Skip to content

Commit c3649e4

Browse files
authored
[Docs] Fix syntax highlighting of shell commands (#19870)
Signed-off-by: Lukas Geiger <lukas.geiger94@gmail.com>
1 parent 53243e5 commit c3649e4

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

53 files changed

+220
-220
lines changed

.buildkite/nightly-benchmarks/nightly-annotation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Please download the visualization scripts in the post
1616
- Download `nightly-benchmarks.zip`.
1717
- In the same folder, run the following code:
1818

19-
```console
19+
```bash
2020
export HF_TOKEN=<your HF token>
2121
apt update
2222
apt install -y git

docs/deployment/docker.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ title: Using Docker
1010
vLLM offers an official Docker image for deployment.
1111
The image can be used to run OpenAI compatible server and is available on Docker Hub as [vllm/vllm-openai](https://hub.docker.com/r/vllm/vllm-openai/tags).
1212

13-
```console
13+
```bash
1414
docker run --runtime nvidia --gpus all \
1515
-v ~/.cache/huggingface:/root/.cache/huggingface \
1616
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
@@ -22,7 +22,7 @@ docker run --runtime nvidia --gpus all \
2222

2323
This image can also be used with other container engines such as [Podman](https://podman.io/).
2424

25-
```console
25+
```bash
2626
podman run --gpus all \
2727
-v ~/.cache/huggingface:/root/.cache/huggingface \
2828
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
@@ -71,7 +71,7 @@ You can add any other [engine-args][engine-args] you need after the image tag (`
7171

7272
You can build and run vLLM from source via the provided <gh-file:docker/Dockerfile>. To build vLLM:
7373

74-
```console
74+
```bash
7575
# optionally specifies: --build-arg max_jobs=8 --build-arg nvcc_threads=2
7676
DOCKER_BUILDKIT=1 docker build . \
7777
--target vllm-openai \
@@ -99,7 +99,7 @@ of PyTorch Nightly and should be considered **experimental**. Using the flag `--
9999

100100
??? Command
101101

102-
```console
102+
```bash
103103
# Example of building on Nvidia GH200 server. (Memory usage: ~15GB, Build time: ~1475s / ~25 min, Image size: 6.93GB)
104104
python3 use_existing_torch.py
105105
DOCKER_BUILDKIT=1 docker build . \
@@ -118,7 +118,7 @@ of PyTorch Nightly and should be considered **experimental**. Using the flag `--
118118

119119
Run the following command on your host machine to register QEMU user static handlers:
120120

121-
```console
121+
```bash
122122
docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
123123
```
124124

@@ -128,7 +128,7 @@ of PyTorch Nightly and should be considered **experimental**. Using the flag `--
128128

129129
To run vLLM with the custom-built Docker image:
130130

131-
```console
131+
```bash
132132
docker run --runtime nvidia --gpus all \
133133
-v ~/.cache/huggingface:/root/.cache/huggingface \
134134
-p 8000:8000 \

docs/deployment/frameworks/anything-llm.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ It allows you to deploy a large language model (LLM) server with vLLM as the bac
1515

1616
- Start the vLLM server with the supported chat completion model, e.g.
1717

18-
```console
18+
```bash
1919
vllm serve Qwen/Qwen1.5-32B-Chat-AWQ --max-model-len 4096
2020
```
2121

docs/deployment/frameworks/autogen.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ title: AutoGen
1111

1212
- Setup [AutoGen](https://microsoft.github.io/autogen/0.2/docs/installation/) environment
1313

14-
```console
14+
```bash
1515
pip install vllm
1616

1717
# Install AgentChat and OpenAI client from Extensions
@@ -23,7 +23,7 @@ pip install -U "autogen-agentchat" "autogen-ext[openai]"
2323

2424
- Start the vLLM server with the supported chat completion model, e.g.
2525

26-
```console
26+
```bash
2727
python -m vllm.entrypoints.openai.api_server \
2828
--model mistralai/Mistral-7B-Instruct-v0.2
2929
```

docs/deployment/frameworks/cerebrium.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,14 @@ vLLM can be run on a cloud based GPU machine with [Cerebrium](https://www.cerebr
1111

1212
To install the Cerebrium client, run:
1313

14-
```console
14+
```bash
1515
pip install cerebrium
1616
cerebrium login
1717
```
1818

1919
Next, create your Cerebrium project, run:
2020

21-
```console
21+
```bash
2222
cerebrium init vllm-project
2323
```
2424

@@ -58,7 +58,7 @@ Next, let us add our code to handle inference for the LLM of your choice (`mistr
5858

5959
Then, run the following code to deploy it to the cloud:
6060

61-
```console
61+
```bash
6262
cerebrium deploy
6363
```
6464

docs/deployment/frameworks/chatbox.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ It allows you to deploy a large language model (LLM) server with vLLM as the bac
1515

1616
- Start the vLLM server with the supported chat completion model, e.g.
1717

18-
```console
18+
```bash
1919
vllm serve qwen/Qwen1.5-0.5B-Chat
2020
```
2121

docs/deployment/frameworks/dify.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,13 +18,13 @@ This guide walks you through deploying Dify using a vLLM backend.
1818

1919
- Start the vLLM server with the supported chat completion model, e.g.
2020

21-
```console
21+
```bash
2222
vllm serve Qwen/Qwen1.5-7B-Chat
2323
```
2424

2525
- Start the Dify server with docker compose ([details](https://github.com/langgenius/dify?tab=readme-ov-file#quick-start)):
2626

27-
```console
27+
```bash
2828
git clone https://github.com/langgenius/dify.git
2929
cd dify
3030
cd docker

docs/deployment/frameworks/dstack.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,14 @@ vLLM can be run on a cloud based GPU machine with [dstack](https://dstack.ai/),
1111

1212
To install dstack client, run:
1313

14-
```console
14+
```bash
1515
pip install "dstack[all]
1616
dstack server
1717
```
1818
1919
Next, to configure your dstack project, run:
2020
21-
```console
21+
```bash
2222
mkdir -p vllm-dstack
2323
cd vllm-dstack
2424
dstack init

docs/deployment/frameworks/haystack.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,15 +13,15 @@ It allows you to deploy a large language model (LLM) server with vLLM as the bac
1313

1414
- Setup vLLM and Haystack environment
1515

16-
```console
16+
```bash
1717
pip install vllm haystack-ai
1818
```
1919

2020
## Deploy
2121

2222
- Start the vLLM server with the supported chat completion model, e.g.
2323

24-
```console
24+
```bash
2525
vllm serve mistralai/Mistral-7B-Instruct-v0.1
2626
```
2727

docs/deployment/frameworks/helm.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -22,15 +22,15 @@ Before you begin, ensure that you have the following:
2222

2323
To install the chart with the release name `test-vllm`:
2424

25-
```console
25+
```bash
2626
helm upgrade --install --create-namespace --namespace=ns-vllm test-vllm . -f values.yaml --set secrets.s3endpoint=$ACCESS_POINT --set secrets.s3bucketname=$BUCKET --set secrets.s3accesskeyid=$ACCESS_KEY --set secrets.s3accesskey=$SECRET_KEY
2727
```
2828

2929
## Uninstalling the Chart
3030

3131
To uninstall the `test-vllm` deployment:
3232

33-
```console
33+
```bash
3434
helm uninstall test-vllm --namespace=ns-vllm
3535
```
3636

0 commit comments

Comments
 (0)