|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | + |
| 4 | +import json |
| 5 | + |
| 6 | +import pytest |
| 7 | +import pytest_asyncio |
| 8 | +from mistral_common.audio import Audio |
| 9 | +from mistral_common.protocol.instruct.messages import (AudioChunk, RawAudio, |
| 10 | + TextChunk, UserMessage) |
| 11 | + |
| 12 | +from vllm.transformers_utils.tokenizer import MistralTokenizer |
| 13 | + |
| 14 | +from ....conftest import AudioTestAssets |
| 15 | +from ....utils import RemoteOpenAIServer |
| 16 | +from .test_ultravox import MULTI_AUDIO_PROMPT, run_multi_audio_test |
| 17 | + |
| 18 | +MODEL_NAME = "mistralai/Voxtral-Mini-3B-2507" |
| 19 | +MISTRAL_FORMAT_ARGS = [ |
| 20 | + "--tokenizer_mode", "mistral", "--config_format", "mistral", |
| 21 | + "--load_format", "mistral" |
| 22 | +] |
| 23 | + |
| 24 | + |
| 25 | +@pytest.fixture() |
| 26 | +def server(request, audio_assets: AudioTestAssets): |
| 27 | + args = [ |
| 28 | + "--enforce-eager", |
| 29 | + "--limit-mm-per-prompt", |
| 30 | + json.dumps({"audio": len(audio_assets)}), |
| 31 | + ] + MISTRAL_FORMAT_ARGS |
| 32 | + |
| 33 | + with RemoteOpenAIServer(MODEL_NAME, |
| 34 | + args, |
| 35 | + env_dict={"VLLM_AUDIO_FETCH_TIMEOUT": |
| 36 | + "30"}) as remote_server: |
| 37 | + yield remote_server |
| 38 | + |
| 39 | + |
| 40 | +@pytest_asyncio.fixture |
| 41 | +async def client(server): |
| 42 | + async with server.get_async_client() as async_client: |
| 43 | + yield async_client |
| 44 | + |
| 45 | + |
| 46 | +def _get_prompt(audio_assets, question): |
| 47 | + tokenizer = MistralTokenizer.from_pretrained(MODEL_NAME) |
| 48 | + |
| 49 | + audios = [ |
| 50 | + Audio.from_file(str(audio_assets[i].get_local_path()), strict=False) |
| 51 | + for i in range(len(audio_assets)) |
| 52 | + ] |
| 53 | + audio_chunks = [ |
| 54 | + AudioChunk(input_audio=RawAudio.from_audio(audio)) for audio in audios |
| 55 | + ] |
| 56 | + |
| 57 | + text_chunk = TextChunk(text=question) |
| 58 | + messages = [UserMessage(content=[*audio_chunks, text_chunk]).to_openai()] |
| 59 | + |
| 60 | + return tokenizer.apply_chat_template(messages=messages) |
| 61 | + |
| 62 | + |
| 63 | +@pytest.mark.core_model |
| 64 | +@pytest.mark.parametrize("dtype", ["half"]) |
| 65 | +@pytest.mark.parametrize("max_tokens", [128]) |
| 66 | +@pytest.mark.parametrize("num_logprobs", [5]) |
| 67 | +def test_models_with_multiple_audios(vllm_runner, |
| 68 | + audio_assets: AudioTestAssets, dtype: str, |
| 69 | + max_tokens: int, |
| 70 | + num_logprobs: int) -> None: |
| 71 | + vllm_prompt = _get_prompt(audio_assets, MULTI_AUDIO_PROMPT) |
| 72 | + run_multi_audio_test( |
| 73 | + vllm_runner, |
| 74 | + [(vllm_prompt, [audio.audio_and_sample_rate |
| 75 | + for audio in audio_assets])], |
| 76 | + MODEL_NAME, |
| 77 | + dtype=dtype, |
| 78 | + max_tokens=max_tokens, |
| 79 | + num_logprobs=num_logprobs, |
| 80 | + tokenizer_mode="mistral", |
| 81 | + ) |
| 82 | + |
| 83 | + |
| 84 | +@pytest.mark.asyncio |
| 85 | +async def test_online_serving(client, audio_assets: AudioTestAssets): |
| 86 | + """Exercises online serving with/without chunked prefill enabled.""" |
| 87 | + |
| 88 | + def asset_to_chunk(asset): |
| 89 | + audio = Audio.from_file(str(asset.get_local_path()), strict=False) |
| 90 | + audio.format = "wav" |
| 91 | + audio_dict = AudioChunk.from_audio(audio).to_openai() |
| 92 | + return audio_dict |
| 93 | + |
| 94 | + audio_chunks = [asset_to_chunk(asset) for asset in audio_assets] |
| 95 | + messages = [{ |
| 96 | + "role": |
| 97 | + "user", |
| 98 | + "content": [ |
| 99 | + *audio_chunks, |
| 100 | + { |
| 101 | + "type": |
| 102 | + "text", |
| 103 | + "text": |
| 104 | + f"What's happening in these {len(audio_assets)} audio clips?" |
| 105 | + }, |
| 106 | + ], |
| 107 | + }] |
| 108 | + |
| 109 | + chat_completion = await client.chat.completions.create(model=MODEL_NAME, |
| 110 | + messages=messages, |
| 111 | + max_tokens=10) |
| 112 | + |
| 113 | + assert len(chat_completion.choices) == 1 |
| 114 | + choice = chat_completion.choices[0] |
| 115 | + assert choice.finish_reason == "length" |
0 commit comments