Skip to content

Commit 8560d9d

Browse files
committed
Signed-off-by: umeiko <umeko@stu.xmu.edu.cn>
Eagle 1 support Signed-off-by: umeiko <umeko@stu.xmu.edu.cn>
1 parent e112317 commit 8560d9d

File tree

1 file changed

+64
-67
lines changed

1 file changed

+64
-67
lines changed

vllm_ascend/worker/model_runner_v1.py

Lines changed: 64 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
# limitations under the License.
1616
# This file is a part of the vllm-ascend project.
1717
# Adapted from vllm-project/vllm/vllm/worker/gpu_model_runner.py
18-
#
18+
1919

2020
import gc
2121
import os
@@ -1367,73 +1367,70 @@ def _get_spec_token_ids(
13671367
assert isinstance(self.drafter, NgramProposer)
13681368
spec_token_ids = self._generate_draft_token_ids(
13691369
valid_sampled_token_ids, sampling_metadata)
1370-
elif self.speculative_config.method == "eagle":
1371-
raise NotImplementedError("Eagle Is Not Supported Yet.")
1372-
elif self.speculative_config.method == "eagle3":
1370+
elif self.use_eagle:
13731371
assert isinstance(self.drafter, EagleProposer)
1374-
if self.speculative_config.use_eagle():
1375-
next_token_ids: list[int] = []
1376-
for i, token_ids in enumerate(valid_sampled_token_ids):
1377-
if token_ids:
1378-
# Common case.
1379-
next_token_id = token_ids[-1]
1380-
else:
1381-
# Partial prefill (rare case).
1382-
# Get the next token id from the request state.
1383-
req_id = self.input_batch.req_ids[i]
1384-
req_state = self.requests[req_id]
1385-
seq_len = (
1386-
req_state.num_computed_tokens +
1387-
scheduler_output.num_scheduled_tokens[req_id])
1388-
1389-
next_token_id = req_state.get_token_id(seq_len)
1390-
next_token_ids.append(next_token_id)
1391-
next_token_ids = torch.tensor(next_token_ids,
1392-
dtype=torch.int32,
1393-
device=self.device)
1394-
eagle_attn_metadata = attn_metadata[
1395-
self.drafter.attn_layer_name]
1396-
num_input_tokens = scheduler_output.total_num_scheduled_tokens
1397-
if spec_decode_metadata is None:
1398-
# input_ids can be None for multimodal models.
1399-
target_token_ids = self.input_ids[:num_scheduled_tokens]
1400-
target_positions = positions[:num_scheduled_tokens]
1401-
if self.use_aux_hidden_state_outputs:
1402-
target_hidden_states = torch.cat([
1403-
h[:num_scheduled_tokens] for h in aux_hidden_states
1404-
],
1405-
dim=-1)
1406-
else:
1407-
target_hidden_states = hidden_states[:
1408-
num_scheduled_tokens]
1409-
target_slot_mapping = eagle_attn_metadata.slot_mapping
1410-
cu_num_tokens = eagle_attn_metadata.query_start_loc
1372+
next_token_ids: list[int] = []
1373+
for i, token_ids in enumerate(valid_sampled_token_ids):
1374+
if token_ids:
1375+
# Common case.
1376+
next_token_id = token_ids[-1]
14111377
else:
1412-
num_draft_tokens = spec_decode_metadata.num_draft_tokens
1413-
num_rejected_tokens = [
1414-
n + 1 - len(valid_sampled_token_ids[i]) if n > 0 else 0
1415-
for i, n in enumerate(num_draft_tokens)
1416-
]
1417-
num_rejected_tokens = torch.tensor(
1418-
num_rejected_tokens,
1419-
dtype=torch.int32,
1420-
device=self.device,
1421-
)
1422-
num_tokens = num_scheduled_tokens - sum(
1423-
num_rejected_tokens)
1424-
cu_num_tokens, token_indices = self.drafter.prepare_inputs(
1425-
eagle_attn_metadata.query_start_loc,
1426-
num_rejected_tokens, num_tokens)
1427-
target_token_ids = self.input_ids[token_indices]
1428-
target_positions = positions[token_indices]
1429-
if self.use_aux_hidden_state_outputs:
1430-
target_hidden_states = torch.cat(
1431-
[h[token_indices] for h in aux_hidden_states],
1432-
dim=-1)
1433-
else:
1434-
target_hidden_states = hidden_states[token_indices]
1435-
target_slot_mapping = eagle_attn_metadata.slot_mapping[
1436-
token_indices]
1378+
# Partial prefill (rare case).
1379+
# Get the next token id from the request state.
1380+
req_id = self.input_batch.req_ids[i]
1381+
req_state = self.requests[req_id]
1382+
seq_len = (
1383+
req_state.num_computed_tokens +
1384+
scheduler_output.num_scheduled_tokens[req_id])
1385+
1386+
next_token_id = req_state.get_token_id(seq_len)
1387+
next_token_ids.append(next_token_id)
1388+
next_token_ids = torch.tensor(next_token_ids,
1389+
dtype=torch.int32,
1390+
device=self.device)
1391+
eagle_attn_metadata = attn_metadata[
1392+
self.drafter.attn_layer_name]
1393+
num_input_tokens = scheduler_output.total_num_scheduled_tokens
1394+
if spec_decode_metadata is None:
1395+
# input_ids can be None for multimodal models.
1396+
target_token_ids = self.input_ids[:num_scheduled_tokens]
1397+
target_positions = positions[:num_scheduled_tokens]
1398+
if self.use_aux_hidden_state_outputs:
1399+
target_hidden_states = torch.cat([
1400+
h[:num_scheduled_tokens] for h in aux_hidden_states
1401+
],
1402+
dim=-1)
1403+
else:
1404+
target_hidden_states = hidden_states[:
1405+
num_scheduled_tokens]
1406+
target_slot_mapping = eagle_attn_metadata.slot_mapping
1407+
cu_num_tokens = eagle_attn_metadata.query_start_loc
1408+
else:
1409+
num_draft_tokens = spec_decode_metadata.num_draft_tokens
1410+
num_rejected_tokens = [
1411+
n + 1 - len(valid_sampled_token_ids[i]) if n > 0 else 0
1412+
for i, n in enumerate(num_draft_tokens)
1413+
]
1414+
num_rejected_tokens = torch.tensor(
1415+
num_rejected_tokens,
1416+
dtype=torch.int32,
1417+
device=self.device,
1418+
)
1419+
num_tokens = num_scheduled_tokens - sum(
1420+
num_rejected_tokens)
1421+
cu_num_tokens, token_indices = self.drafter.prepare_inputs(
1422+
eagle_attn_metadata.query_start_loc,
1423+
num_rejected_tokens, num_tokens)
1424+
target_token_ids = self.input_ids[token_indices]
1425+
target_positions = positions[token_indices]
1426+
if self.use_aux_hidden_state_outputs:
1427+
target_hidden_states = torch.cat(
1428+
[h[token_indices] for h in aux_hidden_states],
1429+
dim=-1)
1430+
else:
1431+
target_hidden_states = hidden_states[token_indices]
1432+
target_slot_mapping = eagle_attn_metadata.slot_mapping[
1433+
token_indices]
14371434

14381435
positions = self.positions[:num_input_tokens]
14391436
draft_token_ids = self.drafter.propose(
@@ -1832,7 +1829,7 @@ def load_model(self) -> None:
18321829
self.model = get_model(vllm_config=self.vllm_config)
18331830
if hasattr(self, "drafter"):
18341831
logger.info("Loading drafter model...")
1835-
if self.use_aux_hidden_state_outputs:
1832+
if self.use_eagle:
18361833
self.drafter.load_model(self.model)
18371834
else:
18381835
self.drafter.load_model()

0 commit comments

Comments
 (0)