|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | + |
| 4 | +import argparse |
| 5 | + |
| 6 | +import torch |
| 7 | + |
| 8 | +import vllm.model_executor.layers.fused_moe.modular_kernel as mk |
| 9 | +from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig |
| 10 | + |
| 11 | +from .common import Config |
| 12 | +from .mk_objects import (MK_ALL_PREPARE_FINALIZE_TYPES, MK_FUSED_EXPERT_TYPES, |
| 13 | + MK_SINGLE_GPU_PREPARE_FINALIZE_TYPES) |
| 14 | + |
| 15 | + |
| 16 | +def make_config_arg_parser(description: str): |
| 17 | + |
| 18 | + def to_pf_class_type(s: str) -> mk.FusedMoEPrepareAndFinalize: |
| 19 | + for pf in MK_ALL_PREPARE_FINALIZE_TYPES: |
| 20 | + if pf.__name__ == s: |
| 21 | + return pf |
| 22 | + raise ValueError( |
| 23 | + f"Cannot find a PrepareFinalize type that matches {s}") |
| 24 | + |
| 25 | + def to_experts_class_type(s: str) -> mk.FusedMoEPermuteExpertsUnpermute: |
| 26 | + for fe in MK_FUSED_EXPERT_TYPES: |
| 27 | + if fe.__name__ == s: |
| 28 | + return fe |
| 29 | + raise ValueError(f"Cannot find a FusedExperts type that matches {s}") |
| 30 | + |
| 31 | + def to_quant_torch_dtype(s: str) -> torch.dtype: |
| 32 | + if s == "torch.float8_e4m3fn": |
| 33 | + return torch.float8_e4m3fn |
| 34 | + raise ValueError(f"Unsupported quant type {s}") |
| 35 | + |
| 36 | + parser = argparse.ArgumentParser(description=description) |
| 37 | + |
| 38 | + parser.add_argument( |
| 39 | + "--world-size", |
| 40 | + type=int, |
| 41 | + default=2, |
| 42 | + help="Number of ranks that participate in all2all", |
| 43 | + ) |
| 44 | + parser.add_argument( |
| 45 | + "--pf-type", |
| 46 | + type=to_pf_class_type, |
| 47 | + required=True, |
| 48 | + help=("Choose a PrepareFinalize Type : " |
| 49 | + f"{[x.__name__ for x in MK_ALL_PREPARE_FINALIZE_TYPES]}"), |
| 50 | + ) |
| 51 | + parser.add_argument( |
| 52 | + "--experts-type", |
| 53 | + type=to_experts_class_type, |
| 54 | + required=True, |
| 55 | + help=(f"Choose a FusedExpert type : " |
| 56 | + f"{[x.__name__ for x in MK_FUSED_EXPERT_TYPES]}"), |
| 57 | + ) |
| 58 | + parser.add_argument( |
| 59 | + "-m", |
| 60 | + nargs="+", |
| 61 | + type=int, |
| 62 | + default=[64], |
| 63 | + help="num tokens per rank", |
| 64 | + ) |
| 65 | + parser.add_argument( |
| 66 | + "-k", |
| 67 | + type=int, |
| 68 | + default=7168, |
| 69 | + help="hidden-size", |
| 70 | + ) |
| 71 | + parser.add_argument( |
| 72 | + "-n", |
| 73 | + type=int, |
| 74 | + default=1024, |
| 75 | + help="N dimension of the first fused-moe matmul", |
| 76 | + ) |
| 77 | + parser.add_argument("--num-experts", |
| 78 | + type=int, |
| 79 | + default=32, |
| 80 | + help="Global num experts") |
| 81 | + parser.add_argument("--topk", |
| 82 | + nargs="+", |
| 83 | + type=int, |
| 84 | + default=[4, 1], |
| 85 | + help="num topk") |
| 86 | + parser.add_argument( |
| 87 | + "--fused-moe-chunk-size", |
| 88 | + nargs="+", |
| 89 | + type=int, |
| 90 | + help="Fused moe chunk size used for the non-batched fused experts impl." |
| 91 | + ) |
| 92 | + |
| 93 | + # Quant args |
| 94 | + parser.add_argument("--quant-dtype", |
| 95 | + type=to_quant_torch_dtype, |
| 96 | + help="Quant datatype") |
| 97 | + parser.add_argument("--per-token-quantized-activations", |
| 98 | + action='store_true', |
| 99 | + help=("The input activations must be per-token " |
| 100 | + "quantized")) |
| 101 | + parser.add_argument("--per-channel-quantized-weights", |
| 102 | + action="store_true", |
| 103 | + help="The weights must be per-channel quantized.") |
| 104 | + parser.add_argument("--block-shape", |
| 105 | + nargs="+", |
| 106 | + type=int, |
| 107 | + help="Quantization block shape") |
| 108 | + |
| 109 | + # Torch trace profile generation args |
| 110 | + parser.add_argument("--torch-trace-dir-path", |
| 111 | + type=str, |
| 112 | + default=None, |
| 113 | + help="Get torch trace for single execution") |
| 114 | + |
| 115 | + return parser |
| 116 | + |
| 117 | + |
| 118 | +def _validate_args(args: argparse.Namespace): |
| 119 | + |
| 120 | + if args.quant_dtype is not None: |
| 121 | + assert args.quant_dtype == torch.float8_e4m3fn |
| 122 | + if args.block_shape is not None: |
| 123 | + assert len(args.block_shape) == 2, ( |
| 124 | + f"block shape must have 2 elements. got {args.block_shape}") |
| 125 | + |
| 126 | + if args.experts_type in MK_SINGLE_GPU_PREPARE_FINALIZE_TYPES: |
| 127 | + assert args.world_size == 1, ( |
| 128 | + "Single GPU objects need world size set to 1") |
| 129 | + |
| 130 | + if args.torch_trace_dir_path is not None: |
| 131 | + from pathlib import Path |
| 132 | + assert Path(args.torch_trace_dir_path).is_dir(), ( |
| 133 | + f"Please create {args.torch_trace_dir_path}") |
| 134 | + |
| 135 | + |
| 136 | +def make_config(args: argparse.Namespace) -> Config: |
| 137 | + |
| 138 | + _validate_args(args) |
| 139 | + |
| 140 | + quant_config = None |
| 141 | + if args.quant_dtype is not None: |
| 142 | + quant_config = FusedMoEQuantConfig( |
| 143 | + quant_dtype=args.quant_dtype, |
| 144 | + per_act_token_quant=args.per_token_quantized_activations, |
| 145 | + per_out_ch_quant=args.per_channel_quantized_weights, |
| 146 | + block_shape=args.block_shape) |
| 147 | + |
| 148 | + return Config( |
| 149 | + Ms=args.m, |
| 150 | + K=args.k, |
| 151 | + N=args.n, |
| 152 | + E=args.num_experts, |
| 153 | + topks=args.topk, |
| 154 | + dtype=torch.bfloat16, # hard-code |
| 155 | + quant_config=quant_config, |
| 156 | + prepare_finalize_type=args.pf_type, |
| 157 | + fused_experts_type=args.experts_type, |
| 158 | + fused_moe_chunk_size=args.fused_moe_chunk_size, |
| 159 | + world_size=args.world_size, |
| 160 | + torch_trace_dir_path=args.torch_trace_dir_path) |
0 commit comments