You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[perf]: support dual-batch overlap(dbo) for deepseek (#941)
### What this PR does / why we need it?
Based on the design of dual-batch overlap proposed by Deepseek team and
also the implementation of fused moe in VLLM project, we implement the
multi-stream(also known as dual-batch) overlap for deepseek+mla on
Ascend NPU. We split the input batch of model into two microbatches and
then overlap the comp/comm ops in attention and moe layers using two
streams to improve the performance. Our approach can be easily extended
when adding dispatch/combine communications for moe layer.
Compared with the previously proposed
[draft](#842), we use
one stream for computation ops and the other for communication ops,
separately. In out opinions, it is beneficial for arranging the order of
executing different ops and thus avoiding the contention of
computation/communication resources.
ref: [overlap for
llama](https://github.com/vllm-project/vllm/pull/15787/files)
ref: [dbo in
sglang](https://github.com/sgl-project/sglang/pull/4068/files#diff-b4937569fc71f6ad215181b633b2f89c7183a2b4ac39e41fc22635599a9be7de)
### Does this PR introduce _any_ user-facing change?
Adding an env variable "VLLM_ENABLE_DBO". Users can enable dbo by
setting "VLLM_ASCEND_ENABLE_DBO=1"
See /examples/offline_dualbatch_overlap_npu.py for more info.
### How was this patch tested?
This patch can be tested with vllm-0.9.0 using its online service with
benchmark tests. We have decoupled the func of dbo from vllm and it
should be able to run without any modification to the code of vllm(some
modifications is better to implement in vllm though).
Any advice/discussion is welcome.
### Performance Benchmark
We have ran the benchmark_serving script of vllm to test the performance
after using dual-batch overlap.
`python -m vllm.entrypoints.openai.api_server \
--model=DeepSeek-R1-W8A8 \
--trust-remote-code \
--distributed-executor-backend=mp \
-tp=16 \
--port 8006 \
--max-num-seqs 390 \
--max-model-len 32768 \
--max-num-batched-tokens 65536 \
--block-size 128 \
--compilation_config 0 \
--gpu-memory-utilization 0.90 \
--disable-log-requests \
--additional-config
'{"expert_tensor_parallel_size":1,"enable_inter_dp_scheduling":true,"init_torchair_graph_batch_sizes":true,"trace_recompiles":true,"ascend_scheduler_config":{},"enable_graph_mode":false}'`
and run benchmark with the parameters of :
`--dataset-name random --random-input-len 4096 --random-output-len 1
--num-prompts 200 --max-concurrency 8 --request-rate 5
--metric-percentiles 90`
1. test with the version using allgather+allreduce in Ascend 910B (tp16
ep16 + deepseek r1 w8a8)
2. test with the version using alltoall:
prefill qps: 0.90 -> 1.01
Mean TTFT:8226->7432ms
The overlap approach when using alltoall communication can be further
optimized by overlapping micro-batch1's moe comp with micro-batch2's
dispatch a2a comm
---------
Signed-off-by: zhuohuan <zxdu1997@gmail.com>
0 commit comments