|
| 1 | +""" |
| 2 | +This example exercise long context lengths |
| 3 | +
|
| 4 | +Let's say you want to test the following configuration |
| 5 | +
|
| 6 | +Prefill: Max_prompt = 4K, prefill batch-size = 1. |
| 7 | +Generation: Max_context = 8K, Max_batch = 4. |
| 8 | +
|
| 9 | +Then the command line will be |
| 10 | +
|
| 11 | +``` |
| 12 | +python long_context.py --max-num-seqs 4 --max-prompt-len 4096 \ |
| 13 | + --max-model-len 8192 |
| 14 | +``` |
| 15 | +
|
| 16 | +To compare with cpu, add `--compare-with-cpu`. |
| 17 | +
|
| 18 | +All sequences will run up to the max context length. |
| 19 | +
|
| 20 | +""" |
| 21 | + |
| 22 | +import argparse |
| 23 | +import os |
| 24 | +import platform |
| 25 | +import sys |
| 26 | +import time |
| 27 | + |
| 28 | +import torch |
| 29 | +from transformers import AutoTokenizer |
| 30 | +from vllm import LLM, SamplingParams |
| 31 | +from vllm.inputs import TokensPrompt |
| 32 | + |
| 33 | +parser = argparse.ArgumentParser() |
| 34 | +parser.add_argument("--model", |
| 35 | + type=str, |
| 36 | + default="ibm-ai-platform/micro-g3.3-8b-instruct-1b") |
| 37 | +parser.add_argument("--max_model_len", |
| 38 | + "--max-model-len", |
| 39 | + type=int, |
| 40 | + default=2048) |
| 41 | +parser.add_argument("--max_prompt_len", |
| 42 | + "--max-prompt-len", |
| 43 | + type=int, |
| 44 | + default=1024) |
| 45 | +parser.add_argument("--max_num_seqs", "--max-num-seqs", type=int, default=2) |
| 46 | +parser.add_argument("--tp", type=int, default=1) |
| 47 | +parser.add_argument("--num-prompts", "-n", type=int, default=8) |
| 48 | +parser.add_argument("--compare-with-cpu", |
| 49 | + action=argparse.BooleanOptionalAction) |
| 50 | +args = parser.parse_args() |
| 51 | + |
| 52 | +max_num_seqs = args.max_num_seqs # defines the max batch size |
| 53 | +assert args.max_prompt_len < args.max_model_len |
| 54 | + |
| 55 | +if platform.machine() == "arm64": |
| 56 | + print("Detected arm64 running environment. " |
| 57 | + "Setting HF_HUB_OFFLINE=1 otherwise vllm tries to download a " |
| 58 | + "different version of the model using HF API which might not work " |
| 59 | + "locally on arm64.") |
| 60 | + os.environ["HF_HUB_OFFLINE"] = "1" |
| 61 | + |
| 62 | +if "VLLM_SPYRE_DYNAMO_BACKEND" not in os.environ: |
| 63 | + os.environ['VLLM_SPYRE_DYNAMO_BACKEND'] = 'eager' |
| 64 | +os.environ['VLLM_SPYRE_USE_CB'] = '1' |
| 65 | +os.environ['VLLM_USE_V1'] = '1' |
| 66 | + |
| 67 | +template = ("Summarize the following code: \n\n{}") |
| 68 | + |
| 69 | + |
| 70 | +def get_python_file(source_file): |
| 71 | + for path in sys.path: |
| 72 | + file_path = os.path.join(path, source_file) |
| 73 | + if os.path.isfile(file_path): |
| 74 | + with open(file_path, encoding="utf-8") as f: |
| 75 | + return f.read() |
| 76 | + raise Exception(f"File {source_file} not found") |
| 77 | + |
| 78 | + |
| 79 | +example_files = [ |
| 80 | + "os.py", |
| 81 | + "gzip.py", |
| 82 | + "inspect.py", |
| 83 | + "abc.py", |
| 84 | + "dataclasses.py", |
| 85 | + "enum.py", |
| 86 | + "functools.py", |
| 87 | + "io.py", |
| 88 | +] |
| 89 | + |
| 90 | +file_contents = [get_python_file(e) for e in example_files] |
| 91 | + |
| 92 | +prompts = [template.format(c) for c in file_contents] |
| 93 | + |
| 94 | +prompts = prompts * (args.num_prompts // len(prompts) + 1) |
| 95 | +prompts = prompts[0:args.num_prompts] |
| 96 | + |
| 97 | +tokenizer = AutoTokenizer.from_pretrained(args.model) |
| 98 | + |
| 99 | +tokenized_prompts = tokenizer(prompts)["input_ids"] |
| 100 | +tokenized_prompts = [p[:args.max_prompt_len] for p in tokenized_prompts] |
| 101 | + |
| 102 | +prompt_lens = [len(p) for p in tokenized_prompts] |
| 103 | + |
| 104 | +max_prompt = max(prompt_lens) |
| 105 | +min_prompt = min(prompt_lens) |
| 106 | + |
| 107 | +if max_prompt < args.max_prompt_len: |
| 108 | + print(f"Warning, none of the prompts reach the maximum length" |
| 109 | + f"({args.max_prompt_len})") |
| 110 | + |
| 111 | +print(f"All prompts have lengths between {min_prompt} and {max_prompt}") |
| 112 | + |
| 113 | + |
| 114 | +def round_up(t): |
| 115 | + return ((t + 63) // 64) * 64 |
| 116 | + |
| 117 | + |
| 118 | +tokens_to_generate = [ |
| 119 | + args.max_model_len - round_up(plen) for plen in prompt_lens |
| 120 | +] |
| 121 | + |
| 122 | +sampling_params = [ |
| 123 | + SamplingParams(max_tokens=t, temperature=0.0, ignore_eos=True) |
| 124 | + for t in tokens_to_generate |
| 125 | +] |
| 126 | + |
| 127 | +vllm_token_prompts = [ |
| 128 | + TokensPrompt(prompt_token_ids=p) for p in tokenized_prompts |
| 129 | +] |
| 130 | + |
| 131 | +# Create an LLM. |
| 132 | +llm = LLM(model=args.model, |
| 133 | + tokenizer=args.model, |
| 134 | + max_model_len=args.max_model_len, |
| 135 | + block_size=2048, |
| 136 | + max_num_seqs=max_num_seqs, |
| 137 | + tensor_parallel_size=args.tp) |
| 138 | + |
| 139 | +# Generate texts from the prompts. The output is a list of RequestOutput objects |
| 140 | +# that contain the prompt, generated text, and other information. |
| 141 | +print("=============== GENERATE") |
| 142 | +t0 = time.time() |
| 143 | +outputs = llm.generate(vllm_token_prompts, sampling_params) |
| 144 | +print("Time elapsed for all prompts is %.2f sec" % (time.time() - t0)) |
| 145 | +print("===============") |
| 146 | +for output, prompt in zip(outputs, prompts): |
| 147 | + generated_text = output.outputs[0].text[:100] |
| 148 | + prompt = prompt[:100] |
| 149 | + print(f"\nPrompt:\n {prompt!r}") |
| 150 | + print(f"\nGenerated text (truncated):\n {generated_text!r}\n") |
| 151 | + print("-----------------------------------") |
| 152 | + |
| 153 | +if args.compare_with_cpu: |
| 154 | + print("Comparing results with HF on cpu") |
| 155 | + print("===============") |
| 156 | + any_differ = False |
| 157 | + |
| 158 | + from transformers import AutoModelForCausalLM |
| 159 | + model = AutoModelForCausalLM.from_pretrained(args.model) |
| 160 | + |
| 161 | + for i in range(args.num_prompts): |
| 162 | + prompt = prompts[i] |
| 163 | + |
| 164 | + hf_input_tokens = torch.tensor(tokenized_prompts[i]).unsqueeze(0) |
| 165 | + hf_output = model.generate(hf_input_tokens, |
| 166 | + do_sample=False, |
| 167 | + min_new_tokens=tokens_to_generate[i], |
| 168 | + max_new_tokens=tokens_to_generate[i], |
| 169 | + return_dict_in_generate=True, |
| 170 | + output_scores=True) |
| 171 | + |
| 172 | + # decode output tokens after first removing input tokens (prompt) |
| 173 | + hf_generated_text = tokenizer.batch_decode( |
| 174 | + hf_output.sequences[:, len(hf_input_tokens[0]):])[0] |
| 175 | + |
| 176 | + if hf_generated_text != outputs[i].outputs[0].text: |
| 177 | + any_differ = True |
| 178 | + spyre_output = outputs[i].outputs[0].text |
| 179 | + print(f"Results for prompt {i} differ on cpu") |
| 180 | + print(f"\nPrompt:\n {prompt[:100]!r}") |
| 181 | + print(f"\nSpyre generated text:\n {spyre_output[:100]!r}\n") |
| 182 | + print(f"\nCPU generated text:\n {hf_generated_text[:100]!r}\n") |
| 183 | + print("-----------------------------------") |
| 184 | + |
| 185 | + if not any_differ: |
| 186 | + print("\nAll results match!\n") |
0 commit comments