|
| 1 | +# |
| 2 | +# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. |
| 3 | +# This file is a part of the vllm-ascend project. |
| 4 | +# Adapted from vllm/tests/entrypoints/llm/test_guided_generate.py |
| 5 | +# Copyright 2023 The vLLM team. |
| 6 | +# |
| 7 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | +# you may not use this file except in compliance with the License. |
| 9 | +# You may obtain a copy of the License at |
| 10 | +# |
| 11 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +# |
| 13 | +# Unless required by applicable law or agreed to in writing, software |
| 14 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | +# See the License for the specific language governing permissions and |
| 17 | +# limitations under the License. |
| 18 | +# |
| 19 | +import json |
| 20 | +import os |
| 21 | +import re |
| 22 | + |
| 23 | +import jsonschema |
| 24 | +import pytest |
| 25 | +from vllm.outputs import RequestOutput |
| 26 | +from vllm.sampling_params import GuidedDecodingParams, SamplingParams |
| 27 | + |
| 28 | +from tests.conftest import VllmRunner |
| 29 | + |
| 30 | +os.environ["PYTORCH_NPU_ALLOC_CONF"] = "max_split_size_mb:256" |
| 31 | +MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct" |
| 32 | +GuidedDecodingBackendV0 = [ |
| 33 | + "outlines", |
| 34 | + "lm-format-enforcer", |
| 35 | + "xgrammar", |
| 36 | +] |
| 37 | +GuidedDecodingBackendV1 = ["xgrammar", "guidance:disable-any-whitespace"] |
| 38 | +GuidedDecodingBackend = list( |
| 39 | + set(GuidedDecodingBackendV0 + GuidedDecodingBackendV1)) |
| 40 | + |
| 41 | + |
| 42 | +@pytest.fixture(scope="module") |
| 43 | +def sample_regex(): |
| 44 | + return (r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}" |
| 45 | + r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)") |
| 46 | + |
| 47 | + |
| 48 | +@pytest.fixture(scope="module") |
| 49 | +def sample_json_schema(): |
| 50 | + return { |
| 51 | + "type": "object", |
| 52 | + "properties": { |
| 53 | + "name": { |
| 54 | + "type": "string" |
| 55 | + }, |
| 56 | + "age": { |
| 57 | + "type": "integer" |
| 58 | + }, |
| 59 | + "skills": { |
| 60 | + "type": "array", |
| 61 | + "items": { |
| 62 | + "type": "string", |
| 63 | + "maxLength": 10 |
| 64 | + }, |
| 65 | + "minItems": 3 |
| 66 | + }, |
| 67 | + "work_history": { |
| 68 | + "type": "array", |
| 69 | + "items": { |
| 70 | + "type": "object", |
| 71 | + "properties": { |
| 72 | + "company": { |
| 73 | + "type": "string" |
| 74 | + }, |
| 75 | + "duration": { |
| 76 | + "type": "number" |
| 77 | + }, |
| 78 | + "position": { |
| 79 | + "type": "string" |
| 80 | + } |
| 81 | + }, |
| 82 | + "required": ["company", "position"] |
| 83 | + } |
| 84 | + } |
| 85 | + }, |
| 86 | + "required": ["name", "age", "skills", "work_history"] |
| 87 | + } |
| 88 | + |
| 89 | + |
| 90 | +@pytest.mark.parametrize("guided_decoding_backend", GuidedDecodingBackend) |
| 91 | +def test_guided_json_completion(guided_decoding_backend: str, |
| 92 | + sample_json_schema): |
| 93 | + if guided_decoding_backend == "xgrammar": |
| 94 | + # xgrammar does not support json schema, will fall back to outlines, skip it |
| 95 | + pytest.skip( |
| 96 | + f"{guided_decoding_backend} will fall back to outlines, skip it") |
| 97 | + if guided_decoding_backend not in GuidedDecodingBackendV0 and os.getenv( |
| 98 | + "VLLM_USE_V1") == "0": |
| 99 | + # guidance does not support on v0, skip it |
| 100 | + pytest.skip( |
| 101 | + f"{guided_decoding_backend} does not support on v0, skip it") |
| 102 | + if guided_decoding_backend not in GuidedDecodingBackendV1 and os.getenv( |
| 103 | + "VLLM_USE_V1") == "1": |
| 104 | + pytest.skip(f"{guided_decoding_backend} does not support v1, skip it") |
| 105 | + |
| 106 | + sampling_params = SamplingParams( |
| 107 | + temperature=1.0, |
| 108 | + max_tokens=1000, |
| 109 | + guided_decoding=GuidedDecodingParams(json=sample_json_schema)) |
| 110 | + with VllmRunner( |
| 111 | + MODEL_NAME, |
| 112 | + seed=0, |
| 113 | + dtype="auto", |
| 114 | + guided_decoding_backend=guided_decoding_backend, |
| 115 | + ) as vllm_model: |
| 116 | + prompts = [ |
| 117 | + f"Give an example JSON for an employee profile " |
| 118 | + f"that fits this schema: {sample_json_schema}" |
| 119 | + ] * 2 |
| 120 | + inputs = vllm_model.get_inputs(prompts) |
| 121 | + outputs = vllm_model.model.generate(inputs, |
| 122 | + sampling_params=sampling_params) |
| 123 | + |
| 124 | + assert outputs is not None |
| 125 | + |
| 126 | + for output in outputs: |
| 127 | + assert output is not None |
| 128 | + assert isinstance(output, RequestOutput) |
| 129 | + prompt = output.prompt |
| 130 | + |
| 131 | + generated_text = output.outputs[0].text |
| 132 | + assert generated_text is not None |
| 133 | + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
| 134 | + output_json = json.loads(generated_text) |
| 135 | + jsonschema.validate(instance=output_json, |
| 136 | + schema=sample_json_schema) |
| 137 | + |
| 138 | + |
| 139 | +@pytest.mark.parametrize("guided_decoding_backend", GuidedDecodingBackend) |
| 140 | +def test_guided_regex(guided_decoding_backend: str, sample_regex): |
| 141 | + if guided_decoding_backend not in GuidedDecodingBackendV0 and os.getenv( |
| 142 | + "VLLM_USE_V1") == "0": |
| 143 | + # guidance does not support on v0, skip it |
| 144 | + pytest.skip( |
| 145 | + f"{guided_decoding_backend} does not support on v0, skip it") |
| 146 | + if guided_decoding_backend not in GuidedDecodingBackendV1 and os.getenv( |
| 147 | + "VLLM_USE_V1") == "1": |
| 148 | + pytest.skip(f"{guided_decoding_backend} does not support v1, skip it") |
| 149 | + |
| 150 | + sampling_params = SamplingParams(temperature=0.8, |
| 151 | + top_p=0.95, |
| 152 | + guided_decoding=GuidedDecodingParams( |
| 153 | + regex=sample_regex, )) |
| 154 | + with VllmRunner( |
| 155 | + MODEL_NAME, |
| 156 | + seed=0, |
| 157 | + dtype="auto", |
| 158 | + guided_decoding_backend=guided_decoding_backend, |
| 159 | + ) as vllm_model: |
| 160 | + prompts = [ |
| 161 | + f"Give an example IPv4 address with this regex: {sample_regex}" |
| 162 | + ] * 2 |
| 163 | + inputs = vllm_model.get_inputs(prompts) |
| 164 | + outputs = vllm_model.model.generate(inputs, |
| 165 | + sampling_params=sampling_params) |
| 166 | + assert outputs is not None |
| 167 | + for output in outputs: |
| 168 | + assert output is not None |
| 169 | + assert isinstance(output, RequestOutput) |
| 170 | + prompt = output.prompt |
| 171 | + generated_text = output.outputs[0].text |
| 172 | + print(generated_text) |
| 173 | + assert generated_text is not None |
| 174 | + assert re.fullmatch(".*", generated_text) is not None |
| 175 | + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
0 commit comments