|
40 | 40 | from vllm.model_executor.layers.vocab_parallel_embedding import (
|
41 | 41 | ParallelLMHead, VocabParallelEmbedding)
|
42 | 42 | from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
| 43 | +from vllm.model_executor.pooling_metadata import PoolingMetadata |
43 | 44 | from vllm.model_executor.sampling_metadata import SamplingMetadata
|
44 |
| -from vllm.sequence import IntermediateTensors |
| 45 | +from vllm.sequence import IntermediateTensors, PoolerOutput |
45 | 46 |
|
| 47 | +from ..layers.pooler import Pooler, PoolingType |
46 | 48 | from .interfaces import SupportsPP
|
47 | 49 | from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
|
48 | 50 | make_empty_intermediate_tensors_factory, make_layers,
|
@@ -318,6 +320,58 @@ def load_weights(self, weights: Iterable[tuple[str,
|
318 | 320 | return loader.load_weights(weights)
|
319 | 321 |
|
320 | 322 |
|
| 323 | +class GPT2ForSequenceClassification(nn.Module): |
| 324 | + """GPT2 Model for sequence classification. |
| 325 | +
|
| 326 | + This class expands GPT2Model with pooling and score functions - last token |
| 327 | + is being used for classification. |
| 328 | +
|
| 329 | + Attributes: |
| 330 | + transformer: An instance of GPT2Model used for forward operations. |
| 331 | + score: A layer for calculating logits. |
| 332 | + _pooler: An instance of Pooler used for pooling operations. |
| 333 | + """ |
| 334 | + |
| 335 | + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
| 336 | + super().__init__() |
| 337 | + config = vllm_config.model_config.hf_config |
| 338 | + self.transformer = GPT2Model(vllm_config=vllm_config, |
| 339 | + prefix=maybe_prefix(prefix, "gpt2")) |
| 340 | + self.score = nn.Linear(config.n_embd, config.num_labels, bias=False) |
| 341 | + pooler_config = vllm_config.model_config.pooler_config |
| 342 | + self._pooler = Pooler.from_config_with_defaults( |
| 343 | + pooler_config, |
| 344 | + pooling_type=PoolingType.LAST, |
| 345 | + normalize=False, |
| 346 | + softmax=True) |
| 347 | + |
| 348 | + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): |
| 349 | + loader = AutoWeightsLoader(self) |
| 350 | + return loader.load_weights(weights) |
| 351 | + |
| 352 | + def pooler( |
| 353 | + self, |
| 354 | + hidden_states: torch.Tensor, |
| 355 | + pooling_metadata: PoolingMetadata, |
| 356 | + ) -> Optional[PoolerOutput]: |
| 357 | + return self._pooler(hidden_states, pooling_metadata) |
| 358 | + |
| 359 | + def forward( |
| 360 | + self, |
| 361 | + input_ids: torch.Tensor, |
| 362 | + positions: torch.Tensor, |
| 363 | + intermediate_tensors: Optional[IntermediateTensors] = None, |
| 364 | + inputs_embeds: Optional[torch.Tensor] = None, |
| 365 | + ) -> torch.Tensor: |
| 366 | + hidden_states = self.transformer( |
| 367 | + input_ids=input_ids, |
| 368 | + position_ids=positions, |
| 369 | + inputs_embeds=inputs_embeds, |
| 370 | + intermediate_tensors=intermediate_tensors) |
| 371 | + logits = self.score(hidden_states) |
| 372 | + return logits |
| 373 | + |
| 374 | + |
321 | 375 | def _add_transformer_prefix(
|
322 | 376 | weights: Iterable[tuple[str, torch.Tensor]]
|
323 | 377 | ) -> Iterable[tuple[str, torch.Tensor]]:
|
|
0 commit comments