Skip to content

[Usage]: AttributeError: 'Parameter' object has no attribute 'load_column_parallel_weight' #24950

@sallyjunjun

Description

@sallyjunjun

Your current environment

The output of `python collect_env.py`
INFO 09-16 15:35:11 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
/root/miniconda3/lib/python3.11/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
  warnings.warn("Setuptools is replacing distutils.")
==============================
        System Info
==============================
OS                           : Ubuntu 20.04.4 LTS (x86_64)
GCC version                  : (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version                : Could not collect
CMake version                : version 3.16.3
Libc version                 : glibc-2.31

==============================
       PyTorch Info
==============================
PyTorch version              : 2.6.0+cu124
Is debug build               : False
CUDA used to build PyTorch   : 12.4
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.11.5 (main, Sep 11 2023, 13:54:46) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-5.15.0-89-generic-x86_64-with-glibc2.31

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200

Nvidia driver version        : 570.133.20
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 57 bits virtual
CPU(s):                             192
On-line CPU(s) list:                0
Off-line CPU(s) list:               1-191
Thread(s) per core:                 0
Core(s) per socket:                 48
Socket(s):                          2
NUMA node(s):                       2
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              207
Model name:                         INTEL(R) XEON(R) PLATINUM 8558
Stepping:                           2
CPU MHz:                            3834.712
CPU max MHz:                        4000.0000
CPU min MHz:                        800.0000
BogoMIPS:                           4200.00
Virtualization:                     VT-x
L1d cache:                          2.3 MiB
L1i cache:                          1.5 MiB
L2 cache:                           96 MiB
L3 cache:                           260 MiB
NUMA node0 CPU(s):                  0-47,96-143
NUMA node1 CPU(s):                  48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.2.3
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cudnn-frontend==1.14.1
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.2
[pip3] torch==2.6.0
[pip3] torch_memory_saver==0.0.8
[pip3] torchao==0.9.0
[pip3] torchaudio==2.6.0
[pip3] torchmetrics==1.8.2
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.1
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.2.0
[pip3] zmq==0.0.0
[conda] flashinfer-python         0.2.3                    pypi_0    pypi
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cudnn-frontend     1.14.1                   pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-ml-py              12.575.51                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pynvml                    12.0.0                   pypi_0    pypi
[conda] pyzmq                     27.0.2                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torch-memory-saver        0.0.8                    pypi_0    pypi
[conda] torchao                   0.9.0                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchmetrics              1.8.2                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.51.1                   pypi_0    pypi
[conda] transformers-stream-generator 0.0.5                    pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
[conda] zmq                       0.0.0                    pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.8.3
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    NIC8    NIC9    NIC10   NIC11   NIC12   NIC13   NIC14   NIC15   NIC16   NIC17   CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    0       0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    0       0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    0       0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    0       0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE                            N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE                            N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE                            N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE                            N/A
NIC0    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE
NIC1    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE
NIC2    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE
NIC3    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE
NIC4    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE
NIC5    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE
NIC6    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE
NIC7    NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE
NIC8    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE
NIC9    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE
NIC10   NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE    NODE
NIC11   NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE    NODE
NIC12   NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE    NODE
NIC13   NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE    NODE
NIC14   NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE    NODE
NIC15   NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE    PIX     NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE    NODE
NIC16   NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE     X      NODE
NIC17   NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE    NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_20
  NIC9: mlx5_21
  NIC10: mlx5_22
  NIC11: mlx5_23
  NIC12: mlx5_24
  NIC13: mlx5_25
  NIC14: mlx5_26
  NIC15: mlx5_27
  NIC16: mlx5_bond_0
  NIC17: mlx5_data_0

==============================
     Environment Variables
==============================
CUDA_PATH=/usr/local/cuda
LD_LIBRARY_PATH=/mnt/shared-storage-user/zoutong/geruijun/cuda-12.4/lib64:/usr/local/nvidia/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
CUDA_HOME=/mnt/shared-storage-user/zoutong/geruijun/cuda-12.4
CUDA_HOME=/mnt/shared-storage-user/zoutong/geruijun/cuda-12.4
VLLM_USE_V1=1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_root
CUDA_MODULE_LOADING=LAZY

When I run with vllm version 0.8.3 and export VLLM_USE_V1=1, I met the following problem:

in update_weight
[rank4]:     self.model_runner.model.load_weights(weights=[(name, weight)])
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/flash_rl/vllm_patch.py", line 701, in hacked_load_weights
[rank4]:     updated_params = original_load_weights(
[rank4]:                      ^^^^^^^^^^^^^^^^^^^^^^
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 1115, in load_weights
[rank4]:     return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
[rank4]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 261, in load_weights
[rank4]:     autoloaded_weights = set(self._load_module("", self.module, weights))
[rank4]:                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 222, in _load_module
[rank4]:     yield from self._load_module(prefix,
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 195, in _load_module
[rank4]:     loaded_params = module_load_weights(weights)
[rank4]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 720, in load_weights
[rank4]:     weight_loader(param, loaded_weight)
[rank4]:   File "/root/miniconda3/lib/python3.11/site-packages/vllm/model_executor/layers/linear.py", line 465, in weight_loader_v2
[rank4]:     param.load_column_parallel_weight(loaded_weight=loaded_weight)
[rank4]:     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank4]: AttributeError: 'Parameter' object has no attribute 'load_column_parallel_weight'

I want to add fp8 rollout feature using flash_rl. The workerwrap code is as follows:

from vllm.v1.worker.gpu_worker import Worker as WorkerV1
class WorkerWrapV1(WorkerV1):
    def update_weight(self, name, dtype, shape, weight, empty_cache=False):  # pylint: disable=R0917, W0613
        assert dtype == self.model_config.dtype, f"mismatch dtype: src {dtype}, dst {self.model_config.dtype}"
        self.model_runner.model.load_weights(weights=[(name, weight)])
        del weight
        if empty_cache:
            torch.cuda.empty_cache()

I found that this "AttributeError: 'Parameter' object has no attribute 'load_column_parallel_weight'" error happens when the type of blocks.0.attn.qkv.weight parameter is tensor. When the type of blocks.0.attn.qkv.weight parameter is ModelWeightParameter, it can be loaded successfully.

Why the type of this parameter can change? How can I fix this problem? Thank you for your help.

How would you like to use vllm

I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions