Skip to content

Commit 054c865

Browse files
authored
[Docs] Add Kuberay to deployment integrations (#20592)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
1 parent d4170fa commit 054c865

File tree

2 files changed

+21
-0
lines changed

2 files changed

+21
-0
lines changed
Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
# KubeRay
2+
3+
[KubeRay](https://github.com/ray-project/kuberay) provides a Kubernetes-native way to run vLLM workloads on Ray clusters.
4+
A Ray cluster can be declared in YAML, and the operator then handles pod scheduling, networking configuration, restarts, and blue-green deployments — all while preserving the familiar Kubernetes experience.
5+
6+
## Why KubeRay instead of manual scripts?
7+
8+
| Feature | Manual scripts | KubeRay |
9+
|---------|-----------------------------------------------------------|---------|
10+
| Cluster bootstrap | Manually SSH into every node and run a script | One command to create or update the whole cluster: `kubectl apply -f cluster.yaml` |
11+
| Autoscaling | Manual | Automatically patches CRDs for adjusting cluster size |
12+
| Upgrades | Tear down & re-create manually | Blue/green deployment updates supported |
13+
| Declarative config | Bash flags & environment variables | Git-ops-friendly YAML CRDs (RayCluster/RayService) |
14+
15+
Using KubeRay reduces the operational burden and simplifies integration of Ray + vLLM with existing Kubernetes workflows (CI/CD, secrets, storage classes, etc.).
16+
17+
## Learn more
18+
19+
* ["Serve a Large Language Model using Ray Serve LLM on Kubernetes"](https://docs.ray.io/en/master/cluster/kubernetes/examples/rayserve-llm-example.html) - An end-to-end example of how to serve a model using vLLM, KubeRay, and Ray Serve.
20+
* [KubeRay documentation](https://docs.ray.io/en/latest/cluster/kubernetes/index.html)

docs/deployment/k8s.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@ Alternatively, you can deploy vLLM to Kubernetes using any of the following:
1313
- [Helm](frameworks/helm.md)
1414
- [InftyAI/llmaz](integrations/llmaz.md)
1515
- [KServe](integrations/kserve.md)
16+
- [KubeRay](integrations/kuberay.md)
1617
- [kubernetes-sigs/lws](frameworks/lws.md)
1718
- [meta-llama/llama-stack](integrations/llamastack.md)
1819
- [substratusai/kubeai](integrations/kubeai.md)

0 commit comments

Comments
 (0)