|
| 1 | +# |
| 2 | +# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. |
| 3 | +# This file is a part of the vllm-ascend project. |
| 4 | +# Adapted from vllm-project/vllm/blob/main/tests/models/utils.py |
| 5 | +# Copyright 2023 The vLLM team. |
| 6 | +# |
| 7 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | +# you may not use this file except in compliance with the License. |
| 9 | +# You may obtain a copy of the License at |
| 10 | +# |
| 11 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +# |
| 13 | +# Unless required by applicable law or agreed to in writing, software |
| 14 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | +# See the License for the specific language governing permissions and |
| 17 | +# limitations under the License. |
| 18 | +# |
| 19 | +from typing import List, Optional |
| 20 | + |
| 21 | +from vllm.config import CacheConfig, ModelConfig, SchedulerConfig |
| 22 | +from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange |
| 23 | +from vllm.sampling_params import SamplingParams |
| 24 | +from vllm.v1.core.scheduler import SchedulerOutput |
| 25 | +from vllm.v1.outputs import ModelRunnerOutput |
| 26 | +from vllm.v1.request import Request, RequestStatus |
| 27 | + |
| 28 | +from vllm_ascend.core.scheduler import AscendScheduler |
| 29 | + |
| 30 | +EOS_TOKEN_ID = 50256 |
| 31 | + |
| 32 | + |
| 33 | +def create_scheduler( |
| 34 | + model: str = "/data/weights/Qwen2.5-72B-Instruct", |
| 35 | + max_num_seqs: int = 16, |
| 36 | + max_num_batched_tokens: int = 8192, |
| 37 | +) -> AscendScheduler: |
| 38 | + scheduler_config = SchedulerConfig( |
| 39 | + max_num_seqs=max_num_seqs, |
| 40 | + max_num_batched_tokens=max_num_batched_tokens, |
| 41 | + max_model_len=max_num_batched_tokens, |
| 42 | + ) |
| 43 | + model_config = ModelConfig( |
| 44 | + model=model, |
| 45 | + task="auto", |
| 46 | + tokenizer=model, |
| 47 | + tokenizer_mode="auto", |
| 48 | + trust_remote_code=True, |
| 49 | + dtype="float16", |
| 50 | + seed=42, |
| 51 | + ) |
| 52 | + cache_config = CacheConfig( |
| 53 | + block_size=16, |
| 54 | + gpu_memory_utilization=0.9, |
| 55 | + swap_space=0, |
| 56 | + cache_dtype="auto", |
| 57 | + ) |
| 58 | + cache_config.num_gpu_blocks = 10000 |
| 59 | + return AscendScheduler(scheduler_config, |
| 60 | + model_config, |
| 61 | + cache_config, |
| 62 | + speculative_config=None, |
| 63 | + lora_config=None, |
| 64 | + log_stats=True) |
| 65 | + |
| 66 | + |
| 67 | +def create_requests( |
| 68 | + num_requests: int, |
| 69 | + num_tokens: int = 10, |
| 70 | + mm_positions: Optional[List[PlaceholderRange]] = None, |
| 71 | + max_tokens: int = 16, |
| 72 | + stop_token_ids: Optional[List[int]] = None, |
| 73 | +): |
| 74 | + sampling_params = SamplingParams(ignore_eos=False, |
| 75 | + max_tokens=max_tokens, |
| 76 | + stop_token_ids=stop_token_ids) |
| 77 | + requests = [] |
| 78 | + for i in range(num_requests): |
| 79 | + if mm_positions is not None: |
| 80 | + mm_position = mm_positions[i] |
| 81 | + mm_inputs = [MultiModalKwargs({})] * len(mm_position) |
| 82 | + else: |
| 83 | + mm_position = None |
| 84 | + mm_inputs = None |
| 85 | + request = Request( |
| 86 | + request_id=f"{i}", |
| 87 | + prompt=None, |
| 88 | + prompt_token_ids=[i] * num_tokens, |
| 89 | + sampling_params=sampling_params, |
| 90 | + multi_modal_inputs=mm_inputs, |
| 91 | + multi_modal_placeholders=mm_position, |
| 92 | + multi_modal_hashes=None, |
| 93 | + eos_token_id=EOS_TOKEN_ID, |
| 94 | + arrival_time=0, |
| 95 | + ) |
| 96 | + requests.append(request) |
| 97 | + return requests |
| 98 | + |
| 99 | + |
| 100 | +def test_add_requests(): |
| 101 | + scheduler = create_scheduler() |
| 102 | + requests = create_requests(num_requests=10) |
| 103 | + |
| 104 | + for i, request in enumerate(requests): |
| 105 | + scheduler.add_request(request) |
| 106 | + assert request.request_id in scheduler.requests |
| 107 | + assert len(scheduler.waiting) == i + 1 |
| 108 | + |
| 109 | + |
| 110 | +def test_finish_request(): |
| 111 | + scheduler = create_scheduler() |
| 112 | + requests = create_requests(num_requests=10) |
| 113 | + for request in requests: |
| 114 | + scheduler.add_request(request) |
| 115 | + |
| 116 | + for i, request in enumerate(requests): |
| 117 | + scheduler.finish_requests(request.request_id, |
| 118 | + RequestStatus.FINISHED_ABORTED) |
| 119 | + assert request.request_id not in scheduler.requests |
| 120 | + assert len(scheduler.waiting) == 9 - i |
| 121 | + |
| 122 | + |
| 123 | +def test_get_num_unfinished_requests(): |
| 124 | + scheduler = create_scheduler() |
| 125 | + requests = create_requests(num_requests=10) |
| 126 | + for request in requests: |
| 127 | + scheduler.add_request(request) |
| 128 | + |
| 129 | + for i, request in enumerate(requests): |
| 130 | + scheduler.finish_requests(request.request_id, |
| 131 | + RequestStatus.FINISHED_STOPPED) |
| 132 | + assert scheduler.get_num_unfinished_requests() == len(requests) - i - 1 |
| 133 | + |
| 134 | + |
| 135 | +def test_schedule(): |
| 136 | + scheduler = create_scheduler() |
| 137 | + requests = create_requests(num_requests=10) |
| 138 | + for request in requests: |
| 139 | + scheduler.add_request(request) |
| 140 | + |
| 141 | + # Test initial scheduling |
| 142 | + output = scheduler.schedule() |
| 143 | + assert len(output.scheduled_new_reqs) == len(requests) |
| 144 | + assert len(output.scheduled_cached_reqs) == 0 |
| 145 | + assert len(output.finished_req_ids) == 0 |
| 146 | + # Verify all requests are scheduled. |
| 147 | + for req_id, num_tokens in output.num_scheduled_tokens.items(): |
| 148 | + assert num_tokens == len(requests[int(req_id)].prompt_token_ids) |
| 149 | + |
| 150 | + # Verify requests moved from waiting to running |
| 151 | + assert len(scheduler.waiting) == 0 |
| 152 | + assert len(scheduler.running) == len(requests) |
| 153 | + for i, request in enumerate(requests): |
| 154 | + assert scheduler.running[i] == request |
| 155 | + |
| 156 | + |
| 157 | +def test_stop_via_update_from_output(): |
| 158 | + """Test stopping behavior through update_from_output""" |
| 159 | + scheduler = create_scheduler() |
| 160 | + |
| 161 | + # Test case 1: Stop on EOS token |
| 162 | + requests = create_requests(num_requests=2, max_tokens=10) |
| 163 | + for req in requests: |
| 164 | + req.num_computed_tokens = req.num_tokens |
| 165 | + scheduler.requests[req.request_id] = req |
| 166 | + scheduler.running.append(req) |
| 167 | + scheduler.scheduled_req_ids.add(req.request_id) |
| 168 | + |
| 169 | + scheduler_output = SchedulerOutput(scheduled_new_reqs=[], |
| 170 | + scheduled_cached_reqs=[], |
| 171 | + num_scheduled_tokens={ |
| 172 | + requests[0].request_id: 1, |
| 173 | + requests[1].request_id: 2 |
| 174 | + }, |
| 175 | + total_num_scheduled_tokens=3, |
| 176 | + scheduled_encoder_inputs={}, |
| 177 | + scheduled_spec_decode_tokens={ |
| 178 | + requests[0].request_id: [], |
| 179 | + requests[1].request_id: [10] |
| 180 | + }, |
| 181 | + num_common_prefix_blocks=0, |
| 182 | + finished_req_ids=set(), |
| 183 | + free_encoder_input_ids=[]) |
| 184 | + |
| 185 | + model_output = ModelRunnerOutput( |
| 186 | + req_ids=[req.request_id for req in requests], |
| 187 | + req_id_to_index={req.request_id: i |
| 188 | + for i, req in enumerate(requests)}, |
| 189 | + sampled_token_ids=[[EOS_TOKEN_ID], |
| 190 | + [10, |
| 191 | + 11]], # First request hits EOS, second continues |
| 192 | + spec_token_ids=None, |
| 193 | + logprobs=None, |
| 194 | + prompt_logprobs_dict={}) |
| 195 | + |
| 196 | + scheduler.update_from_output(scheduler_output, model_output) |
| 197 | + |
| 198 | + # Verify first request stopped, second continues |
| 199 | + assert len(scheduler.running) == 1 |
| 200 | + assert scheduler.running[0].request_id == requests[1].request_id |
| 201 | + assert requests[0].status == RequestStatus.FINISHED_STOPPED |
| 202 | + assert requests[0].request_id in scheduler.finished_req_ids |
| 203 | + assert list(requests[0].output_token_ids) == [EOS_TOKEN_ID] |
| 204 | + assert list(requests[1].output_token_ids) == [10, 11] |
| 205 | + |
| 206 | + # Test case 2: Stop on custom stop token |
| 207 | + scheduler = create_scheduler() |
| 208 | + requests = create_requests(num_requests=2, |
| 209 | + max_tokens=10, |
| 210 | + stop_token_ids=[42, 43]) |
| 211 | + for req in requests: |
| 212 | + req.num_computed_tokens = req.num_tokens |
| 213 | + scheduler.requests[req.request_id] = req |
| 214 | + scheduler.running.append(req) |
| 215 | + scheduler.scheduled_req_ids.add(req.request_id) |
| 216 | + |
| 217 | + scheduler_output = SchedulerOutput(scheduled_new_reqs=[], |
| 218 | + scheduled_cached_reqs=[], |
| 219 | + num_scheduled_tokens={ |
| 220 | + requests[0].request_id: 3, |
| 221 | + requests[1].request_id: 2 |
| 222 | + }, |
| 223 | + total_num_scheduled_tokens=5, |
| 224 | + scheduled_encoder_inputs={}, |
| 225 | + scheduled_spec_decode_tokens={ |
| 226 | + requests[0].request_id: [10, 42], |
| 227 | + requests[1].request_id: [13] |
| 228 | + }, |
| 229 | + num_common_prefix_blocks=0, |
| 230 | + finished_req_ids=set(), |
| 231 | + free_encoder_input_ids=[]) |
| 232 | + |
| 233 | + model_output = ModelRunnerOutput( |
| 234 | + req_ids=[req.request_id for req in requests], |
| 235 | + req_id_to_index={req.request_id: i |
| 236 | + for i, req in enumerate(requests)}, |
| 237 | + sampled_token_ids=[[10, 42, 12], |
| 238 | + [13, 14]], # First request hits stop token |
| 239 | + spec_token_ids=None, |
| 240 | + logprobs=None, |
| 241 | + prompt_logprobs_dict={}) |
| 242 | + |
| 243 | + scheduler.update_from_output(scheduler_output, model_output) |
| 244 | + |
| 245 | + # Verify first request stopped on custom token |
| 246 | + assert len(scheduler.running) == 1 |
| 247 | + assert scheduler.running[0].request_id == requests[1].request_id |
| 248 | + assert requests[0].status == RequestStatus.FINISHED_STOPPED |
| 249 | + assert requests[0].stop_reason == 42 |
| 250 | + assert requests[0].request_id in scheduler.finished_req_ids |
| 251 | + assert list(requests[0].output_token_ids) == [10, 42] |
| 252 | + assert list(requests[1].output_token_ids) == [13, 14] |
| 253 | + |
| 254 | + # Test case 3: Stop on max tokens |
| 255 | + scheduler = create_scheduler() |
| 256 | + requests = create_requests(num_requests=2, max_tokens=2) |
| 257 | + for req in requests: |
| 258 | + req.num_computed_tokens = req.num_tokens |
| 259 | + scheduler.requests[req.request_id] = req |
| 260 | + scheduler.running.append(req) |
| 261 | + scheduler.scheduled_req_ids.add(req.request_id) |
| 262 | + |
| 263 | + scheduler_output = SchedulerOutput(scheduled_new_reqs=[], |
| 264 | + scheduled_cached_reqs=[], |
| 265 | + num_scheduled_tokens={ |
| 266 | + requests[0].request_id: 3, |
| 267 | + requests[1].request_id: 1 |
| 268 | + }, |
| 269 | + total_num_scheduled_tokens=4, |
| 270 | + scheduled_encoder_inputs={}, |
| 271 | + scheduled_spec_decode_tokens={ |
| 272 | + requests[0].request_id: [10, 11], |
| 273 | + requests[1].request_id: [] |
| 274 | + }, |
| 275 | + num_common_prefix_blocks=0, |
| 276 | + finished_req_ids=set(), |
| 277 | + free_encoder_input_ids=[]) |
| 278 | + |
| 279 | + model_output = ModelRunnerOutput( |
| 280 | + req_ids=[req.request_id for req in requests], |
| 281 | + req_id_to_index={req.request_id: i |
| 282 | + for i, req in enumerate(requests)}, |
| 283 | + sampled_token_ids=[[10, 11, 12], |
| 284 | + [13]], # First request exceeds max_tokens |
| 285 | + spec_token_ids=None, |
| 286 | + logprobs=None, |
| 287 | + prompt_logprobs_dict={}) |
| 288 | + |
| 289 | + scheduler.update_from_output(scheduler_output, model_output) |
| 290 | + |
| 291 | + # Verify first request stopped due to length |
| 292 | + assert len(scheduler.running) == 1 |
| 293 | + assert scheduler.running[0].request_id == requests[1].request_id |
| 294 | + assert requests[0].status == RequestStatus.FINISHED_LENGTH_CAPPED |
| 295 | + assert requests[0].request_id in scheduler.finished_req_ids |
| 296 | + assert list(requests[0].output_token_ids) == [10, 11 |
| 297 | + ] # Truncated to max_tokens |
| 298 | + assert list(requests[1].output_token_ids) == [13] |
| 299 | + |
| 300 | + # Test case 4: Ignore EOS flag |
| 301 | + scheduler = create_scheduler() |
| 302 | + requests = create_requests(num_requests=1, max_tokens=10) |
| 303 | + requests[0].sampling_params.ignore_eos = True |
| 304 | + requests[0].num_computed_tokens = requests[0].num_tokens |
| 305 | + scheduler.requests[requests[0].request_id] = requests[0] |
| 306 | + scheduler.running.append(requests[0]) |
| 307 | + scheduler.scheduled_req_ids.add(requests[0].request_id) |
| 308 | + |
| 309 | + scheduler_output = SchedulerOutput( |
| 310 | + scheduled_new_reqs=[], |
| 311 | + scheduled_cached_reqs=[], |
| 312 | + num_scheduled_tokens={requests[0].request_id: 3}, |
| 313 | + total_num_scheduled_tokens=3, |
| 314 | + scheduled_encoder_inputs={}, |
| 315 | + scheduled_spec_decode_tokens={ |
| 316 | + requests[0].request_id: [EOS_TOKEN_ID, 10] |
| 317 | + }, |
| 318 | + num_common_prefix_blocks=0, |
| 319 | + finished_req_ids=set(), |
| 320 | + free_encoder_input_ids=[]) |
| 321 | + |
| 322 | + model_output = ModelRunnerOutput( |
| 323 | + req_ids=[requests[0].request_id], |
| 324 | + req_id_to_index={requests[0].request_id: 0}, |
| 325 | + sampled_token_ids=[[EOS_TOKEN_ID, 10, 11]], |
| 326 | + spec_token_ids=None, |
| 327 | + logprobs=None, |
| 328 | + prompt_logprobs_dict={}) |
| 329 | + |
| 330 | + scheduler.update_from_output(scheduler_output, model_output) |
| 331 | + |
| 332 | + # Verify request continues past EOS |
| 333 | + assert len(scheduler.running) == 1 |
| 334 | + assert not requests[0].is_finished() |
| 335 | + assert list(requests[0].output_token_ids) == [EOS_TOKEN_ID, 10, 11] |
0 commit comments