo3p2KKxSLNzc309vYuLysUCnR1ddHU1FTFlkmSJEmj0+LFi2lsbARoTCktHu5+9uBpxHV0dPRL7gB6enro7OysUoskSZKk2mSCpxHX2tpKXV3/S61QKNDS0lKlFkmSJEm1yQRPI66pqYm2tjYKhQKQJXczZ850eKYkSZJUYc7BG0VqdQ5en2KxSGdnJy0tLSZ3kiRJ0hBWdw7emJFrktRfU1OTiZ0kSZI0ghyiKUmSJEk1wgRPkiRJkmqECZ4kSZIk1Qjn4GlgPT0wezYsXAgTJsCb3wz5KpiSJEmSRid78LSiK6+ElhY48EA49tjsuaUlK5ckSZI0apngqb8rr4Qjj4SddoJbboHnnsued9opKzfJkyRJkkYt74M3ilT9Png9Pby87TY8P3lbHr7kfKgryf97e9n2w6ew8YPzGfPQfIdrSpIkSSPI++DpVXviNz9nywVFDju4yK3/s+cK2/eZCLf8Po87/OgqtFCSJEnSUEzwtNySBQ8BcPL/+x9am3dbYXtH153Q/pHlcZIkSZJGFxM8Lbdsy/EA7PL0GN6wz5QVtm8056/94iRJkiSNLi6youWe33s35o+Drb51MfT29t/Y28uW376Eh8dlcZIkSZJGHxM8vaJQ4JRDoPH62XDEEf1X0TziCBqvn82ph+ACK5IkSdIoZYKnfn65A8y/6Dy4915405ugoSF7vu8+5l90Hr/codotlCRJkjQYEzytYNHbp0JnJ8yaBT/5Sfbc0ZGVV1ixWGTWrFkUi8WK1y1JkiSta1xkRSuY+9Tc7B+TG7IHwJP3vFJeIe3t7UyfPp3e3l7q6upoa2tj2rRpFT2GJEmStC7xRuejSLVvdL6gewHbf3d7lixbMmhM/dh65p40l4mNE1/VsYrFIs3NzfSWLOZSKBTo6uqiqanpVdUtSZIkre280bletYmNE5l70lyeXvL0oDHj68e/6uQOoKOjo19yB9DT00NnZ6cJniRJkrSaTPDUz8TGiRVJ4FamtbWVurq6FXrwWlpaRvzYkiRJUq1ykRVVRVNTE21tbRTyWy4UCgVmzpxp750kSZL0KjgHbxSp9hy8aigWi3R2dtLS0mJyJ0mSJOWcg6e1UlNTk4mdJEmSVCEO0ZQkSZKkGmGCJ0mSJEk1wgRPkiRJkmqECZ4kSZIk1QgTPEmSJEmqESZ4kiRJklQjTPAkSZIkqUaY4EmSJElSjTDBkyRJkqQaYYInSZIkSTXCBE+SJEmSaoQJnkaVYrHIrFmzKBaL1W6KJEmStNYxwdOo0d7eTnNzM1OnTqW5uZn29vZqN0mSJElaq0RKqdptUC4iGoDu7u5uGhoaqt2cNapYLNLc3Exvb+/yskKhQFdXF01NTVVsmSRJkrTmLV68mMbGRoDGlNLi4e5nD55GhY6Ojn7JHUBPTw+dnZ1VapEkSZK09jHB06jQ2tpKXV3/y7FQKNDS0lKlFkmSJElrHxM8jQpNTU20tbVRKBSALLmbOXOmwzMlSZKkVeAcvFFkVM/B6+mB2bNh4UKYMAHe/GbIk7FKKhaLdHZ20tLSYnInSZKkddbqzsEbM3JNUs248ko45RTo6nqlbJtt4Pzz4b3vreihmpqaTOwkSZKk1eQQTQ3pqR/OJB15JItaJzLv15dyd8ds5v36Uha1TiQdeSRP/XBmtZsoSZIkKecQzVFktA3RXPDMfHpbXs9fN08c8X5IJX8OiF646mew01NBofMhJr5mUvUaKkmSJNUYh2iq4pbO+j3bPZuY960zmHPQO1fY/lTLr5j0wS/z4Kzfw/umV6GFkiRJkkqtUoIXEe9ajWP8PqX0z9XYT1U29omnAdhqn4PYdcKUFbbfvc8LwJeXx0mSJEmqrlXtwbtqFeMT0Ao8vIr7aRRYtuV4ADaY9xC07L/C9g3nPdQvTpIkSVJ1rc4iK1ullOqG8wCWrE6jIuLEiJgfEUsj4o6IePNK4t8XEfdHxIv583vKtkdEnBERj0XEPyPixojYsSxm04j4YUR0548fRsS4ku2TI2JWRDyRt+vhiDgrIsaWxHwkImZHxLP54/qI2Gt1zsFo8PzeuzF/HGz1rYuht7f/xt5etvz2JTw8LouTJEmSVH2rmuD9AFiV4ZY/AoY9IRAgIo4GvgmcDewGzAZ+ExETB4nfF7gc+CGwS/58RUTsXRL2GeBTwL8DewKPA7+PiE1KYn4C7Aoclj92zevqswy4DDgEmAx8EvgI8OWSmAOAnwIHAvsCC4DrIuK1q3IORo1CgVMOgcbrZ8MRR8Att8Bzz2XPRxxB4/WzOfUQRuR+eJIkSZJW3ahbRTMibgXuTCl9rKRsLnBVSulzA8RfDjSklP6lpOy3wLMppWMiIoDHgG+mlM7Nt68PPAF8NqU0MyK2B+4H9kkp3ZrH7APcArwhpfTAIG29ANgzpTRgD2NEFIBngX9PKV02jPc+qlbRvHPhnezetjsPNX2Nbc/6bv/74E2axMNfOJHXFz/NHdPvYMoAc/QkSZIkrZ6aWEUzItYDdgf+q2zTdcCbBtltX+AbZWW/I+thA5gEbJXXAUBK6cWI+GNe58y8ju6+5C6P+UtEdOcxKyR4EdFC1tN35RBvqR4YCzwz0MY80Vy/pGiTgeKq7ZY9J7Bo9hVsfOtdjH3iaZZtOZ7n996Nuc88CMVqt06SJElSn4oleBHxeuDjQDOwfMxeSmlVVt4cn+/7RFn5E2RJ2kC2Wkn8ViVl5THNJTFPDlD3k+XHjYibgSlkiVkbcPog7YIsUX0UuH6Q7Z8DvjTE/lU1vn489WPrOe6Xx/Xf8BRwX/bP+rH1jK93kRVJkiRpNKhkD95VwHfI5sP1riR2ZcrHjcYAZasav7KYgeofqJ6jyXradgG+BpwKnLfCjhGfAY4BDkgpLR2k3V8FLih5vQmjqE9sYuNE5p40l6eXDH4bhPH145nYOOD0SEmSJElrWCUTvBdSSjNfZR1PAz2s2Fu3BSv2wPV5fCXxj+fPWwELh4jZcoC6Ny8/bkrpkfyf9+dz7Noi4vyUUk9fTEScCnweeFtK6a+DtJuU0ovAiyX7DRZaNRMbJ1Y1gSsWi3R0dNDa2kpTU1PV2iFJkiStDVbnNgmD+WpEnBsRB0fEW/oeq1JBSukl4A7g4LJNBwM3D7LbLQPEH1ISP58sgVsek8/1e2tJzC1AY+ktDfJVOBuHOC5kPXxj8+e+/T4NnAYcllKaM8S+Won29naam5uZOnUqzc3NtLe3V7tJkiRJ0qhWsVU0I+JCstsEzOWVIZoppXTUKtZzNNntCT5KlnhNJ7sdwY4ppb9HxGXAo30rakbEm4A/AV8A/g94N3AWsH/JipifJZvv9mGgg6x37QBgckrpuTzmN8DWwIy8KW3A31NK78y3f4DsVgn3kvW67U62uMuNKaXj8pjPAGcCxwJ/Lnlbz6eUnh/Gex9Vq2hWU7FYpLm5md6S++8VCgW6urrsyZMkSVLNGw2raL6VLAl7VRljSunyiNiMbPGSCWTLebw9pfT3PGQiJXP8Uko3R8T7yZK6M4GHgKNLV8QkmyO3IXAhsClwK3BIX3KX+wDwLV5ZbfNXZPfN6/My8FlgO7Ieu78D36X/Cp4nAusBPy97W18GzhjeGRBAR0dHv+QOoKenh87OThM8SZIkaRCV7MG7BDg7pdRZkQrXQfbgvcIePEmSJK3LVrcHr5Jz8HYD7ouIeyLitoi4PSJuq2D9Woc0NTXR1tZGoZDdcaNQKDBz5kyTO0mSJGkIlezBax6ovGRopVbCHrwVFYtFOjs7aWlpMbmTJEnSOmO0zMEbyGUVPIbWMU1NTSZ2kiRJ0jBVMsHbqeTf65PdluCvmOBJkiRJ0hpRsQQvpfTp0tcRsTHws0rVL0mSJEkaWiUXWSmXyG4pIEmSJElaAyrWgxcRt5MldQAFsnvYfa1S9UuSJEmShlbJOXhHlvz7ZeDJlNKyCtYvSZIkSRrCiK6iGRGklFxkRZIkSZLWAFfRlCRJkqQa4SqakiRJklQjXEVTkiRJkmrESK+ieV6l6pcAisUiHR0dtLa20tTUVO3mSJIkSaOKq2hqrdHe3s706dPp7e2lrq6OtrY2pk2bVu1mSZIkSaNGpJRWHqU1IiIagO7u7m4aGhqq3Zyh9fTA7NmwcCFMmABvfjMUCiN2uGKxSHNzM729vcvLCoUCXV1d9uRJkiSp5ixevJjGxkaAxpTS4uHuV7E5eBFxTkSMK3m9aUScXan6NYpceSW0tMCBB8Kxx2bPLS1Z+Qjp6Ojol9wB9PT00NnZOWLHlCRJktY2lVxk5V9SSov6XqSUngX+pYL1axR46oczSUceyaLWicz79aXc3TGbeb++lEWtE0lHHslTP5w5IsdtbW2lrq7/5VooFGhpaRmR40mSJElro4oN0YyIvwJvSik9n79uAP6cUtpp6D3VZ7QP0VzwzHx6W17PXzdPHPF+SCX5VvTCVT+DnZ4KCp0PMfE1kyp+/Pb2dmbMmEFPTw+FQoGZM2c6B0+SJEk1aXWHaFZykZVvA3+OiMuBAI4CvlHB+lVlS2f9nu2eTcz71hnMOeidK2x/quVXTPrgl3lw1u/hfdMrfvxp06Zx6KGH0tnZSUtLi3PvJEmSpDKVvNH5RRFxK/DWvOjYlNLfKlW/qm/sE08DsNU+B7HrhCkrbL97nxeALy+PGwlNTU0mdpIkSdIgKtmDR0rprxHxBLA+QERMTCktqOQxVD3LthwPwAbzHoKW/VfYvuG8h/rFSZIkSVqzKrmK5nsiYi7wEPA7YD7wf5WqX9X3/N67MX8cbPWti6FsRUt6e9ny25fw8LgsTpIkSdKaV8lVNL8M7A10ppS2B/YF7q5g/aq2QoFTDoHG62fDEUfALbfAc89lz0ccQeP1szn1EEb0fniSJEmSBlfJBO/FvtVdImK9lNJtwC4VrF+jwC93gPkXnQf33gtvehM0NGTP993H/IvO45c7VLuFkiRJ0rqrknPwFuY3Ov81cG1E/AN4qoL1a5S4Zc8JLJp9BRvfehdjn3iaZVuO5/m9d2PuMw9CsdqtkyRJktZdlUzwvg88n1I6LSIOABrI5uKpRoyvH0/92HqO++Vx/Tc8BdyX/bN+bD3j611kRZIkSaqGSiZ4RwLfjojZwBXAtSmllytYv6psYuNE5p40l6eXDH4bhPH145nYOHENtkqSJElSn0gpVa6yiDHA24B/Jbsf3uyU0ocrdoAaFxENQHd3dzcNDQ3Vbo4kSZKkKlm8eDGNjY0AjX1rnQxHpe+D93JE3AxsDmwNHFDJ+qVyxWKRjo4OWltbvQG6JEmS1nmVvA/e8RFxDXAbsBPwpZTSpErVL5Vrb2+nubmZqVOn0tzcTHt7e7WbJEmSJFVVxYZoRsS5wP+mlOZUpMJ1kEM0h69YLNLc3ExvyQ3XC4UCXV1d9uRJkiRprbe6QzQr1oOXUvqsyZ3WlI6Ojn7JHUBPTw+dnZ1VapEkSZJUfZW80bm0xrS2tlJX1//yLRQKtLS0VKlFkiRJUvVVJMGLiDERsWNEHB0RZ0bELytRrzSYpqYm2traKBQKQJbczZw50+GZkiRJWqet8hy8iNiWbBGVN5Y8tiNbkfMlYC5wb0rpQ5Vtau1zDt6qKxaLdHZ20tLSYnInSZKkmrFGbpMQET8CjgESsATYCLgG+ApwL9CRUupZlTqlV6OpqcnETpIkScqt6hDNI4GPAxuT3efuO8AhwJ7A303uJEmSJKl6VjXB+xpwWUppaUrp+ZTSJ4D9gAOB+yPisIq3UJIkSZI0LKuU4KWUTkspPV9WdgewF/BN4PKI+ElEbF7BNkqSJEmShmGVV9GMiHMiYq/SspT5b2AHYH1gXoXaJ0mSJEkaptW5TcIE4OqIWBgRbRHxjohYHyCl9GhK6X3AByvaSkmSJEnSSq1ygpdS+jCwJXAUsAg4H3g6Iq6MiOMjYrOU0jUVbqckSZIkaSVW60bn+ZDM2Smlz6SU3kA2B+8vwEeAxyLiTxFxakS8tpKNlSRJkiQNbpXugzeYlNJcshucn5cvsPKu/AHw9UocQ5IkSZI0tIokeAARMTaltCyl9BTQnj9U4xZ0L+DpJU9DTw8b33oXY594mmVbjuf5vXeDQoHx9eOZ2DhxjbWnWCzS0dFBa2urN0CXJEnSOqciCV5E1AG3A7tWoj6tHRZ0L2D7727Pofcs4fzrYNKiV7bNHwenHAK/26WeuSfNXSNJXnt7O9OnT6e3t5e6ujra2tqYNm3aiB9XkiRJGi1Waw5euZRSL3BbROxYifq0dnh6ydMces8SfvG/waZ7voV5v76UuztmM+/Xl7Lpnm/hF/8bHHrPkqyHb4QVi8XlyR1Ab28vM2bMoFgsjvixJUmSpNGiYkM0yRZauTsiHgCWAEG2HsteQ++mtVZPD+dfB91vezPjfjuLcXX53wta9oe3/xuLDjuQr1/3Jxb19Ix4Uzo6OpYnd680r4fOzk6HakqSJGmdUckE790DlKUK1q9RZuNb72LSIpj3Hye8ktz1qavjiY9/mMnv+hMP3noXNO05om1pbW2lrq6uX5JXKBT+P3v3Hh31dd97//2dX3FAJkgkkwjHc5gCowJJfAEXQ1pDkEwQx12PT/oQP+4lXk9BDUrjmqaGOk2ay8mlJyetcWwcdx3UDuaJ0/YklDYpvRjKqRrUZVfBMSZOjYgEyOrPseVM7REhgoTM7OeP3wyMBiE0F2lGms9rrVka//aePd844MWXvff3SywWm9DvFRERERGpJiUf0TSzJzJv/wrYm/f6q1LXl+o1YzA4enl+yaJRx89lnmfnTaRIJEJHRwee5wFBcrdr1y7t3omIiIhITSnHDt4DmZ/vK8NaMoVcaAwDMLPnZHAsM8+snpMj5k20trY2Wltb6evrIxaLKbkTERERkZpTcoLnnHs58/NFADNrBN5Q6rpS/c6uXMbpBpi3czfccQ/kHtNMp2l89HFONQTzJkskElFiJyIiIiI1qyxVNAHM7L1mdhw4CRwATgPfKNf6UoU8j23rof5QF8kNzZzIVNE8sX8PyQ3N1B/qYvv6YJ6IiIiIiEy8chZZ+QywEjjsnLvZzG4FfquM60uVCdeFOXBTHRsZZsfBwyy+8/DFsVMNsPmuoA/ew3WTc0RTRERERKTWmXPlKXRpZkeccyvM7DngVufcT8zsWefc8rJ8QQ0wsznA0NDQEHPmzKl0OOMyMDQQ9LlLpZjdfZQZgwkuNIaDY5meR7guPClNzkVEREREppMzZ85QX18PUO+cOzPez5VzB+9lM2sA9gP/YGb/CfygjOtLFZpfP/9SAjfBrRBERERERGRsZUvwnHN3Zt5+wszWAnMI7uKJiIiIiIjIJCjnDt5Fzrl/mYh1RURERERE5MrKVkVTREREREREKqssO3hm9jPAYuCd2Zdz7pfLsbZIqXzfp7e3l6amJvXIExEREZFpreAEz8wWAjeQk8wBP5dZ6yfAceD5MsYoUrR4PM6WLVtIp9OEQiE6Ojpoa2urdFgiIiIiIhOioDYJZvYV4FcBBwwD1wJ/DzxBkNT1OudSExBnTZiKbRKqme/7RKNR0un0xWee59Hf36+dPBERERGpasW2SSj0Dt77gPuA2cDbgC8B64EVwItK7qSa9Pb2jkjuAFKpFH19fRWKSERERERkYhWa4P0x8Mx2ahcAACAASURBVGXn3Hnn3Fnn3O8Avwg0Ay+Y2YayRyhSpKamJkKhkb/EPc8jFotVKCIRERERkYlVUILnnPuEc+5s3rNvA7cCDwNfNbO/MLO3lDFGkaJEIhE6OjrwPA8Ikrtdu3bpeKaIiIiITFsF3cG76mJm1wM7gbXOuTeXbeEaoTt4E8P3ffr6+ojFYkruRERERGRKKPYOXlkbnTvnXgI2mtkvlXNdkVJEIhEldiIiIiJSEyak0blz7u8nYl0RERERERG5sglJ8ERERERERGTylSXBM7PlZnZNOdYSERERERGR4pTrDt4RYCnwvTKtJ1NdKgVdXfDyy3DddbB6NWSqWYqIiIiIyMQoV4JnZVpHpriBoQF++ldf4/pPf5E3/Mf3Lz7/8X95Gy996nf5mff9P8yvn1/BCEVEREREpi/dwZOyGRga4CMfauJnf/P3ODDr+6xqg9kfhVVtcGDW9/nZ3/w9PvKhJgaGBiodqoiIiIjItFTWNglS2xI/HOR//MNP+P67lxH58w7+JJTz9wfpNN//9S384T8cJfHDwYru4vm+T29vL01NTWqfICIiIiLTinbwpGxmdx9lQRLObv8dll//8yy/bvml1/U/z4+2bWVhMphXKfF4nGg0SktLC9FolHg8XrFYRERERETKTQmelM2MwQQA55csGnX8XOZ5dt5k832fLVu2kE6nAUin07S3t+P7fkXiEREREREpNyV4UjYXGsMAzOw5Oer4rMzz7LzJ1tvbezG5y0qlUvT19VUkHhERERGRclOCJ2VzduUyTjfAvJ27IS+RIp2m8dHHOdUQzKuEpqYmQqGRv+Q9zyMWi1UkHhERERGRcitXgvdpoDLn7qR6eB7b1kP9oS5473vh6afhhz8Mfr73vdQf6mL7eirWDy8SidDR0YGX+X7P89i1a5cKrYiIiIjItGHOuUrHIBlmNgcYGhoaYs6cOZUOp2DPvvwst3Tcwjff+DusfHjvyD5486+n+3fex7t/+Ajf3vJtll+3vGJx+r5PX18fsVhMyZ2IiIiIVKUzZ85QX18PUO+cOzPez6lNgpRNuC5M3Yw63v3DRwhtgtUvwnVn4eXZ0BV9ifQPH6FuRh3husrcwcuKRCJK7ERERERkWlKCJ2Uzv34+x+89TmL4yqd1w3XhivbAExERERGZzpTgSVnNr5+vBE5EREREpELKXkXTzP6Lme0u97oiIiIiIiIytolok/Am4P+dgHVFRERERERkDAUf0TSzO68yZWGRsYiIiIiIiEgJirmD93XAATbGHPVekCnD9316e3tpampSdU0RERERmdKKOaL5MrDRORca7QVUrsGZSIHi8TjRaJSWlhai0SjxeLzSIYmIiIiIFK2YBO/bjJ3EXW13T6Qq+L7Pli1bSKfTAKTTadrb2/F9v8KRiYiIiIgUp5gE74+Bp8YY7wOaiwtHZPL09vZeTO6yUqkUfX19FYpIRERERKQ0Bd/Bc851XWX8R8A3i45IZJI0NTURCoVGJHme5xGLxSoYlYiIiIhI8SaiTYLIlBCJROjo6MDzPCBI7nbt2qVCKyIiIiIyZZlz4y94aWY3At91zqWvOjmY/w7ghHPup0XGV1PMbA4wNDQ0xJw5cyodTs3wfZ++vj5isZiSOxERERGpCmfOnKG+vh6g3jl3ZryfKzTBSwHznHM/GOf8M8DNzrlT4/6SGqYET0REREREoPgEr9A7eAZ81syGxzn/mgLXFxERERERkSIVmuAdBhYXMP9p4FyB3yHTyMDQAInhBKRSzO4+yozBBBcaw5xduQw8j3BdmPn18ysdpoiIiIjItFBQguecWztBcVxkZh8Cfg+4Dvh34MNjVe40s43AZ4FFwEngD5xzf5MzbsCngC3AXKAbuNc59+85c+YCO4E7M4/+FrjPOZfMjC8G/hfwdqAe+D7wF8CnnXMXMnPeAXwGuAWIAr/rnHu4pH8ZU9zA0ABLH1tK67FhdhyEBclLY6cbYNt6OHBTHcfvPa4kT0RERESkDKqqiqaZ3Q08DPwhsAzoAv7RzEb907+ZvQv4KvAEcFPm59fMbGXOtAeA+4HfBlYArwD/ZGZvzJnzF8DNwIbM6+bMWlkXgC8D6wl2MD8MfAD4dM6cOuAU8PuZ76h5ieEErceG2bfXmLtiDT379/Bcbxc9+/cwd8Ua9u01Wo8NBzt8IiIiIiJSsoKKrEw0M+sGnnXO/VbOs+PA151zHx1l/leBOc65/5rz7Engdefcr2Z2774PPOyc+0Jm/A3AIPAR59wuM1sKvACscs51Z+asIjheusQ5d+IKsT4ErHDOrR5lrD/znQXt4E23IivP+keYe8OtzF2xhoYnOyGU8/cJ6TTJDc28duQwyee/xfLIisoFmsf3fXp7e2lqalJVTRERERGpiGKLrFTNDp6ZXUNwvPFg3tBB4Beu8LF3jTL/QM78BcC83DnOuR8TNGLPznkXMJRN7jJz/g0YutL3mlmMYKevpIbuZvYGM5uTfQFvvOqHppDZ3UdZkIRXtm4emdwBhEIM3reJhclgXrWIx+NEo1FaWlqIRqPE4/FKhyQiIiIiMm5Vk+ABYcAj2F3LNUiQpI1m3lXmz8t5NtacV0dZ+9X87zWzp8zsPNBLcHz0k1eIa7w+SpBIZl9+ietVlRmDwdHL80sWjTp+LvM8O6/SfN9ny5YtpNNBm8d0Ok17ezu+P63+bxERERGRaayaErys/DOjNsqzQudfbc5o64+2zt3AcuDXgF8Cto8R13h8nqBoS/Y1rc4DXmgMAzCz5+So47Myz7PzKq23t/dicpeVSqXo6+urUEQiIiIiIoUptE3CCGZ2O3A78FbykkXn3OYCl0sAKS7frXsrl+/AZb1ylfnZYifzgJfHmNM4ytpvyf9e59x/ZN6+YGYe0GFmO5xzqSvEN6bMcdEfZ/85uDI4fZxduYzTDTBv5264457L7uA1Pvo4pxqCedWgqamJUCg0IsnzPI9YLFbBqERERERExq/oHTwz+xTB3bbbCY5Xzs17FcQ59xPg28B78obeAzx1hY89Pcr89TnzTxMkcBfnZO76vTtnztNAvZndmjNnJcGO2pW+F4IdvhmZnzIaz2Pbeqg/1EVyQzMnMlU0T+zfQ3JDM/WHuti+PphXDSKRCB0dHXiZeDzPY9euXSq0IiIiIiJTRik7eB8EfsM598RVZ47fQ8ATZvYMQeK1BZhP0IMOM/sy8FJORc1HgMNm9hHgG8B/A9YBtwE455yZPQx8zMx6Ce7OfQwYJmiNgHPueKby5p+aWXtm3Q7g77IVNM3s1wlaJTxPsON2C8Hxyq86536amXMNQZ88gGuA683sZuCsc64mz/iF68IcuKmOjQyz4+BhFt95+OLYqQbYfFfQB+/huuo4ognQ1tZGa2srfX19xGIxJXciIiIiMqUU3SbBzP4TuNU5N/oFq2IDChqdP0DQ6Py7BA3DD2fG/gXod879Rs789wGfAxZyqdH5X+eMZxudtzOy0fl3c+a8icsbnf92TqPzuzMx/RzBjt2LwFeALzrnzmfm/CzBjmG+b463Qfx0a5MAQbPzxHACUilmdx9lxmCCC43h4Fim5xGuC6vJuYiIiIhInmLbJJSS4H2BYHfqs0UtIJeZjgmeiIiIiIgUrtgEr6Ajmpnm3lkhYIuZrQO+Q3CE8SLn3P2FrC0iIiIiIiKlKfQOXn65w+cyP9+Z97y4bUEREREREREpWkEJnnOueaICERERERERkdKU0iZhvl2hcZuZqWqGTBu+79PZ2Ynv+5UORURERERkTEUneAQVI9+S/9DM3szo1SRFppx4PE40GqWlpYVoNEo8Hq90SCIiIiIiV1RKFc000Oic+0He8yjwgnPu2jLEV1NURbO6+L5PNBolnU5ffOZ5Hv39/eqPJyIiIiITalKqaMKISpoO+KyZDecMe8BKLhVfEZmyent7RyR3AKlUir6+PiV4IiIiIlKVCk7wuFRJ04AbgJ/kjP0EOAY8WGJcIhXX1NREKBS6bAcvFotVMCoRERERkSsrOMHLVtI0s8eBrc65H5Y9KpEqEIlE6OjooL29nVQqhed57Nq1S7t3IiIiIlK1SrmD90VG73fngPNAH/AN59xrxYdXW3QHrzr5vk9fXx+xWEzJnYiIiIhMimLv4JWS4HUCywnu3Z0gOLLZBKSAHmAxQbJ3m3PuhaK+pMYowRMREREREZjEIis5vgG8BmzKfmEmQYkD/wr8KfAXwBeB1hK+R6aZgaEBEsMJSKWY3X2UGYMJLjSGObtyGXge4bow8+vVSlFEREREpFCl7OC9BLwnf3fOzN4BHHTOXW9myzPvw6WHOv3Vwg7ewNAASx9bSuuxYXYchAXJS2OnG2DbejhwUx3H7z2uJE9EREREalaxO3ilNDqvB946yvO3ANnsJAlcU8J3yDSTGE7QemyYfXuNuSvW0LN/D8/1dtGzfw9zV6xh316j9dhwsMMnIiIiIiIFKfWI5m4z2wYcIbhvdytBi4SvZ+bcCnyvpAhlekml2HEQhtatpuHJThpCmb9jiN0Gd9xDckMzDx48TDKVqmycY/B9n97eXpqamlR0RURERESqSik7eO3A/wH+N/AiMJB5/3+AD2bm9AC/WUqAMr3M7j7KgiS8snUzhPJ++YVCDN63iYXJYF41isfjRKNRWlpaiEajxOPxSockIiIiInJR0Qmec+6sc+4DwJsJmp8vB97snNvinPtRZs5zzrnnyhOqTAczBoOjl+eXLBp1/FzmeXZeNfF9ny1btlxsfJ5Op2lvb8f3/QpHJiIiIiISKGUHD7iY6H3HOXfMOXe2HEHJ9HWhMai3M7Pn5KjjszLPs/OqSW9v78XkLiuVStHX11ehiERERERERirlDh5mdjtwO0GxlRHJonNucylry/R0duUyTjfAvJ274Y57Rh7TTKdpfPRxTjUE86pNU1MToVBoRJLneR6xWKyCUYmIiIiIXFL0Dp6ZfQo4SJDghYG5eS+Ry3ke29ZD/aEukhuaOZGponli/x6SG5qpP9TF9vXBvGoTiUTo6OjAy8TmeR67du1SoRURERERqRql9MF7GXjAOfdEeUOqXbXeB+9UA2yfAn3wfN+nr6+PWCym5E5EREREJkSxffBKSfD+E7jVOTf6ZSopWC0keBAkeYnhBKRSzO4+yozBBBcaw8GxTM8jXBeu2uRORERERGQyVCLB+wJw1jn32aIWkMvUSoInIiIiIiJjKzbBK6XIykxgi5mtA74DXMgddM7dX8LaIiIiIiIiUqBSErwbgWyPu3fmjRW3LSgiIiIiIiJFKzrBc841lzMQkanM9316e3tpampS4RURERERqZiSG52L1Lp4PE40GqWlpYVoNEo8Hq90SCIiIiJSo4ousgJgZquBdmAR8D7n3Etmdg9w2jn3r2WKsWaoyMrU4/s+0Wj0subn/f392skTERERkaIVW2SllEbnG4EDwDlgGfCGzNAbgY8Vu67IVNLb2zsiuQNIpVL09fVVKCIRERERqWWlHNH8OPBB59wHGFlB8ylgeUlRiUwRTU1NhEIjfxt5nkcsFqtQRCIiIiJSy0pJ8BYDh0d5fgZoKGFdkSkjEonQ0dGB53lAkNzt2rVLxzNFREREpCJKaZPwMhAD+vOe3wacKmFdkSmlra2N1tZW+vr6iMViSu5EREREpGJKSfB2AY+Y2WaCvndvM7N3AQ8CnylHcFIbBoYGSAwnIJVidvdRZgwmuNAY5uzKZeB5hOvCzK+fX+kwxxSJRJTYiYiIiEjFldIH74/MrB7oBGYSHNf8MfCgc+5LZYpPprmBoQGWPraU1mPD7DgIC5KXxk43wLb1cOCmOo7fe7zqkzwRERERkUorqQ+ec+4PgDBwK7AKeItz7hPlCExqQ2I4QeuxYfbtNeauWEPP/j0819tFz/49zF2xhn17jdZjw8EOn4iIiIiIjKmUI5oAOOeGgWfKEIvUolSKHQdhaN1qGp7spCFbkTJ2G9xxD8kNzTx48DDJVKqycRbI9316e3tpamrS0U0RERERmTQFJXhm9tB45zrn7i88HKk1s7uPsiAJPVs3X0ruskIhBu/bxOI7D/O97qMQWVGZIAsUj8fZsmUL6XSaUChER0cHbW1tlQ5LRERERGpAoTt4y8Y5zxUaiNSmGYPB0cvzSxaNOn4u8zw7r9r5vn8xuQNIp9O0t7fT2tqqnTwRERERmXAFJXjOueaJCkRq04XGMAAze04GxzLzzOo5OWJetevt7b2Y3GWlUin6+vqU4ImIiIjIhCupyIqZrTazr5jZU2Z2febZPWZ2+Z/URUZxduUyTjfAvJ27IS8xIp2m8dHHOdUQzJsKmpqaCOUdNfU8j1gsVqGIRERERKSWFJ3gmdlG4ABwDlgOvCEz9EbgY6WHJjXB89i2HuoPdZHc0MyJTBXNE/v3kNzQTP2hLravD+ZNBZFIhI6ODrxMvJ7nsWvXLu3eiYiIiMikMOeKuy5nZkeBLzrnvmxmPwRucs6dMrObgSedc/PKGWgtMLM5wNDQ0BBz5sypdDiTYqw+eKcaYPsU7YPn+z59fX3EYjEldyIiIiJSsDNnzlBfXw9Q75w7M97PlZLgDQNvd8715yV4C4EXnHMzi1q4htViggdBkpcYTkAqxezuo8wYTHChMRwcy/Q8wnXhKZXciYiIiIiUqtgEr5Q+eC8DMaA/7/ltwKkS1pUaM79+/qUEboq0QhARERERqUalFFnZBTxiZisJ2iK8zcx+HXgQ+JNyBCciIiIiIiLjV/QOnnPuj8ysHugEZgKHgR8DDzrnvlSm+ESmBd/36e3tpampSXfyRERERGTClNQmwTn3B0AYuBVYBbzFOfeJcgQmMl3E43Gi0SgtLS1Eo1Hi8XilQxIRERGRaaqUIiuPA18B/tkVu4iMUKtFVqYz3/eJRqMjmp97nkd/f7928kRERETkiootslLKDt6bgb8HfDPbkWmPICI5ent7RyR3AKlUir6+vgpFJCIiIiLTWdEJnnPuTmAe8GngFuDbZvaCmX3MzH62POGJTG1NTU2EQiN/m3meRywWq1BEIiIiIjKdlXoHL+mc63DOrQWiwOPAPYC2J0SASCRCR0cHnucBQXK3a9cuHc8UERERkQlR9B28EYuYzQB+CXh/5udrzrnrS164xugO3vTl+z59fX3EYjEldyIiIiJyVZVodI6ZNQO/BmwEPOCvgf8L+OdS1pXaNjA0QGI4AakUs7uPMmMwwYXGMGdXLgPPI1wXvtQYfYqIRCJK7ERERERkwhWd4JmZT1Bo5QDQDux3zp0vV2BSmwaGBlj62FJajw2z4yAsSF4aO90A29bDgZvqOH7v8SmX5ImIiIiITLRSdvA+A+x1zr1ermBEEsMJWo8Ns2+vMbRuNT1bN3N+ySJm9pxk3s7d7NvbxUaGSQwnpnSCp8bnIiIiIjIRik7wnHMd5QxEBIBUih0HYWjdahqe7KQhW4EydhvccQ/JDc08ePAwyVSqsnGWIB6Ps2XLFtLpNKFQiI6ODtra2iodloiIiIhMAyVV0QQws7eb2QYzuzP3VY7gpPbM7j7KgiS8snUz5LUXIBRi8L5NLEwG86Yi3/cvJncA6XSa9vZ2fN+vcGQiIiIiMh2UcgdvIfA3wA2AAywzlC3L6ZUWmtSiGYMJAM4vWTTq+LnM8+y8qWasxuc6qikiIiIipSplB+8R4DTQCAwD7wDWAM8Aa0uOTGrShcYwADN7To46PivzPDtvqlHjcxERERGZSKUkeO8CPumc+wGQBtLOuX8FPgrsLEdwUnvOrlzG6QaYt3M35O10kU7T+OjjnGoI5k1FanwuIiIiIhOplCqaHnA28z4BvA04AbwILC4xLqlVnse29bBvbxfJDc0M3reJc0sWMavnJI2PPk79oS423wUf96buCeC2tjZaW1vV+FxEREREyq6UBO+7wI3AKaAbeMDMfgJsyTwTKVi4LsyBm+rYyDA7Dh5m8Z2HL46daoDNdwV98B6um5pHNLPU+FxEREREJoI5564+a7QPmrUC1zrn/jpTcOXvgCXAfwJ3O+f+uXxh1gYzmwMMDQ0NMWfOnEqHUzEDQwMkhhOQSjG7+ygzBhNcaAwHxzI9j3BdeEr3wBuN+uKJiIiISK4zZ85QX18PUO+cOzPezxWd4I26mNmbgNddORetIUrwapP64omIiIhIvklL8Mws5pzrKzA+GQcleLXH932i0eiI1gme59Hf36+dPBEREZEaVmyCV0wVze+Z2X+Y2ZfNbJOZ/WwRa4gIY/fFExEREREpVDFFVt6dea0FvgTMNLMB4J+BTqDTOfdS2SIUmcayffHyd/DUF09EREREilHwDp5zrss59znn3DqgAWgGHgcWAB3AgJmdKG+YItOT+uKJiIiISDmVpciKmc0CbgNagQ8As51zU7dRWYXoDl7t8n1fffFERERE5KJi7+AV1QfPzGYCv0Cwe7cWWAGcBr4J/Fbmp4iMk/riiYiIiEg5FJzgmdk3CRK6k8Bh4FHgm865wTLHJgKoL54SPxEREREZr2J28H4BeJmgoMq/AIedc4lyBiWSNTA0wNLHltJ6bJgdB2FB8tLY6QbYth4O3FTH8XuPT5skT33xRERERKRYxbRJaAC2AMPAR4CXzOx5M/uSmb3PzN5S1gilpiWGE7QeG2bfXmPuijX07N/Dc71d9Ozfw9wVa9i312g9Nhzs8E0Dvu9fTO4A0uk07e3t+L5f4chEREREZCooeAfPOfcj4MnMCzN7I0GBlWbgAeDPzazXOffOcgYqNSqVYsdBGFq3moYnO2kIZf5OInYb3HEPyQ3NPHjwMMlUqrJxlslYffF0VFNERERErqaYHbx8PwJey7xeB34KLC3DuiLM7j7KgiS8snUzhPJ+uYZCDN63iYXJYN50kO2Ll0t98URERERkvApO8MwsZGa3mtkDZvaPQBJ4CvgQ8ApwL7CwvGFKrZoxGBy9PL9k0ajj5zLPs/OmOvXFExEREZFSFFNkJQlcS1Bo5V+A+4FO59zJMsYlAsCFxjAAM3tOBscy88zqOTli3nTQ1tZGa2ur+uKJiIiISMGKSfB+jyCh+165gxHJd3blMk43wLydu+GOe0Ye00ynaXz0cU41BPOmE/XFExEREZFiFHxE0zm3S8mdTBrPY9t6qD/URXJDMycyVTRP7N9DckMz9Ye62L4+mDfd+b5PZ2enKmqKiIiIyBUVs4MnMmnCdWEO3FTHRobZcfAwi+88fHHsVANsvivog/dw3fQ5ojka9cYTERERkfEw51ylY5AMM5sDDA0NDTFnzpxKh1M1BoYGgj53qRSzu48yYzDBhcZwcCzT8wjXhadNk/PR+L5PNBod0T7B8zz6+/t1jFNERERkmjpz5gz19fUA9c65M+P9nHbwpOrNr59/KYGLrKhsMBWg3ngiIiIiMl7l6IMnIhNIvfFEREREZLxK2sEzs9uB24G3kpcsOuc2l7K2iASyvfHa29tJpVLqjSciIiIiV1T0HTwz+xTwSeAZgp54IxZyzv1yydHVGN3Bk7H4vq/eeCIiIiI1ohJ38D4I/IZz7okS1hCRccrvjef7Pr29vTQ1NSnhExERERGgtDt41wBPlSsQERm/eDxONBqlpaWFaDRKPB6vdEgiIiIiUgVKOaL5BeCsc+6z5Q2pdumIpoyH2iaIiIiITH+VOKI5E9hiZuuA7wAXcgedc/eXsLbIFdV6Xzy1TRARERGRKyklwbsReC7z/p15Y+qeLhNiYGiApY8tpfXYMDsOwoLkpbHTDbBtPRy4qY7j9x6ftkletm1C/g6e2iaIiIiISNEJnnOuuZyBiIxHYjhB67Fh9u01htatpmfrZs4vWcTMnpPM27mbfXu72MgwieHEtE3w1DZBRERERK6k6Dt4Un66g3d1z/pHmHvDrcxdsYaGJzshtwF4Ok1yQzOvHTlM8vlvsTyyonKBTgK1TRARERGZviblDp6ZPQR8wjn3o8z7K9IdPJkIs7uPsiAJPVs30xDKKwIbCjF43yYW33mY73UfhWme4KltgoiIiIjkK/SI5jJgRs77K9G2oEyIGYMJAM4vWTTq+LnM8+y8WhGPx9myZQvpdJpQKERHRwdtbW2VDktEREREJllBCV7uvTvdwZNKuNAYBmBmz0mI3XbZ+KyekyPm1QLf9y8mdwDpdJr29nZaW1u1kyciIiJSY0ppdC4y6c6uXMbpBpi3czfktQognabx0cc51RDMqxVjtU0QERERkdpSlQmemX3IzE6b2Xkz+7aZrb7K/I1m9oKZ/Tjz85fzxs3M/ruZfd/MzpnZv5jZO/LmzDWzJ8xsKPN6wswacsYXm1mnmQ1m4jplZp8zsxl564wZi5TI89i2HuoPdZHc0MyJ/Xt4rreLE/v3kNzQTP2hLravD+bVimzbhFxqmyAiIiJSm6ouwTOzu4GHgT8kuOfXBfyjmY1a897M3gV8FXgCuCnz82tmtjJn2gPA/cBvAyuAV4B/MrM35sz5C+BmYEPmdXNmrawLwJeB9cBi4MPAB4BPFxiLlCBcF+bATXVsvMvx+pHDLL5zEzf/3BoW37mJ144cZuNdjgM31RGuq50jmtm2CV4mqVXbBBEREZHaVXVtEsysG3jWOfdbOc+OA193zn10lPlfBeY45/5rzrMngdedc79qZgZ8H3jYOfeFzPgbgEHgI865XWa2FHgBWOWc687MWQU8DSxxzp24QqwPASucc6vHE8s4/rerTcI4DAwNkBhOQCrF7O6jzBhMcKExHBzL9DzCdeFp2wNvLGqbICIiIjJ9TEqbhIlmZtcAtwD/M2/oIPALV/jYu4Av5j07QLDDBrAAmJdZAwDn3I/N7JuZNXdl1hjKJneZOf9mZkOZOZcleGYWI9jp++sCYpEymF8//1ICN81bIRRCbRNEREREpKQjmma22sy+YmZPm9n1mWf3mNnl5Q3HJwx4BLtruQYJkrTRcslo6QAAIABJREFUzLvK/Hk5z8aa8+ooa7+a/71m9pSZnQd6CY6PfrKAWEYwszeY2ZzsC3jjaPNEChWPx4lGo7S0tBCNRonH45UOSUREREQmQdEJnpltJNidOkdwV+4NmaE3Ah8rMa78c6M2yrNC519tzmjrj7bO3cBy4NeAXwK2FxFL1keBoZyXf4V5IuN2pbYJvq9fXiIiIiLTXSk7eB8HPuic+wBBAZKspwgSoGIkgBSX73i9lct3xrJeucr8VzI/rzancZS135L/vc65/3DOveCc+0vg94H/bmbZko1XiyXf54H6nJfO0UnJ1DZBREREpHaVkuAtBg6P8vwM0DDK86tyzv0E+Dbwnryh9xAkjqN5epT563PmnyZIvC7Oydz1e3fOnKeBejO7NWfOSoKk60rfC8Hu3IzMz/HEMoJz7sfOuTPZF/DDMb5LZFzUNkFERESkdpVSZOVlIAb05z2/DThVwroPAU+Y2TMECdMWYD7wvwDM7MvASzkVNR8BDpvZR4BvAP8NWJeJA+ecM7OHgY+ZWS/B3bmPAcMErRFwzh3PVLv8UzNrz6zbAfxdtoKmmf06wU7l88CPCYrBfB74qnPup+OJRSaGqmqOlG2b0N7eTiqVUtsEERERkRpSSoK3C3jEzDYT3DF7W6YP3IPAZ4pd1Dn3VTN7M0HxkuuA7wJ3OOdezEyZD6Rz5j9lZr8CfA74LHASuDu3IibwR8As4E+AuUA3sN45l7tj9uvATi5V2/xbgr55WT8FPgL8HMGO3YvAY+RUzRxnLFJGA0MDLH1sKa3HhtlxEBYkL42dboBt6+HATXUcv/d4TSV5bW1ttLa2jmiboKqaIiIiItNfSX3wzOwPgd8FZmYe/Rh40Dn3iTLEVnPUB69wz778LJ/78C3s22sMrVvNK1s3c37JImb2nGTezt3UH+pi412Ojz/8bZZfV+zV0KkvHo9fLLwSCoXo6Oigra2t0mGJiIiIyBUU2wev5EbnZlYHvJ3gPt8LzrmzJS1Yw5TgFe5Z/whzb7iVuSvW0PBkJ+TePUunSW5o5rUjh0k+/y2W12jPPN/3iUajIwqveJ5Hf3+/dvJEREREqtSkNzo3s4eu8NwB54E+4BvOudeK/Q6Rq5ndfZQFSejZupmGvMIihEIM3reJxXce5nvdR2u2KfpYVTWV4ImIiIhML6XcwVtG0A7BA04Q3EtrImhz0AN8CNhhZrc5514oNVCR0cwYTABwfsmiUcfPZZ5n59WibFXN/B08VdUUERERmX5KaZPwDeAQ8Dbn3C3OueXA9cA/AX+ZeX+YnCIkIuV2oTEMwMyek6OOz8o8z86rRdmqmp4XtGtUVU0RERGR6avoO3hm9hLwnvzdOTN7B3DQOXe9mS3PvK/dP10XQHfwCqc7eOPn+76qaoqIiIhMEcXewStlB68eeOsoz98CZLOTJHBNCd8hMjbPY9t6qD/URXJDMyf27+G53i5O7N9DckMz9Ye62L4+mFfrIpEIa9euJRKJEI/HiUajtLS0EI1GicfjlQ5PRERERMqglB28PwfeBWwDjhD0wruVoA/eU865ezI94bY7536+TPFOa9rBK9xYffBONcD2Gu2DNxZV1RQRERGpfpNeRRNoJ7hf979z1vkp8P8R9MaDoNjKb5bwHSJjml8/n+P3HicxnOD1VIoL3UeZMZjgQmOYsyuX8XHP4+G6sJK7HKqqKSIiIjJ9laMP3mxgIUEVzZPqg1c87eDJZNAOnoiIiEj1q8QdPACcc2edc99xzh1TcidS/VRVU0RERGT6KmkHz8xuB24nKLYyIll0zm0uLbTaox08mUz5VTWzz1RZU0RERKTyJn0Hz8w+BRwkSPDCwNy8l4hUsdyqmoAqa4qIiIhMA6VU0XwZeMA590R5Q6pd2sErn4GhARLDCUilmJ1XeAXPI6zCKyPoXp6IiIhIdalEFc1rgKdK+LzIhBirdcLpBtim1gmXUWVNERERkemhlCIrfwb8WrkCESmXxHCC1mPD7NtrzF2xhp5M8/Oe/XuYu2IN+/YarceGgx0+AaCpqYlQaOR/DjzPIxaLVSgiERERESlGKTt4M4EtZrYO+A5wIXfQOXd/KYGJFC2VYsdBGFq3moYnO2nIJi6x2+COe0huaObBg4dJplKVjbOKZCtrtre3k0qlLlbWBOjs7FTRFREREZEpopQdvBuB54A08E5gWc7r5tJDEynO7O6jLEjCK1s3Q96uFKEQg/dtYmEymCeXtLW10d/fT2dnJ/39/QAquiIiIiIyxRS9g+ecay5nICLlMmMwOHp5fsmiUcfPZZ5n58klkUiESCSC7/ts2bLl4r28dDpNe3s7ra2t2skTERERqWIlNzoXqTYXGsMAzOw5Oer4rMzz7Dy53FhFV0RERESkepVyBw8AM3s7MJ+gquZFzrm/LXVtkWKcXbmM0w0wb+duuOOekcc002kaH32cUw3BPBldtuhKftsEFV0RERERqW6lNDpfaGbHgO8Cfw98PfP6m8xLpDI8j23rof5QF8kNzZzIVNE8sX8PyQ3N1B/qYvv6YJ6MLlt0xcv8O8oWXdHxTBEREZHqVkqj8/1ACvgAcAq4FXgzsAPY7pzrKleQtUKNzstjrD54pxpgu/rgjZvv+/T19RGLxS7ezevt7VVVTREREZEJVmyj81ISvATQ4pz7jpkNAbc6506YWQuwwzmn828FUoJXPgNDA0Gfu1SK2d1HmTGY4EJjODiW6XmE68JK7goUj8cvFl4JhUJ0dHTQ1tZW6bBEREREpqVKJHivA7c4506Z2UngN51znWa2CHjeOVdX1MI1TAmeVCvf94lGo5fdyevv79dOnoiIiMgEKDbBK6WK5ncJeuEBdAMPmNkvAp8kOLIpItOEqmqKiIiITA2lJHify/n8x4Eo0AXcAWwtMS4RqSLZqpq5PM/j2muvpbOzE9/3KxSZiIiIiOQqpdH5gZz3p4C3m9mbgNddsec+RSaI7uSVJltVs729nVQqhed5vP/972fVqlW6kyciIiJSRYq+gyflpzt4E2OsqpqnG2CbqmqOW7aq5rXXXnsxucvSnTwRERGR8in2Dl5Jjc7N7HbgduCt5B33dM5tLmVtkXJJDCdoPTbMvr3G0LrV9GzdzPkli5jZc5J5O3ezb28XGxkmMZxQgncVkUiESCRCZ2fnFe/kKcETERERqZyiEzwz+xRBQZVngJcBbQVKdUql2HEQhtatpuHJThqyd8lit8Ed95Dc0MyDBw+TTKUqG+cUkr2Tl7+DF4vFKhiViIiIiJRSZOWDwG8451Y6597rnPvl3Fe5AhQp1ezuoyxIwitbN0NeoRBCIQbv28TCZDBPxid7J8/zPCBI7nbt2gWgoisiIiIiFVRKgncN8FS5AhGZKDMGEwCcX7Jo1PFzmefZeTI+bW1t9Pf309nZSX9/PwDRaJSWlhai0SjxeLyyAYqIiIjUoFISvD8Dfq1cgYhMlAuNYQBm9pwcdXxW5nl2noxfJBJh7dq1AGzZsuXikc10Ok17e7t28kREREQmWUF38MzsoZx/DAFbzGwd8B3gQu5c59z9pYcnUrqzK5dxugHm7dwNd9wz8phmOk3jo49zqiGYJ8UZqxG6iq6IiIiITJ5Ci6zk/wn4uczPd+Y9V8EVqR6ex7b1sG9vF8kNzQzet4lzSxYxq+ckjY8+Tv2hLjbfBR/P3CeTwqnoioiIiEh1KCjBc841T1QgIhMlXBfmwE11bGSYHQcPs/jOwxfHTjXA5ruCPngP1+mIZrFGa4SeW3SlqalJO3kiIiIik6DgRudm1gJ8CViV33DPzOoJCq980DnXVbYoa4QanU+cgaEBEsMJSKWY3X2UGYMJLjSGg2OZnke4LqweeGWQbYQei8U4cODAxXt5oVCIjo4O2traKh2iiIiIyJRQbKPzYhK8vwU6nXNfvML4VqBZrRIKpwRPpgvf94lGo5cd2ezv79dOnoiIiMg4FJvgFVNF8ybgyTHGDwK3FLGuiEwTYxVdEREREZGJU2iRFYBG8ipm5vkp8JbiwhGZHDqyObHGKrri+z69vb26lyciIiIyAYpJ8F4CbgCu9FfxNwIvFx2RyAQbGBpg6WNLaT02zI6DsCB5aex0A2xbHxRdOX7vcSV5RbpS0RXdyxMRERGZWMXcwXsUWAuscM6dzxubBXyL4I7e1nIFWSt0B29yPPvys3zuw7ewb68xtG41r2zdzPkli5jZc5J5O3dTf6iLjXc5Pv7wt1l+3fJKhzul5RZdAXQvT0RERGScir2DV8wO3ueA/xv4npl9CThB0PduKXAv4AF/WMS6IpMjlWLHQRhat5qGJztpyDY+j90Gd9xDckMzDx48TDKVqmyc00AkErmYvHV2dqoZuoiIiMgEK7jIinNuEPgF4LvA54G/Ab4O/I/Ms1/MzBGpSrO7j7IgCa9s3QyhvN8CoRCD921iYTKYJ+WTvZeXy/M8rr32Wjo7O/F9v0KRiYiIiEwfxVTRxDn3onPuDiAMrARWAWHn3B3Ouf4yxidSdjMGEwCcX7Jo1PFzmefZeVIe2Xt5nucBQXL3/ve/n1WrVtHS0kI0GiUej1c4ShEREZGpragEL8s597pz7ohz7lvOudfLFZTIRLrQGAZgZs/JUcdnZZ5n50n5tLW10d/fT2dnJ08//TRPPPHExWOb6XSa9vZ27eSJiIiIlKCkBE9kKjq7chmnG2Dezt2QdyeMdJrGRx/nVEMwT8ovEomwdu1azp49q155IiIiImWmBE9qj+exbT3UH+oiuaGZE/v38FxvFyf27yG5oZn6Q11sXx/Mk4mjO3kiIiIi5acET2pOuC7MgZvq2HiX4/Ujh1l85yZu/rk1LL5zE68dOczGuxwHbqojXKcjmhNJd/JEREREyq/gPngycdQHb/IMDA2QGE5AKsXs7qPMGExwoTEcHMv0PMJ1YTU5nyTZXnnXXnstq1atUp88ERERESa3D57IlDe/fv6lBC6yorLB1Lhsr7wr9cl7+umnCYfDNDU1KdETERERuYqCEjwze2i8c51z9xcejojUquydvNwkz8z4lV/5FdLpNKFQiI6ODtra2ioYpYiIiEh1K+iIppl1jnOqc861FBdS7dIRzcrRkc3qEI/HaW9vJ5VKEQqFcM6R+98oHdkUERGRWlHsEU3dwasiSvAqY2BogKWPLaX12DA7DsKC5KWx0w2wbT0cuKmO4/ceV5I3CbJ38l599VXuvvvuy8Y7OztZu3bt5AcmIiIiMokqdgfPzN4OzAeuyXnsnHP7S11bZDIkhhO0Hhtm315jaN1qerZu5vySRczsOcm8nbvZt7eLjQyTGE4owZsE2Tt5vu9fdmQzt42C7uSJiIiIXK7oBM/MFgJ/A9wAOMAyQ9ktQTURk6khlWLHQRhat5qGJztpyPZmi90Gd9xDckMzDx48TDKVqmycNSbbRiF7ZDO3jYLu5ImIiIiMrpQ+eI8Ap4FGYBh4B7AGeAZYW3JkIpNkdvdRFiThla2bIa/xNqEQg/dtYmEymCeTq62tjf7+fjo7O3n66ad54oknLu7opdNp2tvb1RBdREREJEcpCd67gE86534ApIG0c+5fgY8CO8sRnMhkmDGYAOD8kkWjjp/LPM/Ok8kViURYu3YtZ8+evWIbhc7OTiV6IiIiIpSW4HnA2cz7BPC2zPsXgcWlBCUymS40hgGY2XNy1PFZmefZeVIZ2TYKubJtFFpaWohGo8Tj8QpFJyIiIlIdSknwvgvcmHnfDTxgZr8IfBI4VWpgIpPl7MplnG6AeTt3Q94OEek0jY8+zqmGYJ5UTvZOnucF13uzyZ6ObIqIiIhcUkqC97mcz38ciAJdwB3A1hLjEpk8nse29VB/qIvkhmZO7N/Dc71dnNi/h+SGZuoPdbF9fTBPKiv3Tt5f/uVfkt/mJZVK0dfXh+/7OrYpIiIiNanoKprOuQM5708BbzezNwGvOzXXkykkXBfmwE11bGSYHQcPs/jOwxfHTjXA5ruCPngP1+mIZjW4WhuFZ555httvv12VNkVERKQmqdF5FVGj88oZGBogMZyAVIrZ3UeZMZjgQmM4OJbpeYTrwuqBV4Xi8fiINgqf//zn+f3f//3Lkr7+/n71zBMREZEppdhG5yUleGZ2O3A78Fbyjns65zYXvXCNUoInUjjf9+nr6yMWi9Hb20tLS8tlc772ta8RDofVHF1ERESmjGITvFIanX+KoKDKM8DLXGpwLjLlaUdv6sge2czKP7aZrbSpI5siIiJSC4rewTOzl4EHnHNPlDek2qUdvOowMDTA0seW0npsmB0HYUHy0tjpBti2PriTd/ze40ryqlDusc1QKIRzbkQxFh3ZFBERkamg2B28UqpoXgM8VcLnRapSYjhB67Fh9u015q5YQ0+mqmbP/j3MXbGGfXuN1mPDwQ6fVJ3xVNpUc3QRERGZrkrZwfsCcNY599nyhlS7tINXHZ71jzD3hluZu2INDU92Qm5z7XSa5IZmXjtymOTz32J5ZEXlApWr8n2faDR62ZFNM9ORTREREalqldjBmwncb2bfNLNHzeyh3FcJ64pU1OzuoyxIwitbN49M7gBCIQbv28TCZDBPqpuao4uIiEitKbrICnAj8Fzm/TvzxlRwRaasGYPB0cvzSxaNOn4u8zw7T6pbW1sbra2t9PX18eqrr3L33XePGM8e2VSVTREREZkOSml03lzOQESqxYXGoKH5zJ6TELvtsvFZPSdHzJPqN1ZzdFXZFBERkemklCOamFmDmW0zsz8zsz81s981s/pyBSdSCWdXLuN0A8zbuRtyEgEA0mkaH32cUw3BPJlaxntk88iRIyrCIiIiIlNS0Qmemf08cBL4XeBNQBi4HzhpZsvLE55IBXge29ZD/aEukhuaOZGponli/x6SG5qpP9TF9vXBPJl6xlNlc9WqVbS0tBCNRonH4xWKVERERKRwpVTR7AL6gA84536aefYzwJ8BC51za8oWZY1QFc3qMFYfvFMNsF198KaN0aps5lPfPBEREamEYqtolpLgnQOWOed68p6/HXjGOVdX1MI1TAle9RgYGgj63KVSzO4+yozBBBcaw8GxTM8jXBdWcjdN5DdGHy3Z+9rXvqYiLCIiIjKpKpHgDQL3OOcO5j1vBb7snGssauEapgSveinhm95836evr49rr72WVatWqW+eiIiIVFwlErydwC8D24GnCFoj3Ab8MbDPOffhohauYUrwqtNYRzZPN8A2HdmcVvJ39JxzI+7pZY9sAvT29mpXT0RERCZEJRqdbwf+Gvgy0A+8COwB/gr4SAnrilSVxHCC1mPD7NtrzF2xhp5M0ZWe/XuYu2IN+/YarceGgx0+mfLGU4TlkUceIRqNqhCLiIiIVJ2id/AuLmBWBywCDOhzzg2XI7BapB286vSsf4S5N9zK3BVraHiyE0I5fy+STpPc0MxrRw6TfP5bLI+sqFygUnajFWHJb60Awa7e008/zdmzZ7WjJyIiImVRiR08AJxzw865551z31FyJ9PR7O6jLEjCK1s3j0zuAEIhBu/bxMJkME+ml/y+eZ7ncf/9919WiEWtFURERKRa/Ewhk83sIeATzrkfZd5fkXPu/pIiE6kSMwaDo5fnlywadfxc5nl2nkwvbW1ttLa20tfXRywWA+Chhx66LMnLb5Z+4403akdPREREJl1BCR6wDJiR8/5KSjv3KVJFLjSGAZjZcxJit102Pqvn5Ih5Mv1EIpERSVpHR8eYrRWyO3qqvCkiIiKTreQ7eFI+uoNXnXQHT0YzVmuFfLqjJyIiIoWa9Dt4ZjbfzOxKY8WuK1J1PI9t66H+UBfJDc2cyFTRPLF/D8kNzdQf6mL7+mCe1I5IJMLatWtZsWLFiHt6ofx7muiOnoiIiEyeUvrgpYDrnHOv5j1/M/Cqc05/2i2QdvCq01h98E41wHb1wRO0oyciIiLlVYlG52mg0Tn3g7znUeAF59y1RS1cw5TgVa+BoYGgz10qxezuo8wYTPDKHOP0O4M/mC/4rs+8M44LjWHOrlwGnke4LqyEr0blN0sfLdnLPtcdPRERERnNpCV4OdUzfwf4UyC3NYIHrARSzrlfLGhhUYI3hYy1q3e6AbZpV6/maUdPRERESlFsgldoFU24VD3TgBuAn+SM/QQ4BjxYxLoiU0ZiOEHrsWH27TWG1q2mZ+tmzi9ZxMyek8zbuZt9e7vYyDCJ4YQSvBqVW3lTVTdFRERkspRyRPNxYKtz7oflDal2aQdv6lBlTSlUoTt6/f39APT29mpXT0REpAZNehVNoBe4K/+hmW02s4+UsK5I1ZvdfZQFSXhl6+aRyR1AKMTgfZtYmAzmiUDhVTcfeeQRotGoKm+KiIhIQUpJ8LYAPaM8/3fggyWsK1L1ZgwmADi/ZNGo4+cyz7PzRHK1tbXR399PZ2cn//Zv/3ZZkhcKhXjooYcu7vKl02na29s5cuQInZ2d+L5fibBFRERkCiglwZsHvDzK8x8A15WwrkjVu9AYBmBmz8lRx2dlnmfnieS70o6e53ncf//9V7ynl7uj5/u+Ej4REREZoZQ7eL3Ap51zX8l7fk/m+cIyxFdTdAdv6tAdPCm37B29WCwGQDQaHfOenplhZirMIiIiMk1NZhXNrD8DHjazGf8/e3ceH1V1/3/8dRIiGJAECQQQoyBrFdlkU0FQtlqkWsQuahERbbV1q1alYOuGWDek1ZZNEdTvTwEVqQqIBBJF1gQEBcISCQgEIiQIQQjJ+f1xZ5LJZJLJhCwzk/fz8ZhHvHPP3HsTZXl7zvl8gGWu964B/gm8eAbXFQl+kZH8ZTDMn5tM9tABZP55NCc6XMTZW3cS/683iFmazO0jYbxrVkbEH8+qm+C/8qa1Fvf/oHMv4bz00kvVakFERKSWO5MZPANMAu4FznK9/RPwnLX2ycp5vNpFM3iho6w+eLti4SH1wZNKEEjlTSjZPH3IkCGqwikiIhKiqq3ReYkLGNMA6AicALZba0+e0QVrMQW80JKRk0FWbhbk59NgdSrHM3aQFRNFVud2xG1MIy4nj/oJbTjWqytERhIXHaewJxU2c+bMYjN6njN4vvhawqnAJyIiEjpqLOBVNmPM3cDDOIVavgHut9YmlzF+BPAUcBGwE/ibtfYDj/MG+DtO1c9GwGrgHmvtNx5jGgFTgOGutz4C/mytzXad7w88APQEGuK0iHjeWvu2xzWigMeAUcB5wDbgEWvtogC+dwW8EFXWjF56LPxFM3pSCTz36S1evLjMJZzetGdPREQktNTkDN7PgASKlmkCYK39qALX+jUwB7gb+BK4C7gD+Jm1NsPH+D5AMjAB+AC4AXgSuNJau9o15hHgb8BtQBowHugHtHc3aTfGfAq0xAmBANOA76y117nOjwPOBj4FMoFfAC8D11trF7rGPAfcAozFaR8xBHgJuNxaW65maAp4oStlfwpP39+d+XMNOQP7cuDe2/mpw0XU27qTZlNeJ2ZpMiNGWsZPXk+35t1q+nElTAS6hNOTmqmLiIgEt2oPeMaY1jihqhNgAeM6ZQGstQFXlzDGrAZSrLV/9HhvC/ChtfYxH+PfBRpaa3/u8d4i4Ii19reu2bt9wGRr7XOu83VxQtoj1tqpxpiOwLdAb49Q2Bv4Cuhgrd1WyrN+DGRaa293He8DnrHWvuox5kPgmLX2lnJ+/wp4IUpVNaWmBbqEE+Chhx4q7LenZZwiIiLBpaIB70z64L0CpAPxQC5wMc7M2Dqgf6AXM8acBXQHlnidWgJcXsrH+vgYv9hjfCucfn2FY1x7BFd4jOkD5LjDnWvMKiCnjPsCxACHPY7r4hSZ8XQCuLKMa0iYaLA6lVbZcODe24uHO4CICDL/PJrW2c44karg2Tx99+7dTJ8+vbC3XkREBM7/7yriq5n62LFjueCCC9RrT0REJISdScDrAzxurT0EFAAF1tovcPahTanA9eKASJzZNU+ZOCHNl2Z+xjfzeK+sMQd9XPtgafc1xtwI9ADe8Hh7MfCgMaatMSbCGDMI+CVlNH03xtQ1xjR0v4BzShsrwS0qMwuAnzpc5PP8Cdf77nEiVcHdPL1ly5ZlBr7SmqlbaxX4REREQtyZ9MGLBI65/jkLaIFTWGQ30P4Mruu9psj4eC/Q8f7G+Lq+z/u6Cq7MAsZ6FmoB7gOm4+y/szgFX94ARpfx7I/hFICREJcXHwdAva07oU3JSduzt+4sNk6kOnj21hszZgxDhgwp1kzdcwbPF+9ee2PHjlVlThERkSB3JjN4m4FLXf+8GvirMeYK4HFgVwWulwXkU3LWrCklZ+DcDvgZf8D11d+YeB/XbuJ9X2PMVcBC4EFr7WzPc9baQ9ba64H6wAVAB5wAnF7KswM8i7PU0/3S345C1LFeXUmPhWZTXgfvvzAXFBD/rzfYFeuME6kpnjN8LVu2ZNq0aWUu4/RWnhk+ERERqVlnEvCe9vj8eJxQkwxci9P8PCDW2lPAemCQ16lBwMpSPvaVj/GDPcan4wS4wjGuvX5XeYz5CogxxvT0GNMLJ3Ct9HivP/Ax8Ki1dloZ38dP1trvcWZHRwALyhh70lp71P0CfixtrAS5yEj+MhhiliaTPXQA2xbOYsP2ZLYtnEX20AHELE3mocHOOJFgEei+PW/ege+uu+5i7dq1JZZwalmniIhI9anUPnjGmHNxKlhW6KIebRL+gBO87sRpO3CxtXa3MWY28L27oqYx5nIgCacNwgKcPW9PU7JNwmM4SyW3A+NwisB4t0logdOWAZw2Cbs92iT0xwl3r1B8f+Epa+1h15heOP3vNri+/gOnyEs3dz+9cnz/qqIZosrqg7crFh5SHzwJEWX12itPZU53Tz73Ek6AO++8U8s6RUREAlStbRJcTb2XAHdZa9MCvkDZ174b+CtOcZLNwAPW2iTXueU4/elu8xh/I06oa01Ro/P3Pc67G53fRfFG55s9xpx0Ui7XAAAgAElEQVRLyUbnf/JodD4Lp4G5txXW2v6uMVcB/3E9xzHgE5zZvn0BfO8KeCEsIyeDrNwsyM+nwepUjmfsICsmiqzO7YjbmEZcTh71E9o4yzQjI4mLjlPYk6B3JoEvwlVR1nOfn6+G6wp8IiIiJdVEH7xDOE28t1foAlKCAl74KGtGLz0W/qIZPQlRZQW+QBqtuynwiYiI+FYTAe9FIM9a+2iFLiAlKOCFj5T9KTx9f3fmzzXkDOzLgXtv56cOF1Fv606aTXmdmKXJjBhpGT95Pd2ad6vpxxWpMHfgq1+/Pr179y4W8nzN4PmjwCciIuKoiYD3L+D3wA6c5ubHPc9bax+s0IVrMQW88JGydy2NOvWkUY9+xC5KLN78vKCA7KEDOLw2iexNa+jWskfNPahIJZo5c2bhjF5kZCRTp04FCHgfnycFPhERqa0qGvDOpA/eJUCK65/beZ2rvMotIiGowepUWmXD1ntvJzbCq1htRASZfx5N++FJpK1OBQU8CRPevfbc4cvzvUD38ZWnF9+YMWPYu3dvsdDnfSwiIlJbBBzwjDGtgXRr7YAqeB6RsBCVmQXATx0u8nn+hOt99ziRcOHZXN3Xe94h8EwD31133cWRI0d45JFHCkPfrbfeypw5czTrJyIitVJF+uBtx2kCDoAx5l1jjK9G4SK1Vl58HAD1tu70ef5s1/vucSK1iWfD9TPtxZefn18Y7sAJfW+++abfhuzevfnUq09ERMJFwHvwjDEFQDNr7UHX8Y9AZ2vtrip4vlpFe/DCh/bgiVRcIK0ZKlK903tfn68ZPy37FBGRmlZtRVYU8KqOAl748K6imfnn0aS3rI/55hsunr6A85I28HJv6DR2HI0HX6++eCJlKC3wRUZG8uyzz/Loo49WqEVDaSIjI5k0aVLAyz4VAEVEpDJVZ8DLxwl4h1zHPwKXWmvTA7qQlKCAFz7K6oOXFwFRHn8XVV88kcB4Br6WLVuWqN55yy238NZbb1W4cif4nxkszyygAqCIiJyJ6p7B+xQ46XrrOmAZJdsk/CqgC4sCXpjJyMkgKzcL8vP5YcmHbJo+kQdWw/d9u7J57C/hkou5cO9x9cUTqQTeoS+QZZ7eKtq03ZOWgYqIyJmqzoD3RnnGWWtHB3RhUcALY9qTJ1Kzylrm6TnjV1XLPr1V1jJQBUIRkfBV7Y3OpfIp4IWvtPnTaHfjXWxdOIsOw0aVOL9t4SzaDx9N2ryptBtxZw08oUjtUtaMX1Ut+/R2pstAy9sOQqFQRCQ0KeCFAQW88JX+2kRa3fM3NmxPpkubK0uc37A9mS7t+pH+6jO0untcDTyhiHgr77LPigTAylgG6s07EE6bNg2AO++8U7OEIiIhSAEvDCjghS/N4ImEn4oGwOpaBhrhWgoeDLOECokiIoFTwAsDCnjhS3vwRGqfYFgGWtkqMktYWbOGCpEiUtso4IUBBbzw5asv3okOF3H21p3E/+sNVdEUqaXOZBbQXyAszwzemarIPSoyawgKkSJS+yjghQEFvPBVVl+8XTHwRlfIaBLFH4Y/Qd3+A9X4XEQA/7OAZQXCqVOnAoTcLKG32h4iKxI6FURFwkNFA17hb+561fwLaAjYnJwcK+Fnd/Zuu37fert+zxq7cs5E+/uRUXZ8f+yuWKyl6LUrFnvDTdjoZ6Lt7uzdNf3YIhJC9uzZYxMTE+2ePXtKfc/zeMaMGTYyMtICNjIy0o4aNarU44iICGuMsUDhKyIiwkZERBR7LxRfFfk+jDGFn4mIiLCjRo0q83jGjBl2xowZAX0m0GNf95gxY4bds2ePXbZsWbH/Bs7kuDKuESr3EKlJOTk57t9zGtpAMkUgg/VSwJPKsX7fenvDTdgCY+yRQf3sloWzbOr2ZLtl4Sx7ZFA/W2CMveEm7Pp962v6UUUkzJUVAL2PvQOhO1CcSUisivAVjK/q+D583SPQIBqsQbUm7lEZ4bginwmV8Ftb7lGTFPDC4KWAV3us37PG7orFHhnUz9r8/OIn8/PtkUH97M5Y7Po9a2rmAUVEShHoLKH3cSCBUCEy+F41FVRr4h5nGo6rIqgGS/itLfeYMWNGjfw+61bRgKc9eEFEe/BqD7VNEJHaLJC9hZ77yiq6H7GsAjXl2a9YGfsXI4K06I1Unar49xEu/x2Fyj0iIyP57rvvamwvq/bghcELzeDVGrtefcZasKnbk32eT01LshaccSIiErBAZhUr8pmqnomsyLH3PSoym+nvFSyza6FwD73C45WYmFi9v3l50BLNMHihgFdrbJs31VqwWxbO8nl+60dvWAvOOBERCUpVHSIr4x6VHSprIqjWxD0qIxxXRYgMl/AbKveIjIys0b14Cnhh8EIBr9bQHjwREakuVR0iw/UeZxoyqyKoBkP4rU330B48OWPag1d7+Gp8nt6yPuabb7h4+gLOS9rAy72h09hxNB58vfriiYiI1IBA94ue6f7Rmrqm7lH2NWqKGp2HAQW82qOsxud5ERDlsR84PRb+MhgWd45myz1bFPJEREREaoGKBrw6VfdIIlKahJgEttyzhazcLI7k57NjyYdsmj6RB1ZD5pVd2Tz2l3DJxVy49zjNprzO/LnJjCCXrNwsBTwRERERKZVm8IKIZvBqr5S9a2nUqSeNevQjdlEiuEr7AlBQQPbQARxem0T2pjV0a9mj5h5URERERKpFRWfwIvwPEZGq1mB1Kq2y4cC9txcPdwAREWT+eTSts51xIiIiIiKlUcATCQJRmVkA/NThIp/nT7jed48TEREREfFFAU8kCOTFxwFQb+tOn+fPdr3vHiciIiIi4ouKrIgEgWO9upIeC82mvA7X3lq4TDMjJ4OsYwdp+sIr7KsPh9I2wPxpHOvVVa0TRERERKQEBTyRYBAZyV8Gw/y5yWQPHVDYF2/Sf2/h+YWnOG8/GKDFuP8Aap0gIiIiIr4p4IkEgbjoOBZ3jmYEuby4JIn2w5NoDwwFLLCuBTx03Vk89oe31TpBREREREqlNglBRG0SareMnAyycrMgP58Gq1M5mJbKRRP/S363rhx8ZxpxDZoWBTm1ThAREREJa2p0LhLiEmISigJcyx4wfxrNj8HWh++j23mXFR/sap3QfngSaatTnfEiIiIiUuupiqZIkFLrBBEREREJlAKeSJBS6wQRERERCZSWaIoEKV+tEwr36eXlcf6EZ8iMhowj33Fs71q1TRARERERBTyRoOXVOuGbO67j+s3jGbPyJBNWQP3TzrD4sc+SHvus2iaIiIiIiAKeSLDybp1wxWdJHHKdO14HHr0GZlxelwWdnuHi6R+pbYKIiIiIqE1CMFGbBPHm2Trhh0Xv0/m+SZi2bdnz0RyIiipakqm2CSIiIiJhRW0SRMKQZ+uEtEapNM2FrU//jW4JvYoPVNsEEREREUFVNEVChtomiIiIiIg/CngiIUJtE0RERETEHy3RFAkRapsgIiIiIv4o4ImECrVNEBERERE/FPBEQoTaJoiIiIiIP2qTEETUJkH8UdsEERERkdpBbRJEagG1TRARERGRsqiKpkiIUtsEEREREfGmGTyREFWsbUKbK4HiSzhPz5oJwA/ffcsRVdUUERERqRW0By+IaA+eBCJl71oadepJox79iF2USMaPe+n4akeGbMzlxSXQKrtobHosqqopIiIiEkIqugdPSzRFQpWrbULMUqdtwpaFr3P9+lzmz4VmkQ2xwO9ugEVz/kGjHv2YP9cwZKNTVVNEREREwpMCnkiIKmybMNJyZG0SQ259grffB2Nh/+mjjLgJFlwWzc+uG03sokRyBvblhSVAfn5NP7qIiIiIVBEFPJEQlRCTwJZ7tjB+8nqObFrDuodvBmDNuFFkb17D+Mnri5Zjuqpqts6GBqtTa/jJRURERKSqqMiKSAjzbJuQfuHPADhr9B108dEWQVU1RURERMKfZvBEwkSxqpre8vM5d+7HANQ59IOWaYqIiIiEKQU8kTBxrFdX0mOh2ZTXoaAAcNom7Jr5AidbJZDwt+cAOP8fL3GyVQK7Zr5ARk5GTT6yiIiIiFQyBTyRcOFVVfPL917g8Tsu4sI7HubI4X0U4FTV7D0GFp+9jwvveJhH7m6rkCciIiISRrQHTyRMFFbVJJcXlyRxxWdJXOE6l1sHbrwJPr20HvNumkfzJ+LZd/OdPPNJKlk/ZqovnoiIiEiYUKPzIKJG53KmMnIynD53+fkUTHmFy55/mzXjRlHnj/dAZCRx0XGFYW7bwlm0Hz6atHlTaTfizhp+chERERHxVNFG55rBEwkjqqopIiIiUrsp4ImEqWJVNdtcCRSf4Ts9ayYAP3z3LUf2ri0xwyciIiIioUdLNIOIlmhKZUrZu5ZGnXrSqEc/YhclkvHjXjq+2pEhG3N5cQm0yi4amx4LfxkMiztHFzVHFxEREZEaU9ElmqqiKRKuPKpqcv31nEhaxvXrc5k/F1rWOReLU1Vz0Zx/0KhHP+bPNQzZmOvM8ImIiIhISFLAEwljH/wMkl+4l5Mb1tN++Gjefh+MhYKz65H84n38X2does11xC5KJGdgX15Ygpqgi4iIiIQwBTyRMBUXHUd0VDRX/fgK0aP3cf8Q5/27r4Xo0fuc96OiiYuOg4gIMv88mtbZ0GB1as0+uIiIiIhUmIqsiISphJgEttyzpXDJZW70TFj8Glc9PoM7EroCFCuqoqqaIiIiIqFPAU8kjHm2TUhrsw6Azofq0KFXt8Ix7sqah776DIBjG9eQNn8ax3p1VWVNERERkRCjKppBRFU0pSp5V9UkIoKMnAw6vtqRoRtymf0B1D9dNF6VNUVERERqjqpoikjZPKpqZg8dwLaFs/hqyxL+vCyXeXMh+jQ8eg28u2oGWxfOUmVNERERkRCkGbwgohk8qUru2TpfffCO14Hf3wCLunjM1hUUkD10AIfXJpG9aQ3dWvaouYcXERERqWUqOoOnPXgitYRn0ZUj+fnkrU7l5OJP6DR9AV/MfJy/DfolL3vut3NV1mw/PIm01amggCciIiIS9BTwRGoRz6IrtOxBemYWsID4ywfRpblTeMVddIX8fLL3fEN74OTiT0hR0RURERGRoKeAJ1KL5cXHAVBv605oc2WJZZzdXMs4O01fQPrcBSq6IiIiIhLkVGRFpBY71qsr6bHQbMrrUFBAVm4WQzbmMn+uoVGPvhzs2o70GFj85uMquiIiIiISAhTwRGozr8qahz77kJcWw6EubcFCkw3b+csQaDLol8QuSiRnYF9eWALk59f0k4uIiIiIDwp4IrVYXHQciztHM2Kk5cjaJIaMeooLc6BpahqH1yUzYqRlcedo4qLjCouutM6GBqtTa/rRRURERMQH7cETqcW8K2see+oZOk1bwLJXHyJ2+E2Mj4zk4dMnycrNIuvHTBVdEREREQly6oMXRNQHT2pa2vxptLvxLrYunEWHYaPK7J2XHouKroiIiIhUkYr2wdMSTREppKIrIiIiIqFNAU9EiqjoioiIiEhIU8ATkULlKbry6aX12H9sPyn71pPWoxWts6Fgyiuk7F1Lyv4UMnIyavrbEBEREam1tAcviGgPngSDjJwMZ8llfj5RXkVX9p84yMj3RjL06xPakyciIiJShbQHT0QqRUJMAt2ad6Nbyx7UHXwtAC0SLqFbyx40b9CcoV+fcO3J68eqv48BYM24UdqTJyIiIhIEFPBEpFTeRVfIz+fFJZAzsC+xn3xOh5Xb2RULdf54j/bkiYiIiAQBBTwRKZ1X0ZXT/3mVVtmw9fK2ZF97DTFLk3losDNOjdBFREREap4anYtIqQqLrpDLi0uS6PlZEgC9n5jJrli4fSR8emk9xhzbT8retWqELiIiIlLDVGQliKjIigQjz6IrBVNe4bLn32bNuFHU+eM9KroiIiIiUkVUZEVEqoRn0ZWIe+8jPRbarU2nW4vuXkVX1AhdREREpKYp4IlI+akRuoiIiEhQU8ATkXJTI3QRERGR4KY9eEFEe/AkFKgRuoiIiEjV0x48EakWaoQuIiIiErwU8ESkwtQIXURERCS4KOCJSMWVsxH6/hMHScncwOpbrqJ1NkQ99Qxp86dpX56IiIhIJdMevCCiPXgSajJyMuj4akeGbMwtseduVyw8NNhphG4wDP36BC8thgtzisZoX56IiIiIb2GzB88Yc7cxJt0Y85MxZr0xpq+f8SOMMd8aY066vt7gdd4YY/5hjNlnjDlhjFlujLnYa0wjY8wcY0yO6zXHGBPrcb6/MWaBMWa/Mea4MWaDMeZmH89yvzFmm+s+e4wxLxtj6p3pz0QkWCXEJLDlni2Mn7yeI5vWsO5h55fFmnGjyN60hvGT1zPvpnmF+/KiW7cDYNmrD7F14SztyxMRERGpZEEV8IwxvwYmA88AXYFk4FNjjM//rW+M6QO8C8wBOru+vmeM6eUx7K/Ag8CfgB7AAeAzY8w5HmPeAboAQ12vLq5ruV0OfA2MAC4FXgdmG2Ou83iWm4FJwBNAR2AM8Gvg2UB/DiKhpKxG6N2ad6P52U1d+/Ku5KzG8eyKhdjhN9Fh2CjtyxMRERGpZEEV8HCC2Exr7Qxr7RZr7f3AHuCPpYy/H/jMWvustXartfZZ4HPX+xhjjOufn7HWvm+t3QyMAqKB37nGdMQJdXdYa7+y1n4FjAWGGWPaA1hrJ1prJ1hrV1prd1prpwCLAM/Zwj7Al9bad6y131lrlwD/B1xWeT8ekSDntSdv28JZZH/0Hq2y4VRWJjGff1G0J29/inrliYiIiFSyOjX9AG7GmLOA7jizYJ6W4Myg+dIHeNnrvcW4Ah7QCmjmugYA1tqTxpgVrmtOdV0jx1q72mPMKmNMjmvMtlLuHQNs8Tj+ArjFGNPTWrvGGNMauBZ4s5TPY4ypC9T1eOuc0saKhILCRujk8uKSJNoPT6K969zxXWn8YaSzJ2+Rj155lz3/NunT39aePBEREZEzEDQBD4gDIoFMr/czcUKaL838jG/m8Z73mAs8xhz0ce2Dpd3XGHMjznLPu9zvWWv/nzGmCfCFa+awDvAfa613YPX0GPD3Ms6LhBT3nrys3CyO5OeTtzqVk4s/odP0BaRNeZzxg37JmGP7mTl+GPPnGnIG9mXV5W3p/cRM1owbRbu16cyfm8wInD15CngiIiIigQmmgOfmXdbT+Hgv0PH+xvi6vs/7GmP6A7OAsdbab7ze/xtwN7AaaAO8YozZb619qpRnfxZ4yeP4HGBvKWNFQkJCTEJRMGvZg5ReXUmfu4Beby0n9pa/k+LdK+/aa9gVCztGXkOduzvS9OY7eWFJKqsyC395ERcdp7AnIiIiUg7BFPCygHxKzpo1peQMnNsBP+MPuL42A/aXMSbex7WbeN/XGHMVsBB40Fo722v8U8Aca+0M1/EmY0x9YJox5hlrbYH3Day1J4GTHtf38RgiIc61L2/+XFevvB6taJUNqy5vSwdXr7zbR8IHC35PRAHcVR9ey4Ypj/6eW3tBQQRER2nJpoiIiEh5BE2RFWvtKWA9MMjr1CBgZSkf+8rH+MEe49NxAlzhGNdev6s8xnwFxBhjenqM6YWzx26lx3v9gY+BR62103w8SzTgHeLycWYCldyk1irclzfScmRtEj0nOttSez8xk8Nrkxgx0vLBz2Bh3dHkvtGC1z5xPjd5MeS+0YIV59xHbp7aKIiIiIiUR9AEPJeXgDuMMbcbYzoaY14GEoD/AhhjZhtjPNsOvAIMNsY8YozpYIx5BBiI02oB63RxnwyMM8bcYIy5BGd5ZS5OawSstVtwKmJON8b0Nsb0BqYD/7PWbnPdtz9OuJsCzDfGNHO9zvV4loXAH40xvzHGtDLGDMKZ1fvIWqv671Jr+euVN2L8W9zwLfxi3CzqdunO7n+OByBj4iPU7dKdvg9N4YZva/I7EBEREQkdxslAwcMYczdO77rmwGbgAWttkuvccuA7a+1tHuNvBJ4GWgM7gb9Za9/3OG9wCpncBTTC2R93j6tlgnvMuTjhbbjrrY+AP1lrs13nZ+G0V/C2wlrb3zWmDs4evFuB84BDOKHvb+7rlON7bwjk5OTk0LBhw/J8RCTkpOxdS6NOPWnUox+xixJJ2be+6PiTz8m+9hoOr01iVeJsOpzbjvOH30LB9h1seuUxzh16A0RGak+eiIiIhL2jR48SExMDEGOtPVrezwVdwKvNFPCkNkjZn8LT93cvrKKZ1qMVPSe+yaq/j6HDyu3ELE1mxEjn9yXPNgoA6bGojYKIiIjUChUNeMG2RFNEwlx59uQBzJ9raNSjH0unPwrAxrt/RaMe/Zg/1zBko/bkiYiIiPiigCci1crfnrwbH5td1EZhUSLnxzut0g9278CuGf8k69KL+M//4PDH80jZu5aU/Slk5GTU5LckIiIiEjQU8ESk2iXEJNCteTe6texBxL33kR4LLb78GoyhScpWp43C768mZX8KUf98gV2xMHXRRBp17k2TjTuIz4WBY5+lUaeePH1/dzq+2lEhT0RERAQFPBGpYXHnxDPu2rNosSKVvVf3IHnORAD++dk/2Ht1Dy784hvm/gzmztOSTRERERF/FPBEpEYlxCTw3Gvb+W7G8ww50YInlzvvL5sNQ346jy9e+DM3faslmyIiIiLloYAnIjUuISaB1mMeom56Bmnv/oeD0XDsskupuyOdZhdeQqtsOHDv7QDETv6PlmyKiIiIlEIBT0SCR2Qkx/r25A/DoP76TWT/YiAnli0GYO+BbWQPHUDTxLVasikiIiJSijo1/QAiIp4K2yiQy4tLkuj8mfP+wLHPsisW7hgBzy+FgwN6EL8okfM/ng1Abp/L2DVuEE1/N5Z/f7yB9C4zSGvXhWO9uqo5uoiIiNQaanQeRNToXMSRkZPhzMDl5/PDovfpfN8kTNu27PloDj8s/YhBYyaydeEsOlx7K9lDB3B4bRKdHqzLkM0n+fcn0OJY0bXUHF1ERERCkRqdi0jY8Gyj0PgXI/nDMIj7eget7/grTddvBYqWbMYsTeahwTBk80nmzzXYLp0BWPnEWLYunKVlmyIiIlKrKOCJSFArXLI50nJkbRKdX3sfcJZsHl6bxIiRlsWX1C1sjn7soXsBMK1bkdu9kyptioiISK2iJZpBREs0RXwra8kmUVGc/HwxfW4dx9YFr9Ps37OKLdl8cQm0yi66lpZsioiISCjQEk0RCVtlLdmsv+5r2LULgHOen1xiyaYqbYqIiEhtoiqaIhJSvKtsth+eVHRyw9eMGAmLL6nL5pdOFjVHd1XaPNi9A/mPDOf84bfwn//tYNOgeaQMzVeVTREREQkbWqIZRLREU6R8PJdsNlidysG0VC6a+F/yu3Xl4DvTOJn4mbNk01VpM3NQH46nrOGvg+D5z7RkU0RERIJfRZdoagZPREJOQkxCURBr2YNj+1O4Z8N/mT93Aw1G/4XdbeMAp9JmM1dz9H/2cZqj5wzsy9KbLmfg2EksH301bXYeZv57G3g5I5dtzaaSNfh6zeiJiIhIyNIMXhDRDJ5IxWTkZNDx1Y4M2ZhboqjKrlj460CnOXp0t57Ef/YVX857iSt+/TAT+sPtGzSjJyIiIsFHRVZEpNZKiElgyz1bGD95PUc2reGz6Y9yMBoOdW5L9sZV3PXzcbTKhiMP3A3ABa+9w4FoeHKFU4Rl1d/HALBm3CgVYREREZGQpoAnImEhkObo561IxRj4vl8XYhclUu/mUQCcalhfffNEREQkpCngiUjY8dcc/fH+EH8cdt9zM0REcDx1NQCLF71Go869abJxB/G5zvhGnXry9P3d6fhqR4U8ERERCXoKeCISdvwt2Rwy1FmqWb9rLygoKLFk0903b/noq4m6tAvz34OnFuaybf5UzeiJiIhIUFPAE5GwVNaSzbOOHgfgp7dm+VyyeXbDxgB8nr6MvK83YIAHV8GgMRM1oyciIiJBTVU0g4iqaIpUjTKrbMbAG13hqeXw5XsvcMWIB9h79WXUWZtK/AmnrcLWy9vS+4mZLHtoBO3W7uK8Fak83h+GDL2bpm06c6xXV7VWEBERkUqlPngiIqVwL9nMys3iSH4+O5Z8yKbpE3lgNZzVuSvXtIqF5YmcyPmhcEbvYH1nRq/lokTq7fwSnpjJm7s/4ljTPGbXcQIhy18D1FpBREREgocCnojUCp7N0TNGxHP9gcl8kZDLi0tS6Z/kjBk49ll2xcKL/V0zevfcTMuICM7eutO5xqE8nlxhONSlLfVT0/jgxbGc3fQ8LpmxgPlzNzCCXJIzkukY1xFAM3oiIiJS7bREM4hoiaZI9cnIyXD63OXn88Oi9+l83yRM27bs+WgOuf83mysffY0N25Pp0vpysocO4PCaJIyBRj368d2/nqRLh/6MGhnF7IvziDwNK2ZBm8Pw2xthxYVQEAHRUZrRExERkYpRo3MRkQAEUoQlZmkyb3R19u4duPd2zk5LB2B3dB4rzrmP42+24Iq9EJ8Ly2ZDzowmvBf5G3LznBm9lP0pqrwpIiIi1UIzeEFEM3giNcNfEZaHhsA5Noo35+axYdsKLvzTBA6vTeKvg2DuPIMZNoyvRvSiz23jmdAfenwPw7bD5N7wUXtIvkAzeiIiIhIYFVkREakgf0VY7rpuOCcO7oO502nxm7HEbNjOHSPg+c8gZ2BfYj/8kKPvPAnANa2ups/OrUSwjwdXOe0VjjWPY93POzE1J5Ft86eSNfh6Vd0UERGRKqEZvCCiGTyR4FDWjN7xOvD7G+DHc6JY8noeWxfOosO1txZrrWCGDWNjzwvoPOHfTOsGN38N9U8XXUNVN0VERMQfzeCJiFQS7xm9vNWpHNyxkcWLXuPJFYZXDnZhT0w8sIi9B7bRzLu1wocfsnXN63SeAGNTIGdQXw5mZXJ8VxrLn7mDQe+tY/57G3g5I5dtzTSjJyIiIpVHM3hBRDN4IsGrzH16sfBGF49m6SP/wi7QkZYAACAASURBVOLZjzNk1FMc6tyWJilb+XLeS1zx64eZ0B9u31D885rRExEREW+qoikiUoXcs3rjJ6/nyKY1fDb9UQ5Gw56Lz2fV57Po1nckAHsTYkn5fh0/++csAFIe/C1ERLA3IRaAJ5c7rRZW/X0MAJ/eP4yoS7sw/z14amEu2+ZPJWXvWlXdFBERkQrREk0RkXIq1ix9ZDz3Jb7E2+/socFvb2NRG7gB+OyZOzh7G3RJcz5jL+0EQGyaE9ayOrelyaJEsjfOhydmsmXV/+iwFQxOQRZWTSQ9dqJm9ERERKRCNIMnIlIBCTEJPPfadr6b8TxDTrTgtU+c92cshAHH4ki6fYDzxuZvfM7omW++AeCB1cVn9JY9NIKozl2Z/x48+FkuGf99jrT50zSrJyIiIuWiPXhBRHvwREJUfj6Zn87jvWdv4Z6Vp/m4HUy6At5+H/bEwJG6Tl+8CGBR6lyGXvor9g7oTvwXG8i8sistE9exYeeXdGnXj1EjozhGHrM/8Kq8GQOvd4WMJlH8YfgT1O0/UIVZREREwpj24ImI1JTISOKH/ZpffrKT72Y8z+ATLfjyDbgwB/pmwLV7ziL1F90AiP1wEdlDB3Be0gaiCmDz2F9CRARnb90JQMKhPObNMxzv1A6A4bfW4dFroOlxp4jLm3Pz6HPrOBp16snT93en46sdNasnIiIihTSDF0Q0gycSJlwzeo/M+T3nHzxVomrmrhj4sKOz5849o5c9dACH1yRhjLNk87t/PUmXDv15qTc8sNqQM/BKTnm1WjgvaQMv94ZOY8fRWK0WREREwkpFZ/AU8IKIAp5IeMnIySArNwvy8/lhyYdsmj6RB1bD9327sqlrC37+yses+vsYOqzcTszSZB6/yvLUcti6cBbGWtoPH83+BnB2n37ELkosu9WClnCKiIiEFQW8MKCAJxK+yuyjFwMPDYFzbBRvzs1jw7YVXPinCeSuTKLFcSfwdRg2indXzeDXfcZigZxB/VjXvRkDJ73HtG5w89dee/ZcvfU+vbQe826aR/MGzQEU+EREREJERQOe2iSIiFQDdx+9rNwsjuTns8NjRu+szl2567rhnDi4D+ZOp8VvxhKzYTuv93KWcf7U4SKgZKuFH9a8DpPeY2wK5Azqy/eZezm1O52bR8CjyTDvPZic8RPPbx9G8gVQEAHRUWq9ICIiEs4U8EREqkmxPnoj4rn+wGS+SMjlxSWpDLk1tXBc/U1p3Hgj/HhOFA+uyqPe1p3Q+nK6vfR/gNNqYUhEhFfgW87qd55kyK1PMNFeTZ+fthLBPh5c5YTEY83jWPfzTkzNSWTb/Klkac+eiIhIWNISzSCiJZoitYvnHr0Gq1M5uGMjixe9xpMrDN/368LK311Jz7/+i+jW7TircTwxS5Mx4CzV7DGaQ93a02TjDha/+ThDfv9E0RJOA2bYdWzseQGdJ/y71CWcDw+Eow2jeO6S+6mf0IZjvboq9ImIiAQJLdEUEQkxnjN6tOxBvZwMXsqfxTdNnVm9m1a4ZvVS0zheJ43pXeHOVGj84RKyJ8wmbuMOALLbO9conNG7tC1NPvyQrWtep/MECpdwHnRV4bxtZB1e+Pg0c+eBIQ94HlChFhERkXCggCciEiS89+kdWL6U/370dxIO5XH7BifcAQyc9B67YuDF/k5vvJYZ2dCjwO8Szm0fz6b98NH023Gayw4Yfmp8DodPHqXLvVGMWZ3HhBXO9SAP5o4jPWacAp+IiEiI0RLNIKIlmiLiraxWC0tHdqP/+JnlXsK5YXsyXdr142A0nHVFPzLvGUX768cwoT88ucLptXfcVahlWncYn6TKnCIiIjVFSzRFRMJQWYVZbksKbAnn2Vt3AtA0F7beezs/tW8NwJ/XQM7AvsQuSiwq1JLovFeeypz16ijwiYiIBAsFPBGREFHRJZxs3kxKy3U0fXEKmdEQn+u0Xjh7ixMA3YEvNiKCnFYtADjc4UIa+6nM6d6zt6OxAp+IiEiwUMATEQkhxQqz3NKD8667uVjgW/vaBP70VT7fxMOyVjAmFVo8OZm9z02my3Z4+upIHl+WT71vtxP/71nFAh/AhZ+sBGDnDVfROCKC7DYtAbhq1jLMsOtYdfvP6f3ETFKGdafz0s08tfxk4bP5CnwA1+xVpU4REZHqoj14QUR78ETkTGXkZHB63nuc98TL1N2zr/D90/XOYtOd17NqWBd++atxNKrbkHo/HOXx/s4s39aFs+hw7a38cElrGm/ZzXtfTuOmy8eyePbjDBn1FIc6t6VJylbeXfN6USuGXwzj4PdpHN+VRvrIa7jqrS+I/Kko8GVGAwbijxc9nyp1ioiIlE9F9+Ap4AURBTwRqTT5+WR+Oo9H5vye8w+e4vYN0Cq76LQF1rWAh38eyax5+SUKtSya8w+G/m5CiUIt3oFvsWsJpzvw/Zi5l6y0DUzrDhOXOfd67BqY3ucsxn51igkrvAq3KPCJiIj4pIAXBhTwRKSyeTdTP56xg0c2T6bhj3k8/1nx0He8DjzdF+5KgagLW1G/SUu/lTnf+3IaN115Fz90vJDGm3cWtmLY3wDO7tMXLBxel8xfB8HceeWo1KnAJyIiAqiKpoiI+ODdTB1gRs6fSi3U8myi64Mb0zleJ91vZU7vPXsnXHv5mh+DrfeOwVhL++HJ/OtT/5U63YHPVy++3U3qMLz/XZy6vBc2MoLYerGFRVxAhVxERETcFPBERGoZf4VaAqnMef7cJQB894sr6ElRKwZwFW5xrRJxAp+fSp1lBr7TMPdV0mNedRVygf0NUCEXERERLwp4IiK13JlW5gSwW74l5QKnFcO++tDiONTbuhPjsQ2gtEqd/gJfxoHd5GdksHF4T4bN3cBTy08VXrOokEse8DxQtMxTs34iIlIbKeCJiEgxvgLfd/PeY/ATL3PdG05lzgtznD17fxvg7NnzDHy/vSmSSUvyafDCK2BtscBH68u56IPlQNGsX3kD34VvrSm1kMujXoVcypr1+/J8uGIPXJCrfX4iIhJ+FPBERKRMCTEJMOYhuO0BSE4ma+cmTm39hsbvfsSzifuBosA37mr45KJ8WnWHZz931ndOuCaCO9YVcO7jE8l+ZSbnbtkNQMNd+6B3QWCBb8EC9rkKudy7BnIGOYVc7lyXzI5zT/HsMqeQS1mzfnkREFUA3vv8MppE8ZvBD3DksksAaLV5L82OWvLi47TsU0REQoaqaAYRVdEUkZCSn18i8NXds7/w9IFoMF598Mqq1OluzeDdi2/N326j58Q3WTNuFD2fmcWG7cl0adcPcPr3OYVc3JU7+xG7KLFE+4aD36dht6XR9AScbnwudbIOc/MNkHCUEq0byurf5172mderB3Eb04jLydO+PxERqRKqoikiItUrMhL69yeuf3/neNKrkJwM+/eTeU4E+7q0BmCXn0qd41zLPDu98CbZb37ud4Yv4EIuCxaQ+tY/ivr3rfuWvQN78tLiVOJPODN+B7MyOb4rrdzLPotmAR0KgCIiEiwU8EREpHK4Ah9AvOsF+K3UGWjgi//XGwEXcok6dgKAfVd0okmdOnxz+zCGrEjlUOc2NFm0vLB/n79ln3V3ZjizgI0aEvnDUW7xmAUsTwD0tQy03qEjZMVEcahbBxWDERGRM6aAJyIiVS6Q1gylBb52k6azd/qHnJe8kTtGwPNLKXchl8bf7ALgh4udWcViga+8/fveKnsWsHwBMA/m/rPMZaDexWAScovPCkZlZpEXH6dAKCIiPingiYhItatQ4Mv5nuN1vuexAbC4LbQ5Uv5CLi2+/BqAvAbRQMnAV55ln/5mAf0FwNKWgf67J3yUNYh+c1aUUgym7FlBX9VBNUsoIlJ7KeCJiEiNKyvw5a1O5XjGDiJ27OSiD5OYtCyLSa6A5C7k8vTnruSTmsbxOmklZv1abNxBZn1oNfVdUgb8giYr1gKuwFdQvmWf/mYBK74MFAbMW4r5xS+KFYPh3HOxWYeZ3BPuX1t8VnBkw55c925Z1UErZ5Ywq3M7zRqKiIQYBTwREQk6xQJfyx5FJ6bkB1bIxTXrN+5q2BMLc97fxsGOvWh6HA5GwyUvzSF7TiIxn39RuOyz2ZSZYCmx7NPfLOAZLwP1VQzmmh786YsNfN+3Ky0/X+MxK7i21EDorg767OfOj+BMZgn9zRomX+C8f83eKMa1Ge0zFCokiohULwU8EREJHeUs5OJr1s+t8QmIAJrmUrjP77EBkNghiqlH8nj2s2QAnnPNArqXfca5ZgEvfn0h/G5C8cBXUDXLQPdd2ZmWSRvYd+WltPSeFfQRCLOvvYanlyVhzJnNEr5SzlnDolnCPGCa8/0HGBJLm0WMy8njpyaNSL+kJVB8qWlpofFU/inOijyr8F4KkSJSGyngiYhIWPA365e1cxOHY+ty7LJLOZmcWGzGb9IymLQsDyha9lk4C+ha9vmYaxbwrQ9SOdGsMY1/OMrBaOj4wiyy5yT6DYAVWQaaXzcKgNN1ndDib1lo5p9H0354EnAGs4R+Zg1/zNxLVtqGEnsJM2Lg7Q8CD4n+ZhFb+1hqWt7Q2PxY5YXI8s5MKmSKSE1TwBMRkfDm0a8vzv3eBb1LzPhFZWZxoKEp/Mt+o3Wb+X9LXi4WAt3qHDlaNAu4KYPjWzL8BsCKLAONPOmEzjonnUDkb1moexkoVHyW0N+s4T5fewnXJjuzhgP7EfvJ5xVaWuo5i1jnh6M+l5p6h8jSQmNBZAQR+UUJsDJCZEVnJt0hsyLLWct7fCZBtbRgqqAqEroU8EREpFbyNePXCujjHtAFLh55T4lln+6/NEetXstHy6dywaHT5QuAZSwDjR73OHufn1yiGExs4lfkRUCLL76G06f9Lgv1XAZa0VlCf7OGpe0lBFeIrMDSUu9A6HOpqXeILCM0RsQ1wWZmFobGMwmR3jOR5Z2Z9A6ZFVnOGuhxRYJqeWc/gz2ohuo9AgnYANk/Zfs89vWZQI8rcg8F/+CkgCciIlKKUpd9AnQfRc+b/xpQACx1GeimDI7XyfBZDOaVnnB/cvFZwYuem8bemR+VCIRNX5zCrhjn2hWdJfQ3a1jaXsLCYwJfWuodCEtbauocOyHSX2j83s/S03KFyACXr/oKmZURIss6rmhQLW8wDZWgGqr3qGjA7ru79DFnenwm9/BXkTfYAnZZ16if0IZjvbpCZGToBVdrrV5B8gIaAjYnJ8eKiEjo2529267ft96u37PGbps31e569Rm7cs5E+3bqbPt26my7cs5Em/LSw3bD3b+yP7aIs9aJS9aCPRVBmcfH6mAfuRr7u19h88Hur+98vXVEpH3kGmwBzuvRAdj0GOzuTgl2T78uNh/sgfrYbZe3t+szVtttfdrZUxHYPf26WpuXZ/f061Ls+GDnNtaCXfTm49bm59sjg/rZ7+s7z7Bl4Sy79aM3Cp9py8JZ1lprV48bZS04X621G+7+lbVgP3/1IZ/HK5+4w1qwXz4x1lprbWpaUuE1U7cnlzi21jqfBedaPo69n8H72Pu5y/N9eB8venOCtWAPdm5rbX5+8eO8PHtkUD+7Mwa7KxZ7ZFBfe2RgX4/jfj5/3oEeV+geV3W1+6OxBcZYO2yYzezazh6IxhYYrI2PtwVgX+pZ/Pi3N1Dsv6tHrsH+9lfOmNzGDW2+x2cqclzb7vHbG7Dvj+pp8+qdVezXdX5kRJnHx2Kj7bHY+gF9JtDjitzD3+9X3scHop3fh87kGtVxj12x2BtuwkY/E213Z++ujD8WApKTk2MBCzS0gWSKQAbrpYAnIiJV5PRpaxMT7aEZU+y2eVPt+u++stvmTbUpLz1sl8wcZ99ZN8sumTnOJk68s1yBcL+Pv9yUFgr9/QU2Mxq7/WfN7J5+XWyBMXbEjc5ffPZc1dXu6dfFb6DwDonFjm3FwlegobEiIdLfNfyFzMoIkVURVP0F00oJkdURVEP1HpUasE2pnwn0+EzucSru3GLHwR6wy3ONT+f8wx4Z1M8WGGNvuAm7ft/6AH5DrxwVDXhaoikiIhIMSikGU0x3j3/2UR20wbqvSxSLcS9PKqtlxANrnGP33kHv46a50PTbAxyvc4DHBsDittDmCDz7eSoA4wdG8l3DfN76IIkTzRrTwr0ksJxLS733Gsb/640SS02Ljl+HoTf73Y/ob+lpWfsV623dCW2uDHj5anmL3hQe438PpL/jityjKpbM+ivW4++4Nt0j0OXFOWUuJ+5L7Cefl/hMoMeVcQ9/S5orZVl0Ndwj+9preDoxiewp1xL7uwlkDx3AC0uSyM7PJ1Qo4ImIiISiMgKhd7GYQqWEQs+9g6XtT2m0N6swILoLyrj3Ej6ztOgvPuUJif72Gsb8cJS73fvKXAVpJhVWKU0qMzQ2f/VN3u7Umk6fJZIXAbGJq0jZs6ZiIfKLjcWL3Hgfn0HRm/KGyKoIqv6CaWWEyOoIqqF6DwXs4L6H+xppq1NhRI/ix957sYOUAp6IiEhtEegsofexKyCyfz+Z50Swr4sTCHK8CsyUJyS6+ZpFNMA7HzjH7hBZWpXSkqFxN0373lYYGu/7quIh0nsmsrwzk+6Q2WPSpMLQ2OCFV8DawEOkn+MKBdUAZz+DNaiG6j0UsIP7Hu5rRGVm+TwOBQp4IiIiUj6ugAgQ73oBPiqMUvpxOWcRy1sJz1dobPpTBBEUFIbGMwmRgSxf9RUybymscFm+5ayBHlckqJZ39rPeZ8t5+8Y3gzeohuo9FLCD+h7ua+TFx/k8DgmBbNjTS0VWREREgo6rQI195x3n68mT5SpYk/LSwz6rmnoXtfF37KvojXeVQV9Fbyq7amBF7lFW4R3PY+/CFeMGRtrfVXVxDNdzheM9PAsXuSvbbux5gX0rZZbd2CPBnorAbuzhHG+7vH1hoZZtl7e32/q0K3bs6zOBHp/JPbb1KV9F3qApclOea8Ri1+9ZU1g5uPC4mlW0yIqx1pYZAKX6GGMaAjk5OTk0bNiwph9HREREyiu/aPkqzZvD5ZfDypWFy1m/dy1nbVDO5azV0ffLPfvZYF/R7Ke/Pnju2c6q7B9Xm+5xvA481c898wsH61O0vHhN0fEtXr0OH7va/2cCPa6se9y/Fn46tyF1Pfov/nRuQ+r56NnovsdbH/j+TKDHlXEP9zVG/erv9JqdSMzSZEaMtIyfvJ5uzbtRnY4ePUpMTAxAjLX2aHk/p4AXRBTwREREpFqVEUxDJaiG6j0qErBPnNsQA9Q7fLTcnwn0uCL3CNWA7e94Vyw8NBgWd45myz1bqr3ZuQJeGFDAExEREalFAgjYNG8Offs6nwvkM4EeB3CPQCvyBlPA9neN+gltONarK0RGEhcdV+3hDhTwwoICnoiIiIiIQMUDXkTVPZKIiIiIiIhUJwU8ERERERGRMKGAJyIiIiIiEiYU8ERERERERMKEAp6IiIiIiEiYUMATEREREREJEwp4IiIiIiIiYUIBT0REREREJEwo4ImIiIiIiIQJBTwREREREZEwoYAnIiIiIiISJhTwREREREREwoQCnoiIiIiISJhQwBMREREREQkTCngiIiIiIiJhQgFPREREREQkTARlwDPG3G2MSTfG/GSMWW+M6etn/AhjzLfGmJOurzd4nTfGmH8YY/YZY04YY5YbYy72GtPIGDPHGJPjes0xxsR6nO9vjFlgjNlvjDlujNlgjLnZ6xrLjTHWx+vjyvi5iIiIiIiIlCXoAp4x5tfAZOAZoCuQDHxqjEkoZXwf4F1gDtDZ9fU9Y0wvj2F/BR4E/gT0AA4AnxljzvEY8w7QBRjqenVxXcvtcuBrYARwKfA6MNsYc53HmF8BzT1elwD5wNyAfggiIiIiIiIVYKy1Nf0MxRhjVgMp1to/ery3BfjQWvuYj/HvAg2ttT/3eG8RcMRa+1tjjAH2AZOttc+5ztcFMoFHrLVTjTEdgW+B3tba1a4xvYGvgA7W2m2lPOvHQKa19vZSzt8PPAk0t9YeL8f33hDIycnJoWHDhv6Gi4iIiIhImDp69CgxMTEAMdbao+X9XFDN4BljzgK6A0u8Ti3BmUHzpY+P8Ys9xrcCmnmOsdaeBFZ4jOkD5LjDnWvMKiCnjPsCxACHyzg/Bvh/pYU7Y0xdY0xD9ws4x9c4ERERERGR8giqgAfEAZE4s2ueMnFCmi/N/Ixv5vFeWWMO+rj2wdLua4y5EWe55xulnO+Js0RzRinPDfAYToh0v/aWMVZERERERKRMwRbw3LzXjRof7wU63t8YX9f3eV9jTH9gFjDWWvtNKc80BthsrV1TynmAZ3FmAd2vlmWMFRERERERKVOdmn4AL1k4RUm8Z82aUnIGzu2An/EHXF+bAfvLGBPv49pNvO9rjLkKWAg8aK2d7euBjDHRwG+Ax0t5ZqBwqehJj8+VNVxERERERKRMQTWDZ609BawHBnmdGgSsLOVjX/kYP9hjfDpOgCsc49rrd5XHmK+AGNeySveYXjizais93usPfAw8aq2dVsa3chNQF3irjDEiIiIiIiKVKthm8ABeAuYYY9bhBK87gQTgvwDGmNnA9x4VNV8BkowxjwALgF8CA4ErAay11hgzGRhnjNkObAfGAbk4rRGw1m5xVd6cboy5y3XdacD/3BU0PcLdK8B8Y4x71vCUtda70MoYnKqfP1TSz0RERERERMSvoAt41tp3jTGNcZY3Ngc2A9daa3e7hiQABR7jVxpjfgM8DTwF7AR+7VkRE/gncDbwGtAIWA0Mttb+6DHmZmAKRdU2P8Lpm+d2GxCNUxjFs13DCqC/+8AY0w4nXA4O8FsXERERERE5I0HXB682c/fB27Nnj/rgiYiIiIjUYkePHuX888+HAPvgKeAFEWPMeahVgoiIiIiIFGlprf2+vIMV8IKIccpotgB+9De2mqwBevodVbuF288o2L+fYHi+6n6Gqr5fVVy/sq55Ds7/9GpJ8Py+KFUvGH6dB7tw+xkF+/cTDM+nP3uq75rB9mfPOcA+G0BoC7o9eLWZ619cudN5VTPGFAQyHVwbhdvPKNi/n2B4vup+hqq+X1Vcv7Ku6dE65sea/vcu1ScYfp0Hu3D7GQX79xMMz6c/e6rvmkH4Z0/AzxBUbRIk6Lxa0w8QAsLtZxTs308wPF91P0NV368qrh8M/54kdOm/H//C7WcU7N9PMDyf/uypmWuGJC3RFBGRoOQuPEWAm8tFREQqKhz+7NEMnoiIBKuTwBOuryIiItUh5P/s0QyeiIiIiIhImNAMnoiIiIiISJhQwBMREREREQkTCngiIiIiIiJhQgFPREREREQkTCjgiYiIiIiIhAkFPBERCVnGmGhjzG5jzAs1/Swi8v/bu/dgO6czjuPfXxNUhdKGSutyENVkxC0tpUXi0popinFp1SXul7pPqlI6kzFuNWRcB5UgJDopad1DyhBxCRKlLiEIwpCIoZpUQiNP/1hr83qzz3FOcs4+J+/5fWbO5Oy11rv2s9/8sfdz1rPWNqs+SYskPZN/RnZ2PPX07OwAzMzMlsGZwBOdHYSZmXUb/46ILTo7iJZ4Bc/MzJZLkjYGfgDc09mxmJmZdRVO8MzMrOEk7SDpTknvSApJe9UZc7yk1yUtlDRN0valIRcBwxoTsZmZLe/a6b1ntdz+iKQdGxR6mzjBMzOzzrAK8CxwQr1OSQcAlwDnAlsCk4EJktbL/b8EZkTEjMaEa2ZmFbBM7z1ZU0QMBI4FbpS0WseG3HaKiM6OwczMujFJAewdEbcV2p4Ano6I4wpt04HbImKYpPOBg4DPgF7ACsDFEXF2Y6M3M7Pl0dK899SZYwLwx4iY2oiYW8sreGZm1qVIWhEYCEwsdU0EtgOIiGERsW5ENAFDgWud3JmZ2dJqzXuPpDUkrZR/XwfoD8xsZJyt4VM0zcysq+kN9ADmlNrnAGs3PhwzM+sGWvPe0w+4RtJiIICTI+KDxoXYOk7wzMysqyrvIVCdNiLihoZEY2Zm3UGz7z0R8RgwoOERtZFLNM3MrKt5n7S3rrxatxZL/mXVzMysPVTmvccJnpmZdSkR8SkwDdi11LUr8FjjIzIzs6qr0nuPSzTNzKzhJPUC+haaNpC0BfBBRMwCRgA3SZoKPA4cDawHXN3wYM3MrBK6y3uPvybBzMwaTtIg4ME6XaMjYkgeczxwOtAHeB44NSIeblSMZmZWLd3lvccJnpmZmZmZWUV4D56ZmZmZmVlFOMEzMzMzMzOrCCd4ZmZmZmZmFeEEz8zMzMzMrCKc4JmZmZmZmVWEEzwzMzMzM7OKcIJnZmZmZmZWEU7wzMzMzMzMKsIJnpmZmS13JPWTNFXSTEm7d3Y8ZmZdhSKis2MwMzMzaxNJ44HJwMvAVRHR1LkRmZl1DV7BMzMzqyBJ50ia2tlxAEjqKSnautIm6e18XUjqVer+CHgTeAV4r861jxSu3XTpozczW744wTMzs2Um6U5J9zfTt23+kL1Vo+PqSJJ2l7RY0pqFNkmaK+n10timfA92anykjdUBieUfgD7Af0vtZwHjSSt459a5bk9g23aMw8xsueAEz8zM2sMoYCdJ69fpOxx4JiKebnBMHe1hYDGwY6FtU6AH0FtSU6F9MPAJ8HijgquQeRExO5bcU7It8AZwC/CT8kUR8QHwfseHZ2bWtTjBMzOz9nAXqUxuSLFR0jeAA0gJIJJWkHSdpDckLZD0sqQTy5NJOkrSi5I+kfSOpEtze99yyZ2k3rntp/nxkZLeL823r6RFhcfn5AM6jpL0lqR5kq6Q1EPSGZJmS5oj6YzmXnBE/Ad4GhhUaB5ESvweq9M+JSIW5Oc/VNI0SfPzc42prQTmGN6VdGTpNWydVwzXz49XlzQyrxh+JOl+SQOai7dwb16StFDSdEnHFPpq93YvSZMkfSzpGUnblOY4NpdOfizpVklDa/c7x3wmMLBQHnlQ4fK1JN2Rr50h6RctxfsVDgPGAmOAHJNCuAAABmZJREFUgyX1XIa5zMwqwwmemZkts4hYBNwIDJGkQtd+wIqkD+KQVrdmAfsC/YFzgD9J2qd2QU74LgWuIq2I7QW81gFhbwLsDPwcOAg4Grgb+A5pVe5M4HxJP2xhjgdJq3M1g4GHgEml9kF5bM0Kef7NgL2BjclJcER8BowDflN6rgOBRyLiTUlfAyYAvYHdgB8BzwMPSFq9XqCSjgOGA8OAfqQSxwsklZ/nXOACYAtgJnCzpB55jh2BK4ERuf8hUgllzVjgEuBZUlllH+DWQv/wPGYz4B957rrxtkTS2qT/tzHAvUBP0n0wM+v2nOCZmVl7uQ5o4ssrV4cDf4uIDwEiYmFEDI+IqRHxekTcBNwE7A9pDxsp8bkwIi6PiFci4smIuKyDYj4iIl6MiNtJK299gdMi4uWIGElKLAe1cP1DQH9Ja+XYdyAld5Nq10naEFiPQoIXESMj4t6ImBkRjwOnAHtIWjkPGQvsIGmdPEcP0kromNy/CylB3T8ipkXEDOBU0j61z5PlkrOAUyPi7/nejycl0seUxl0YERPynMOBDYENct+JwJ0RMSIiZkTEFcDEwutakGNYlMsqZ0fEwsLcoyJiXES8Sko0VwNaSqCbcwip7Pfl/MeFcaQVPTOzbs8JnpmZtYuIeIlUmng4gKSNgO1Jid/nJB2fyyPnSppP+mC+Xu7uQ1pBe6ABIc+MiOLBHXOAF0p7veYAa7Uwx2RgEWnFbwBphfJZ4ClgTUkbkBK9BcCU2kWSBuZSxVmS5gG1A2rWBYiIp4BXgV/l9p2Ab5H2mwEMBL4JfJDLPOcD80j3caNykJL6AN8FRtfG52vOqDP+X4Xf383/1u7BJsCTpfHlxy35fO5c4voxLd/f5gzhi2SX/PseknovxVxmZpXienUzM2tPo4ArJP2WlLi9SSFZk3QgcBFwGvAEKSk5g1TuBykRasni2lSFthXqjFGprTwG4H+lx9FMW7N/DI2I+fnEyMGkBGpyRCwGPpX0eG4fDDwaEZ8CSFoVuA+4h1SG+R4pybqbVM5aczOpLPOi/O89tZXQHNPbpBLTsg/rtNVew2HAtFLfZ6XHxXtQS3Zr16vQRqGttdp0f+uR9GNSiekISRcXunqQ7uelbZnPzKxqnOCZmVl7+ivpA/aBwKHAtaUVse1JSdDVtQZJfWu/R8SHkmqJy+Q689e+76wP8Fz+fYvSmLnA6pK+XigPLI9pTw+S9gn2IZVs1tTKNHcEri609we+Dfw+It6F9FUSdeYdCwyXtCWp7PKIQt/TpITyk4h4qxUxvkNajdwwIsa1YnxzXgK2LrWVSyw/JSVbHeUw0j0/qU77YTjBM7NuziWaZmbWbiJiPmk/1HmkBOSG0pBXgW0k7Srp+5LOA7YsjRkOnC7pBEkbS9pK0gmF+acCwyT1kzQIOLt0/RRgIXBePhnyIODgdnuRS3qQtKK0Cympq5lESvzW5csHrLxJWsk6SdKGkvbiyweVAJD3qT0JXE9a6bqr0H0fqQz09nwvmyRtJ+m8nBCW5wrSfT1L0on53m8m6XBJp7ThtV5OKoU8Of/fHA/8jC+v6r0BbCRpc6UTTldqw/wtynsUDwBujojniz/ASGDzeq/fzKw7cYJnZmbtbRSwBnB/RMwq9V0J3EHaSzaFdMjGNcUBETEKGEo60OMFUmJT3Cc2BFiZVGo4gnR4SPH6uaRDOPYk7fnajyWTwPb0KGnV6jPgn4X2KaTS0PmkZKwW32zSPsVfAy+SXuvQZuYeC2wOjC8eVpLLQHcj7XkcDcwA/kJKJt+rMw951fRY0krgc6Sk8xDg9Xrjm5ljEnACcDppr+HOpFMziwep3ELaUziJtJq6X2vnb4V9gF7A7XVimw5MJ+8BNTPrrrTk94aamZmZtY6k64GmiBj8lYPbPvfbwAX5tM6lub4v8AowIK/ymZlVnlfwzMzMrNUk/S6XX24s6WTSdwiO7sCnvDif+rlKWy6SNJG0ymhm1q14Bc/MzMxaTdJ40mE5q5K+J/CyiPhzBz1XE18cCPdatOFDi6TvkUp5AWbVTjE1M6s6J3hmZmZmZmYV4RJNMzMzMzOzinCCZ2ZmZmZmVhFO8MzMzMzMzCrCCZ6ZmZmZmVlFOMEzMzMzMzOrCCd4ZmZmZmZmFeEEz8zMzMzMrCKc4JmZmZmZmVWEEzwzMzMzM7OK+D+8cDrrIZrT0gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/docs/pydlspec2d.rst b/docs/pydlspec2d.rst index 0563057e..7b49714d 100644 --- a/docs/pydlspec2d.rst +++ b/docs/pydlspec2d.rst @@ -77,7 +77,7 @@ API .. automodapi:: pydl.pydlspec2d .. automodapi:: pydl.pydlspec2d.spec1d - :skip: warn, solve, Pydlspec2dException, Pydlspec2dUserWarning, FontProperties + :skip: warn, solve, Pydlspec2dException, Pydlspec2dUserWarning, FontProperties, WCS, Time .. automodapi:: pydl.pydlspec2d.spec2d :skip: warn, erf, get_pkg_data_filename, smooth, iterfit, djs_maskinterp, djs_median, sdss_flagval, traceset2xy, xy2traceset, vactoair diff --git a/docs/pydlutils.rst b/docs/pydlutils.rst index 472fca45..5ef6a8ff 100644 --- a/docs/pydlutils.rst +++ b/docs/pydlutils.rst @@ -68,7 +68,7 @@ yanny Good Tools for manipulating `SDSS parameter files`_. .. _idlutils: https://www.sdss4.org/dr16/software/idlutils/ .. _SDSS: https://www.sdss.org -.. _`The IDL® Astronomy User's Libary`: https://idlastro.gsfc.nasa.gov/ +.. _`The IDL® Astronomy User's Libary`: https://asd.gsfc.nasa.gov/archive/idlastro/ .. _healpy: https://healpy.readthedocs.io/en/latest/ .. _bitmasks: https://www.sdss4.org/dr16/algorithms/bitmasks/ .. _`sweep files`: https://data.sdss.org/datamodel/files/PHOTO_SWEEP/RERUN/calibObj.html diff --git a/pydl/photoop/photoobj.py b/pydl/photoop/photoobj.py index 1169c6f1..adf92863 100644 --- a/pydl/photoop/photoobj.py +++ b/pydl/photoop/photoobj.py @@ -66,7 +66,13 @@ def unwrap_objid(objid): rec.array([(2, 301, 3704, 3, 0, 91, 146)], dtype=[('skyversion', ' 0: - log.warn("Found %d bad columns in input data!", n_zero) + log.warn("Found %d bad columns in input data!" % (n_zero,)) # # Find the largest set of contiguous pixels # @@ -294,7 +299,9 @@ def iterate(self): whitespectra = whiten(self.spectra) log.debug(whitespectra[0:3, 0:3]) self.g, foo = kmeans(whitespectra, self.K) - self.g /= np.repeat(self.normbase(), M).reshape(self.g.shape) + # log.debug((self.normbase(), M)) + # log.debug(self.g.shape) + self.g /= np.repeat(self.normbase(), M - n_zero).reshape(self.g.shape) log.debug(self.g[0:3, 0:3]) # # Initialize a matrix @@ -309,7 +316,7 @@ def iterate(self): # t0 = time.time() for m in range(self.n_iter): - log.info("Starting iteration #%4d.", m+1) + log.info("Starting iteration #%4d." % (m+1,)) if self.nonnegative: self.a = self.astepnn() self.g = self.gstepnn() @@ -318,12 +325,12 @@ def iterate(self): self.g = self.gstep() self.a, self.g = self.reorder() norm = self.normbase() - self.g /= np.repeat(norm, M).reshape(self.g.shape) + self.g /= np.repeat(norm, M - n_zero).reshape(self.g.shape) self.a = (self.a.T*np.repeat(norm, N).reshape(self.K, N)).T log.debug(self.a[0:3, 0:3]) log.debug(self.g[0:3, 0:3]) - log.debug("Chi**2 after iteration #%4d = %f.", m+1, self.badness()) - log.info("The elapsed time for iteration #%4d is %6.2f s.", m+1, time.time()-t0) + log.debug("Chi**2 after iteration #%4d = %f." % (m+1, self.badness())) + log.info("The elapsed time for iteration #%4d is %6.2f s." % (m+1, time.time()-t0)) return (self.a, self.g) @@ -657,7 +664,7 @@ def pca_solve(newflux, newivar, maxiter=0, niter=10, nkeep=3, npix = newflux.shape[0] else: nobj, npix = newflux.shape - log.info("Building PCA from %d object spectra.", nobj) + log.info("Building PCA from %d object spectra." % (nobj,)) nzi = newivar.nonzero() first_nonzero = (np.arange(nobj, dtype=nzi[0].dtype), np.array([nzi[1][nzi[0] == k].min() for k in range(nobj)])) @@ -731,7 +738,7 @@ def pca_solve(newflux, newivar, maxiter=0, niter=10, nkeep=3, synwvec*out.yfit) / (maskivar[iobj, :] + synwvec) acoeff[iobj, :] = out.acoeff - log.info("The elapsed time for iteration #%2d is %6.2f s.", ipiter+1, time.time()-t0) + log.info("The elapsed time for iteration #%2d is %6.2f s." % (ipiter+1, time.time()-t0)) # # Now set ymodel for rejecting points. # @@ -749,7 +756,7 @@ def pca_solve(newflux, newivar, maxiter=0, niter=10, nkeep=3, return fluxdict -def plot_eig(filename, title='Unknown'): +def plot_eig(filename, title='Unknown', save=True): """Plot spectra from an eigenspectra/template file. Parameters @@ -758,6 +765,13 @@ def plot_eig(filename, title='Unknown'): Name of a FITS file containing eigenspectra/templates. title : :class:`str`, optional Title to put on the plot. + save : :class:`bool`, optional + If ``True``, save the plot to a PNG file. + + Returns + ------- + :class:`tuple` + The figure and axes objects created. Raises ------ @@ -778,30 +792,41 @@ def plot_eig(filename, title='Unknown'): title = 'CV Stars: Eigenspectra' else: raise ValueError('Unknown template type!') - base, ext = filename.split('.') - spectrum = fits.open(filename) - newloglam0 = spectrum[0].header['COEFF0'] - objdloglam = spectrum[0].header['COEFF1'] - spectro_data = spectrum[0].data - spectrum.close() + base, ext = os.path.splitext(filename) + try: + created = Time(int(base.split('-')[-1]), format='mjd').to_datetime().date().strftime('%Y-%m-%d') + title += f" [{created}]" + except ValueError: + pass + with fits.open(filename, mode='readonly') as hdulist: + w = WCS(hdulist[0].header, naxis=1) + newloglam0 = hdulist[0].header['COEFF0'] + objdloglam = hdulist[0].header['COEFF1'] + spectro_data = hdulist[0].data (neig, ndata) = spectro_data.shape - newloglam = np.arange(ndata) * objdloglam + newloglam0 - lam = 10.0**newloglam - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + try: + lam = (w.wcs_pix2world(np.arange(ndata), 0)[0] * u.Unit(w.wcs.cunit[0])).to(u.Angstrom) + except u.UnitConversionError: + lam = 10**(np.arange(ndata)*objdloglam + newloglam0) * u.Angstrom + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) colorvec = ['k', 'r', 'g', 'b', 'm', 'c'] - for l in range(neig): - _ = ax.plot(lam, spectro_data[l, :], - colorvec[l % len(colorvec)]+'-', linewidth=1) - ax.set_xlabel(r'Wavelength [$\AA$]') - ax.set_ylabel('Flux [Arbitrary Units]') - ax.set_title(title) + for i in range(neig): + if i == 0 and spectro_data[i, :].min() < 0: + eigen_flux = -1 * spectro_data[i, :] + else: + eigen_flux = spectro_data[i, :] + _ = ax.plot(lam, eigen_flux, + colorvec[i % len(colorvec)]+'-', linewidth=1) + _ = ax.set_xlabel(r'Wavelength [Å]') + _ = ax.set_ylabel('Flux [Arbitrary Units]') + _ = ax.set_title(title) # ax.set_xlim([3500.0,10000.0]) # ax.set_ylim([-400.0,500.0]) # fig.savefig(base+'.zoom.png') - fig.savefig(base+'.png') - plt.close(fig) - return + if save: + fig.savefig(base+'.png') + # plt.close(fig) + return (fig, ax) def readspec(platein, mjd=None, fiber=None, **kwargs): @@ -1266,7 +1291,7 @@ def preprocess_spectra(flux, ivar, loglam=None, zfit=None, aesthetics='mean', indx = loglam > 0 rowloglam = loglam[indx] for iobj in range(nobj): - log.info("OBJECT %5d", iobj) + log.info("OBJECT %5d" % (iobj,)) if loglam.ndim > 1: if loglam.shape[0] != nobj: raise ValueError('Wrong number of dimensions for loglam.') @@ -1303,7 +1328,7 @@ def template_metadata(inputfile, verbose=False): log.setLevel('DEBUG') if not os.path.exists(inputfile): raise Pydlspec2dException("Could not find {0}!".format(inputfile)) - log.debug("Reading input data from %s.", inputfile) + log.debug("Reading input data from %s." % (inputfile,)) par = yanny(inputfile) required_metadata = {'object': str, 'method': str, 'aesthetics': str, 'run2d': str, 'run1d': str, @@ -1313,7 +1338,7 @@ def template_metadata(inputfile, verbose=False): for key in required_metadata: try: metadata[key] = required_metadata[key](par[key]) - log.debug('%s = %s', key, par[key]) + log.debug('%s = %s' % (key, par[key])) except KeyError: raise KeyError('The {0} keyword was not found in {1}!'.format(key, inputfile)) except ValueError: @@ -1331,6 +1356,7 @@ def template_metadata(inputfile, verbose=False): for key in required_hmf_metadata: try: metadata[key] = required_hmf_metadata[key](par[key]) + log.debug('%s = %s' % (key, par[key])) except KeyError: raise KeyError('The {0} keyword was not found in {1}!'.format(key, inputfile)) except ValueError: @@ -1380,8 +1406,8 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): # Read the input spectra # if os.path.exists(dumpfile): - log.info("Loading data from %s.", dumpfile) - with open(dumpfile) as f: + log.info("Loading data from %s." % (dumpfile,)) + with open(dumpfile, 'rb') as f: inputflux = pickle.load(f) newflux = inputflux['newflux'] newivar = inputflux['newivar'] @@ -1399,8 +1425,8 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): if missing.any(): imissing = missing.nonzero()[0] for k in imissing: - log.error("Missing plate=%d mjd=%d fiberid=%d", - slist.plate[k], slist.mjd[k], slist.fiberid[k]) + log.error("Missing plate=%d mjd=%d fiberid=%d" % + (slist.plate[k], slist.mjd[k], slist.fiberid[k])) raise ValueError("{0:d} missing object(s).".format(missing.sum())) # # Do not fit where the spectrum may be dominated by sky-sub residuals. @@ -1444,7 +1470,7 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): # Dump input fluxes to a file for debugging purposes. # if not os.path.exists(dumpfile): - with open(dumpfile, 'w') as f: + with open(dumpfile, 'wb') as f: inputflux = {'newflux': newflux, 'newivar': newivar, 'newloglam': newloglam} pickle.dump(inputflux, f) @@ -1477,19 +1503,18 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): pcaflux['newloglam'] = newloglam # # Fill in bad data with a running median of the good data. - # The presence of boundary='nearest' means that this code snippet - # was never meant to be called! In other words it should always - # be the case that qgood.all() is True. + # + # Historical note: djs_median() was called with boundary='nearest', which + # is very weird, because 'nearest' was never implemented. However, boundary + # is ignored for one-dimensional inputs, so it's sloppy code, but not + # actually a problem. # if 'usemask' in pcaflux: qgood = pcaflux['usemask'] >= metadata['minuse'] if not qgood.all(): - warn("Would have triggered djs_median replacement!", Pydlspec2dUserWarning) - if False: medflux = np.zeros(pcaflux['flux'].shape, dtype=pcaflux['flux'].dtype) for i in range(metadata['nkeep']): - medflux[i, qgood] = djs_median(pcaflux['flux'][i, qgood], - width=51, boundary='nearest') + medflux[i, qgood] = djs_median(pcaflux['flux'][i, qgood], width=51) medflux[i, :] = djs_maskinterp(medflux[i, :], ~qgood, const=True) pcaflux['flux'][:, ~qgood] = medflux[:, ~qgood] # @@ -1504,53 +1529,50 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): if flux: nfluxes = 30 separation = 5.0 - nplots = nspectra/nfluxes + nplots = nspectra//nfluxes if nspectra % nfluxes > 0: nplots += 1 for k in range(nplots): istart = k*nfluxes iend = min(istart+nfluxes, nspectra) - 1 - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) for l in range(istart, iend+1): _ = ax.plot(10.0**pcaflux['newloglam'], pcaflux['newflux'][l, :] + separation*(l % nfluxes), colorvec[l % len(colorvec)]+'-', linewidth=1) - ax.set_xlabel(r'Wavelength [$\AA$]') - ax.set_ylabel(r'Flux [$\mathsf{10^{-17} erg\, cm^{-2} s^{-1} \AA^{-1}}$] + Constant') - ax.set_title('Input Spectra {0:04d}-{1:04d}'.format(istart+1, iend+1)) - ax.set_ylim(pcaflux['newflux'][istart, :].min(), pcaflux['newflux'][iend-1, :].max()+separation*(nfluxes-1)) + _ = ax.set_xlabel(r'Wavelength [Å]') + _ = ax.set_ylabel(r'Flux [$\mathsf{10^{-17} erg\, cm^{-2} s^{-1} \AA^{-1}}$] + Constant') + _ = ax.set_title('Input Spectra {0:04d}-{1:04d}'.format(istart+1, iend+1)) + _ = ax.set_ylim(pcaflux['newflux'][istart, :].min(), pcaflux['newflux'][iend-1, :].max()+separation*(nfluxes-1)) fig.savefig('{0}.flux.{1:04d}-{2:04d}.png'.format(outfile, istart+1, iend+1)) plt.close(fig) # # Missing data diagnostic. # - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) _ = ax.plot(10.0**pcaflux['newloglam'], (pcaflux['newivar'] == 0).sum(0)/float(nspectra), 'k-') - ax.set_xlabel(r'Wavelength [$\AA$]') - ax.set_ylabel('Fraction of spectra with missing data') - ax.set_title('Missing Data') - ax.grid(True) + _ = ax.set_xlabel(r'Wavelength [Å]') + _ = ax.set_ylabel('Fraction of spectra with missing data') + _ = ax.set_title('Missing Data') + _ = ax.grid(True) fig.savefig(outfile+'.missing.png') plt.close(fig) # # usemask diagnostic # if 'usemask' in pcaflux: - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) _ = ax.semilogy(10.0**pcaflux['newloglam'][pcaflux['usemask'] > 0], pcaflux['usemask'][pcaflux['usemask'] > 0], 'k-', 10.0**pcaflux['newloglam'], np.zeros(pcaflux['newloglam'].shape, dtype=pcaflux['newloglam'].dtype) + metadata['minuse'], 'k--') - ax.set_xlabel(r'Wavelength [$\AA$]') - ax.set_ylabel('Usemask') - ax.set_title('UseMask') - ax.grid(True) + _ = ax.set_xlabel(r'Wavelength [Å]') + _ = ax.set_ylabel('Usemask') + _ = ax.set_title('UseMask') + _ = ax.grid(True) fig.savefig(outfile+'.usemask.png') plt.close(fig) # @@ -1560,8 +1582,7 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): aratio10 = pcaflux['acoeff'][:, 1]/pcaflux['acoeff'][:, 0] aratio20 = pcaflux['acoeff'][:, 2]/pcaflux['acoeff'][:, 0] aratio30 = pcaflux['acoeff'][:, 3]/pcaflux['acoeff'][:, 0] - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) _ = ax.plot(aratio10, aratio20, marker='None', linestyle='None') for k in range(len(aratio10)): _ = ax.text(aratio10[k], aratio20[k], @@ -1569,15 +1590,14 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): horizontalalignment='center', verticalalignment='center', color=colorvec[k % len(colorvec)], fontproperties=smallfont) - # ax.set_xlim([aratio10.min(), aratio10.max]) - # ax.set_xlim([aratio20.min(), aratio20.max]) - ax.set_xlabel('Eigenvalue Ratio, $a_1/a_0$') - ax.set_ylabel('Eigenvalue Ratio, $a_2/a_0$') - ax.set_title('Eigenvalue Ratios') + # _ = ax.set_xlim([aratio10.min(), aratio10.max]) + # _ = ax.set_xlim([aratio20.min(), aratio20.max]) + _ = ax.set_xlabel('Eigenvalue Ratio, $a_1/a_0$') + _ = ax.set_ylabel('Eigenvalue Ratio, $a_2/a_0$') + _ = ax.set_title('Eigenvalue Ratios') fig.savefig(outfile+'.a2_v_a1.png') plt.close(fig) - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) _ = ax.plot(aratio20, aratio30, marker='None', linestyle='None') for k in range(len(aratio10)): _ = ax.text(aratio20[k], aratio30[k], @@ -1585,11 +1605,11 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): horizontalalignment='center', verticalalignment='center', color=colorvec[k % len(colorvec)], fontproperties=smallfont) - # ax.set_xlim([aratio10.min(), aratio10.max]) - # ax.set_xlim([aratio20.min(), aratio20.max]) - ax.set_xlabel('Eigenvalue Ratio, $a_2/a_0$') - ax.set_ylabel('Eigenvalue Ratio, $a_3/a_0$') - ax.set_title('Eigenvalue Ratios') + # _ = ax.set_xlim([aratio10.min(), aratio10.max]) + # _ = ax.set_xlim([aratio20.min(), aratio20.max]) + _ = ax.set_xlabel('Eigenvalue Ratio, $a_2/a_0$') + _ = ax.set_ylabel('Eigenvalue Ratio, $a_3/a_0$') + _ = ax.set_title('Eigenvalue Ratios') fig.savefig(outfile+'.a3_v_a2.png') plt.close(fig) # @@ -1601,9 +1621,23 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): objtypes = {'gal': 'GALAXY', 'qso': 'QSO', 'star': 'STAR'} if not pydl_version: pydl_version = 'git' + hdu0.header['EXTNAME'] = ('EIGENSPECTRA', 'extension name') + hdu0.header['LONGSTRN'] = ('OGIP 1.0', 'The OGIP Long String Convention may be used.') hdu0.header['OBJECT'] = (objtypes[metadata['object']], 'Type of template') hdu0.header['COEFF0'] = (pcaflux['newloglam'][0], 'Wavelength zeropoint') hdu0.header['COEFF1'] = (pcaflux['newloglam'][1]-pcaflux['newloglam'][0], 'Delta wavelength') + # + # WCS + # + hdu0.header['WCSAXES'] = (1, 'Number of coordinate axes') + hdu0.header['CRPIX1'] = (1.0, 'Pixel coordinate of reference point') + hdu0.header['CTYPE1'] = ('WAVE-LOG', 'Wavelength in vacuuo, logarithmic axis') + hdu0.header['CRVAL1'] = (10**pcaflux['newloglam'][0], '[Angstrom] Coordinate value at reference point') + hdu0.header['CDELT1'] = ((10**pcaflux['newloglam'][0]) * (pcaflux['newloglam'][1]-pcaflux['newloglam'][0]) * np.log(10), '[Angstrom] Coordinate increment at reference point') + hdu0.header['CUNIT1'] = ('Angstrom', 'Units of coordinate increment and value') + # + # Metadata + # hdu0.header['IDLUTILS'] = ('pydl-{0}'.format(pydl_version), 'Version of idlutils') hdu0.header['SPEC2D'] = ('pydl-{0}'.format(pydl_version), 'Version of idlspec2d') hdu0.header['RUN2D'] = (os.environ['RUN2D'], 'Version of 2d reduction') @@ -1613,8 +1647,7 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): if metadata['method'].lower() == 'hmf': hdu0.header['NONNEG'] = (metadata['nonnegative'], 'Was nonnegative HMF used?') hdu0.header['EPSILON'] = (metadata['epsilon'], 'Regularization parameter used.') - # for i in range(len(namearr)): - # hdu0.header["NAME{0:d}".format(i)] = namearr[i]+' ' + hdu0.add_checksum() c = [fits.Column(name='plate', format='J', array=slist.plate), fits.Column(name='mjd', format='J', array=slist.mjd), fits.Column(name='fiberid', format='J', array=slist.fiberid)] @@ -1625,9 +1658,10 @@ def template_input(inputfile, dumpfile, flux=False, verbose=False): hdu0.header['NAME{0:d}'.format(i)] = (name, 'Name of class {0:d}.'.format(i)) else: c.append(fits.Column(name='zfit', format='D', array=slist.zfit)) - hdu1 = fits.BinTableHDU.from_columns(fits.ColDefs(c)) + hdu1 = fits.BinTableHDU.from_columns(fits.ColDefs(c), name='INPUT_SPECTRA') + hdu1.add_checksum() hdulist = fits.HDUList([hdu0, hdu1]) - hdulist.writeto(outfile+'.fits') + hdulist.writeto(outfile+'.fits', overwrite=True) if metadata['object'].lower() != 'star': plot_eig(outfile+'.fits') # @@ -1673,7 +1707,7 @@ def template_qso(metadata, newflux, newivar, verbose=False): nobj, npix = newflux.shape objflux = newflux.copy() for ikeep in range(metadata['nkeep']): - log.info("Solving for eigencomponent #%d of %d", ikeep+1, metadata['nkeep']) + log.info("Solving for eigencomponent #%d of %d" % (ikeep+1, metadata['nkeep'])) if metadata['method'].lower() == 'pca': pcaflux1 = pca_solve(objflux, newivar, niter=metadata['niter'], nkeep=1, @@ -1771,7 +1805,7 @@ def template_star(metadata, newloglam, newflux, newivar, slist, outfile, # # Find the subclasses for this stellar type # - log.info("Finding eigenspectra for Stellar class %s.", c) + log.info("Finding eigenspectra for Stellar class %s." % (c,)) indx = (slist['class'] == c).nonzero()[0] nindx = indx.size thesesubclass = slist['subclass'][indx] @@ -1843,8 +1877,7 @@ def template_star(metadata, newloglam, newflux, newivar, slist, outfile, thesesubclassnum = np.zeros(thesesubclass.size, dtype='i4') colorvec = ['k', 'r', 'g', 'b', 'm', 'c'] smallfont = FontProperties(size='xx-small') - fig = plt.figure(dpi=100) - ax = fig.add_subplot(111) + fig, ax = plt.subplots(1, 1, figsize=_default_figsize, dpi=100) for isub in range(nsubclass): ii = (thesesubclass == subclasslist[isub]).nonzero()[0] thesesubclassnum[ii] = isub @@ -1862,13 +1895,13 @@ def template_star(metadata, newloglam, newflux, newivar, slist, outfile, # Plot spectra # plotflux = thisflux/thisflux.max() - ax.plot(10.0**newloglam, plotflux, - "{0}-".format(colorvec[isub % len(colorvec)]), - linewidth=1) + _ = ax.plot(10.0**newloglam, plotflux, + "{0}-".format(colorvec[isub % len(colorvec)]), + linewidth=1) if isub == 0: - ax.set_xlabel(r'Wavelength [$\AA$]') - ax.set_ylabel('Flux [arbitrary units]') - ax.set_title('STAR {0}: Eigenspectra Reconstructions'.format(c)) + _ = ax.set_xlabel(r'Wavelength [Å]') + _ = ax.set_ylabel('Flux [arbitrary units]') + _ = ax.set_title('STAR {0}: Eigenspectra Reconstructions'.format(c)) _ = ax.text(10.0**newloglam[-1], plotflux[-1], subclasslist[isub], horizontalalignment='right', verticalalignment='center', @@ -1900,7 +1933,8 @@ def template_input_main(): # pragma: no cover # import sys from argparse import ArgumentParser - + import matplotlib + matplotlib.use("Agg") # Get home directory in platform-independent way home_dir = os.path.expanduser('~') # diff --git a/pydl/pydlspec2d/spec2d.py b/pydl/pydlspec2d/spec2d.py index 20e456ee..1c897804 100644 --- a/pydl/pydlspec2d/spec2d.py +++ b/pydl/pydlspec2d/spec2d.py @@ -223,8 +223,7 @@ def combine1fiber(inloglam, objflux, newloglam, objivar=None, verbose=False, sset, bmask = iterfit(inloglam_r[ss], objflux.ravel()[ss], nord=nord, groupbadpix=True, - requiren=1, bkspace=bkptbin, - silent=True) + requiren=1, bkspace=bkptbin) else: # # Fit with variance @@ -233,8 +232,7 @@ def combine1fiber(inloglam, objflux, newloglam, objivar=None, verbose=False, objflux.ravel()[ss], invvar=objivar.ravel()[ss], nord=nord, groupbadpix=True, - requiren=1, bkspace=bkptbin, - silent=True) + requiren=1, bkspace=bkptbin) if np.sum(np.absolute(sset.coeff)) == 0: sset = None bmask = np.zeros(len(ss)) diff --git a/pydl/pydlutils/bspline.py b/pydl/pydlutils/bspline.py index 9544d86f..ed170fd9 100644 --- a/pydl/pydlutils/bspline.py +++ b/pydl/pydlutils/bspline.py @@ -4,7 +4,7 @@ """ from warnings import warn import numpy as np -from numpy.linalg.linalg import LinAlgError +from numpy.linalg import LinAlgError from scipy.linalg import cholesky_banded, cho_solve_banded from . import PydlutilsUserWarning from .math import djs_reject @@ -539,7 +539,7 @@ def cholesky_solve(a, bb): def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, - maxiter=10, **kwargs): + maxiter=10, groupbadpix=False, **kwargs): """Iteratively fit a B-spline set to data, with rejection. Additional keyword parameters are passed to @@ -563,6 +563,8 @@ def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, maxiter : :class:`int`, optional Maximum number of rejection iterations, default 10. Set this to zero to disable rejection. + groupbadpix : :class:`bool`, optional + This keyword will be passed to :func:`~pydl.pydlutils.math.djs_reject`. Returns ------- @@ -594,6 +596,11 @@ def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, outmask = np.ones(invvar.shape, dtype='bool') xsort = xdata.argsort() maskwork = (outmask & (invvar > 0))[xsort] + if 'requiren' in kwargs: + requiren = kwargs['requiren'] + del kwargs['requiren'] # So that kwargs can be passed to bspline. + else: + requiren = None if 'oldset' in kwargs: sset = kwargs['oldset'] sset.mask = True @@ -605,7 +612,11 @@ def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, # fullbkpt = kwargs['fullbkpt'] raise ValueError('Input via fullbkpt is not supported!') else: - sset = bspline(xdata[xsort[maskwork]], **kwargs) + try: + sset = bspline(xdata[xsort[maskwork]], **kwargs) + except TypeError: + print(kwargs) + raise if maskwork.sum() < sset.nord: warn('Number of good data points fewer than nord.', PydlutilsUserWarning) @@ -643,7 +654,7 @@ def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, sset.coeff = 0 iiter = maxiter + 1 else: - if 'requiren' in kwargs: + if requiren is not None: i = 0 while xwork[i] < sset.breakpoints[goodbk[sset.nord]] and i < nx-1: i += 1 @@ -654,7 +665,7 @@ def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, i < nx-1): ct += invwork[i]*maskwork[i] > 0 i += 1 - if ct >= kwargs['requiren']: + if ct >= requiren: ct = 0 else: sset.mask[goodbk[ileft]] = False @@ -665,9 +676,9 @@ def iterfit(xdata, ydata, invvar=None, upper=5, lower=5, x2=None, if error == -2: return (sset, outmask) elif error == 0: - maskwork, qdone = djs_reject(ywork, yfit, invvar=invwork, - inmask=inmask, outmask=maskwork, - upper=upper, lower=lower) + maskwork, qdone = djs_reject(ywork, yfit, inmask=inmask, outmask=maskwork, + invvar=invwork, lower=lower, upper=upper, + groupbadpix=groupbadpix) else: pass outmask[xsort] = maskwork diff --git a/pydl/pydlutils/math.py b/pydl/pydlutils/math.py index 52117909..9a92e643 100644 --- a/pydl/pydlutils/math.py +++ b/pydl/pydlutils/math.py @@ -119,7 +119,8 @@ def djs_median(array, dimension=None, width=None, boundary='none'): `width`/2 of the boundary. 'reflect' means reflect pixel values around the boundary. 'nearest' means use the values of the nearest boundary pixel. 'wrap' means wrap pixel values around the boundary. 'nearest' and 'wrap' - are not implemented. + are not implemented. If `array` is one-dimensional, and `boundary` is not + 'none', then it is forced to be 'reflect'. Returns ------- @@ -137,27 +138,30 @@ def djs_median(array, dimension=None, width=None, boundary='none'): if width == 1: return array if boundary == 'none': - if array.ndim == 1: - return median(array, width) - elif array.ndim == 2: - return median(array, width) - else: - raise ValueError('Unsupported number of dimensions with ' + - 'this boundary condition.') - elif boundary == 'reflect': + return median(array, width) + else: padsize = int(np.ceil(width/2.0)) if array.ndim == 1: bigarr = np.zeros(array.shape[0]+2*padsize, dtype=array.dtype) bigarr[padsize:padsize+array.shape[0]] = array - bigarr[0:padsize] = array[0:padsize][::-1] - bigarr[padsize+array.shape[0]:padsize*2+array.shape[0]] = (array[array.shape[0]-padsize:array.shape[0]][::-1]) - f = median(bigarr, width) - medarray = f[padsize:padsize+array.shape[0]] - return medarray elif array.ndim == 2: bigarr = np.zeros((array.shape[0]+2*padsize, array.shape[1]+2*padsize), dtype=array.dtype) bigarr[padsize:padsize+array.shape[0], padsize:padsize+array.shape[1]] = array + else: + raise ValueError('Unsupported number of dimensions with ' + + 'this boundary condition.') + if array.ndim == 1: + # + # 'reflect' is the only implemented option in this case. + # + bigarr[0:padsize] = array[0:padsize][::-1] + bigarr[padsize+array.shape[0]:padsize*2+array.shape[0]] = (array[array.shape[0]-padsize:array.shape[0]][::-1]) + f = median(bigarr, width) + medarray = f[padsize:padsize+array.shape[0]] + return medarray + else: + if boundary == 'reflect': # Copy into top + bottom bigarr[0:padsize, padsize:array.shape[1]+padsize] = array[0:padsize, :][::-1, :] bigarr[array.shape[0]+padsize:bigarr.shape[0], padsize:array.shape[1]+padsize] = array[array.shape[0]-padsize:array.shape[0], :][::-1, :] @@ -175,15 +179,12 @@ def djs_median(array, dimension=None, width=None, boundary='none'): f = median(bigarr, min(width, array.size)) medarray = f[padsize:array.shape[0]+padsize, padsize:array.shape[1]+padsize] return medarray + elif boundary == 'nearest': + raise ValueError('This boundary condition not implemented') + elif boundary == 'wrap': + raise ValueError('This boundary condition not implemented') else: - raise ValueError('Unsupported number of dimensions with ' + - 'this boundary condition.') - elif boundary == 'nearest': - raise ValueError('This boundary condition not implemented') - elif boundary == 'wrap': - raise ValueError('This boundary condition not implemented') - else: - raise ValueError('Unknown boundary condition.') + raise ValueError('Unknown boundary condition.') else: raise ValueError('Invalid to specify both dimension & width.') diff --git a/pydl/pydlutils/sdss.py b/pydl/pydlutils/sdss.py index 32043949..1b1c482d 100644 --- a/pydl/pydlutils/sdss.py +++ b/pydl/pydlutils/sdss.py @@ -759,7 +759,13 @@ def unwrap_specobjid(specObjID, run2d_integer=False, specLineIndex=False): dtype=[('plate', '