|
| 1 | +import unittest |
| 2 | +from unittest.mock import MagicMock, patch |
| 3 | + |
| 4 | +import torch |
| 5 | +from vllm.distributed.parallel_state import GroupCoordinator |
| 6 | +from vllm.engine.arg_utils import EngineArgs |
| 7 | +from vllm.pooling_params import PoolingParams |
| 8 | +from vllm.sequence import SequenceData, SequenceGroupMetadata |
| 9 | + |
| 10 | +from vllm_ascend.worker.pooling_model_runner import ( |
| 11 | + ModelInputForNPUWithPoolingMetadata, NPUPoolingModelRunner) |
| 12 | + |
| 13 | + |
| 14 | +class TestPoolingModelRunner(unittest.TestCase): |
| 15 | + """Unit tests for the NPUPoolingModelRunner class.""" |
| 16 | + |
| 17 | + def _create_model_runner(self, model: str, *args, |
| 18 | + **kwargs) -> NPUPoolingModelRunner: |
| 19 | + engine_args = EngineArgs(model, *args, **kwargs) |
| 20 | + engine_config = engine_args.create_engine_config() |
| 21 | + model_runner = NPUPoolingModelRunner(vllm_config=engine_config, ) |
| 22 | + return model_runner |
| 23 | + |
| 24 | + def setUp(self): |
| 25 | + """Initialize test fixtures and common mocks""" |
| 26 | + self.attn_backend = "npu" |
| 27 | + |
| 28 | + model_runner = self._create_model_runner( |
| 29 | + "tests/ut/fake_weight", |
| 30 | + trust_remote_code=True, |
| 31 | + enable_chunked_prefill=False, |
| 32 | + ) |
| 33 | + |
| 34 | + self.runner = model_runner |
| 35 | + self.runner.attn_backend = self.attn_backend |
| 36 | + model_runner.model = MagicMock() |
| 37 | + self.runner = model_runner |
| 38 | + # Sample test data |
| 39 | + self.sample_tensor_dict = {"tensor1": torch.randn(3, 4)} |
| 40 | + self.sample_seq_group = [MagicMock(spec=SequenceGroupMetadata)] |
| 41 | + self.sample_finished_ids = ["req1", "req2"] |
| 42 | + |
| 43 | + @patch( |
| 44 | + 'vllm_ascend.worker.pooling_model_runner.ModelInputForNPUWithPoolingMetadata.from_broadcasted_tensor_dict' |
| 45 | + ) |
| 46 | + def test_make_model_input_from_broadcasted_tensor_dict( |
| 47 | + self, mock_from_dict): |
| 48 | + """Test tensor dictionary conversion to model input""" |
| 49 | + # Setup mock return |
| 50 | + expected_output = MagicMock() |
| 51 | + mock_from_dict.return_value = expected_output |
| 52 | + |
| 53 | + # Execute |
| 54 | + result = self.runner.make_model_input_from_broadcasted_tensor_dict( |
| 55 | + self.sample_tensor_dict) |
| 56 | + |
| 57 | + # Verify |
| 58 | + mock_from_dict.assert_called_once_with(self.sample_tensor_dict, |
| 59 | + attn_backend=self.attn_backend) |
| 60 | + self.assertEqual(result, expected_output) |
| 61 | + |
| 62 | + @patch.object(NPUPoolingModelRunner, '_prepare_pooling') |
| 63 | + @patch.object(NPUPoolingModelRunner, '_prepare_model_input_tensors') |
| 64 | + def test_prepare_model_input_normal_case(self, mock_prepare_tensors, |
| 65 | + mock_prepare_pooling): |
| 66 | + """Test normal flow of model input preparation""" |
| 67 | + # Setup mocks |
| 68 | + mock_model_input = ModelInputForNPUWithPoolingMetadata( |
| 69 | + seq_lens=[1, 2, 3]) |
| 70 | + mock_prepare_tensors.return_value = mock_model_input |
| 71 | + |
| 72 | + mock_pooling_metadata = MagicMock() |
| 73 | + mock_prepare_pooling.return_value = mock_pooling_metadata |
| 74 | + |
| 75 | + # Execute |
| 76 | + result = self.runner.prepare_model_input( |
| 77 | + seq_group_metadata_list=self.sample_seq_group, |
| 78 | + finished_requests_ids=self.sample_finished_ids) |
| 79 | + |
| 80 | + # Verify |
| 81 | + mock_prepare_tensors.assert_called_once_with(self.sample_seq_group, |
| 82 | + self.sample_finished_ids) |
| 83 | + mock_prepare_pooling.assert_called_once_with(self.sample_seq_group, |
| 84 | + mock_model_input.seq_lens) |
| 85 | + self.assertEqual(result.pooling_metadata, mock_pooling_metadata) |
| 86 | + |
| 87 | + def test_prepare_model_input_null_sequence_group(self): |
| 88 | + """Test assertion when seq_group_metadata_list is None""" |
| 89 | + with self.assertRaises(AssertionError): |
| 90 | + self.runner.prepare_model_input( |
| 91 | + seq_group_metadata_list=None, |
| 92 | + finished_requests_ids=self.sample_finished_ids) |
| 93 | + |
| 94 | + @patch.object(NPUPoolingModelRunner, '_prepare_model_input_tensors') |
| 95 | + def test_prepare_model_input_null_seq_lens(self, mock_prepare_tensors): |
| 96 | + """Test assertion when seq_lens is None in model input""" |
| 97 | + # Setup mock with None seq_lens |
| 98 | + mock_model_input = MagicMock() |
| 99 | + mock_model_input.seq_lens = None |
| 100 | + mock_prepare_tensors.return_value = mock_model_input |
| 101 | + |
| 102 | + with self.assertRaises(AssertionError): |
| 103 | + self.runner.prepare_model_input( |
| 104 | + seq_group_metadata_list=self.sample_seq_group, |
| 105 | + finished_requests_ids=self.sample_finished_ids) |
| 106 | + |
| 107 | + @patch.object(NPUPoolingModelRunner, '_prepare_pooling') |
| 108 | + @patch.object(NPUPoolingModelRunner, '_prepare_model_input_tensors') |
| 109 | + def test_prepare_model_input_with_virtual_engine(self, |
| 110 | + mock_prepare_tensors, |
| 111 | + mock_prepare_pooling): |
| 112 | + """Test virtual engine parameter is properly handled""" |
| 113 | + # Setup mocks |
| 114 | + mock_model_input = ModelInputForNPUWithPoolingMetadata( |
| 115 | + seq_lens=[1, 2, 3]) |
| 116 | + mock_prepare_tensors.return_value = mock_model_input |
| 117 | + |
| 118 | + # Execute with virtual_engine parameter |
| 119 | + result = self.runner.prepare_model_input( |
| 120 | + seq_group_metadata_list=self.sample_seq_group, |
| 121 | + virtual_engine=1, |
| 122 | + finished_requests_ids=self.sample_finished_ids) |
| 123 | + |
| 124 | + # Verify virtual_engine doesn't affect the flow |
| 125 | + self.assertIsNotNone(result) |
| 126 | + |
| 127 | + @patch.object(NPUPoolingModelRunner, '_prepare_pooling') |
| 128 | + @patch.object(NPUPoolingModelRunner, '_prepare_model_input_tensors') |
| 129 | + def test_prepare_model_input_with_null_finished_ids( |
| 130 | + self, mock_prepare_tensors, mock_prepare_pooling): |
| 131 | + """Test case when finished_requests_ids is None""" |
| 132 | + # Setup mocks |
| 133 | + mock_model_input = ModelInputForNPUWithPoolingMetadata( |
| 134 | + seq_lens=[1, 2, 3]) |
| 135 | + mock_prepare_tensors.return_value = mock_model_input |
| 136 | + |
| 137 | + # Execute with None finished_ids |
| 138 | + result = self.runner.prepare_model_input( |
| 139 | + seq_group_metadata_list=self.sample_seq_group, |
| 140 | + finished_requests_ids=None) |
| 141 | + |
| 142 | + # Verify |
| 143 | + mock_prepare_tensors.assert_called_once_with(self.sample_seq_group, |
| 144 | + None) |
| 145 | + self.assertIsNotNone(result) |
| 146 | + |
| 147 | + @patch('vllm.model_executor.pooling_metadata.PoolingMetadata.__init__') |
| 148 | + def test_prepare_pooling_normal_case(self, mock_pooling_metadata): |
| 149 | + """Test normal case with multiple sequences in group""" |
| 150 | + # Setup test data |
| 151 | + mock_pooling_metadata.return_value = None |
| 152 | + seq_data = { |
| 153 | + 1: MagicMock(spec=SequenceData), |
| 154 | + 2: MagicMock(spec=SequenceData) |
| 155 | + } |
| 156 | + pooling_params = MagicMock(spec=PoolingParams) |
| 157 | + seq_group = MagicMock(spec=SequenceGroupMetadata) |
| 158 | + seq_group.seq_data = seq_data |
| 159 | + seq_group.pooling_params = pooling_params |
| 160 | + |
| 161 | + # Call the function |
| 162 | + self.runner._prepare_pooling([seq_group], [10, 20]) |
| 163 | + |
| 164 | + # Verify results |
| 165 | + mock_pooling_metadata.assert_called_once_with(seq_groups=[ |
| 166 | + ([1, 2], pooling_params) |
| 167 | + ], |
| 168 | + seq_data=seq_data, |
| 169 | + prompt_lens=[10, 20]) |
| 170 | + |
| 171 | + @patch('vllm.model_executor.pooling_metadata.PoolingMetadata.__init__') |
| 172 | + def test_prepare_pooling_empty_group(self, mock_pooling_metadata): |
| 173 | + """Test case with empty sequence group""" |
| 174 | + # Setup empty group |
| 175 | + mock_pooling_metadata.return_value = None |
| 176 | + empty_seq_data: dict[int, SequenceData] = {} |
| 177 | + pooling_params = MagicMock(spec=PoolingParams) |
| 178 | + empty_group = MagicMock(spec=SequenceGroupMetadata) |
| 179 | + empty_group.seq_data = empty_seq_data |
| 180 | + empty_group.pooling_params = pooling_params |
| 181 | + |
| 182 | + # Call the function |
| 183 | + self.runner._prepare_pooling([empty_group], []) |
| 184 | + |
| 185 | + # Verify results |
| 186 | + mock_pooling_metadata.assert_called_once_with(seq_groups=[ |
| 187 | + ([], pooling_params) |
| 188 | + ], |
| 189 | + seq_data={}, |
| 190 | + prompt_lens=[]) |
| 191 | + |
| 192 | + @patch('vllm.model_executor.pooling_metadata.PoolingMetadata.__init__') |
| 193 | + def test_prepare_pooling_single_sequence(self, mock_pooling_metadata): |
| 194 | + """Test case with single sequence in group""" |
| 195 | + # Setup single sequence |
| 196 | + mock_pooling_metadata.return_value = None |
| 197 | + single_seq_data = {3: MagicMock(spec=SequenceData)} |
| 198 | + pooling_params = MagicMock(spec=PoolingParams) |
| 199 | + single_group = MagicMock(spec=SequenceGroupMetadata) |
| 200 | + single_group.seq_data = single_seq_data |
| 201 | + single_group.pooling_params = pooling_params |
| 202 | + |
| 203 | + # Call the function |
| 204 | + self.runner._prepare_pooling([single_group], [5]) |
| 205 | + |
| 206 | + # Verify results |
| 207 | + mock_pooling_metadata.assert_called_once_with(seq_groups=[ |
| 208 | + ([3], pooling_params) |
| 209 | + ], |
| 210 | + seq_data=single_seq_data, |
| 211 | + prompt_lens=[5]) |
| 212 | + |
| 213 | + @patch('vllm.model_executor.pooling_metadata.PoolingMetadata.__init__') |
| 214 | + def test_prepare_pooling_multiple_groups(self, mock_pooling_metadata): |
| 215 | + """Test case with multiple sequence groups""" |
| 216 | + # Setup multiple groups |
| 217 | + mock_pooling_metadata.return_value = None |
| 218 | + seq_data1 = {1: MagicMock(spec=SequenceData)} |
| 219 | + seq_data2 = {2: MagicMock(spec=SequenceData)} |
| 220 | + params1 = MagicMock(spec=PoolingParams) |
| 221 | + params2 = MagicMock(spec=PoolingParams) |
| 222 | + |
| 223 | + group1 = MagicMock(spec=SequenceGroupMetadata) |
| 224 | + group1.seq_data = seq_data1 |
| 225 | + group1.pooling_params = params1 |
| 226 | + |
| 227 | + group2 = MagicMock(spec=SequenceGroupMetadata) |
| 228 | + group2.seq_data = seq_data2 |
| 229 | + group2.pooling_params = params2 |
| 230 | + |
| 231 | + # Call the function |
| 232 | + self.runner._prepare_pooling([group1, group2], [10, 20]) |
| 233 | + |
| 234 | + # Verify results |
| 235 | + mock_pooling_metadata.assert_called_once_with(seq_groups=[ |
| 236 | + ([1], params1), ([2], params2) |
| 237 | + ], |
| 238 | + seq_data={ |
| 239 | + **seq_data1, |
| 240 | + **seq_data2 |
| 241 | + }, |
| 242 | + prompt_lens=[10, 20]) |
| 243 | + |
| 244 | + @patch('vllm.model_executor.pooling_metadata.PoolingMetadata.__init__') |
| 245 | + def test_prepare_pooling_empty_input(self, mock_pooling_metadata): |
| 246 | + """Test case with empty input lists""" |
| 247 | + # Call the function with empty inputs |
| 248 | + mock_pooling_metadata.return_value = None |
| 249 | + self.runner._prepare_pooling([], []) |
| 250 | + |
| 251 | + # Verify results |
| 252 | + mock_pooling_metadata.assert_called_once_with(seq_groups=[], |
| 253 | + seq_data={}, |
| 254 | + prompt_lens=[]) |
| 255 | + |
| 256 | + @patch('vllm.forward_context.set_forward_context') |
| 257 | + @patch('vllm.distributed.parallel_state._PP', |
| 258 | + new_callable=lambda: MagicMock(spec=GroupCoordinator, |
| 259 | + is_last_rank=True)) |
| 260 | + @patch('torch.npu.Event') |
| 261 | + @patch.object(NPUPoolingModelRunner, 'set_active_loras') |
| 262 | + @patch.object(NPUPoolingModelRunner, 'set_active_prompt_adapters') |
| 263 | + def test_execute_model_normal_flow(self, mock_set_adapters, mock_set_loras, |
| 264 | + mock_event, mock_pp, mock_set_forward): |
| 265 | + """Test normal execution path with all dependencies mocked""" |
| 266 | + |
| 267 | + # Setup model input mock |
| 268 | + mock_input = MagicMock() |
| 269 | + mock_input.input_tokens = torch.tensor([1]) |
| 270 | + mock_input.input_positions = torch.tensor([0]) |
| 271 | + mock_input.multi_modal_kwargs = {} |
| 272 | + self.runner.is_driver_worker = True |
| 273 | + # Execute |
| 274 | + self.runner.execute_model(model_input=mock_input, |
| 275 | + kv_caches=[], |
| 276 | + num_steps=1) |
| 277 | + |
| 278 | + # Verify core calls |
| 279 | + self.runner.model.pooler.assert_called_once() |
| 280 | + |
| 281 | + @patch('vllm.forward_context.set_forward_context') |
| 282 | + def test_execute_model_invalid_steps(self, mock_set_forward): |
| 283 | + """Test ValueError when num_steps != 1""" |
| 284 | + with self.assertRaises(ValueError): |
| 285 | + self.runner.execute_model(model_input=MagicMock(), |
| 286 | + kv_caches=[], |
| 287 | + num_steps=2) |
| 288 | + mock_set_forward.assert_not_called() |
| 289 | + |
| 290 | + @patch('vllm.forward_context.set_forward_context') |
| 291 | + @patch('vllm.distributed.parallel_state._PP', |
| 292 | + new_callable=lambda: MagicMock(spec=GroupCoordinator, |
| 293 | + is_last_rank=False)) |
| 294 | + @patch('torch.npu.Event') |
| 295 | + def test_execute_model_perf_monitoring(self, mock_event, mock_pp, |
| 296 | + mock_set_forward): |
| 297 | + """Test performance monitoring with timing mocks""" |
| 298 | + # Setup mocks |
| 299 | + |
| 300 | + mock_event.return_value.elapsed_time.return_value = 15.0 |
| 301 | + self.runner.observability_config = MagicMock( |
| 302 | + collect_model_forward_time=True) |
| 303 | + |
| 304 | + # Execute |
| 305 | + self.runner.execute_model(model_input=MagicMock( |
| 306 | + input_tokens=torch.tensor([1]), |
| 307 | + input_positions=torch.tensor([0]), |
| 308 | + multi_modal_kwargs={}), |
| 309 | + kv_caches=[], |
| 310 | + num_steps=1) |
| 311 | + |
| 312 | + # Verify timing calls |
| 313 | + self.assertEqual(mock_event.call_count, 2) |
| 314 | + |
| 315 | + @patch('vllm.forward_context.set_forward_context') |
| 316 | + @patch.object(NPUPoolingModelRunner, 'set_active_loras') |
| 317 | + @patch('vllm.distributed.parallel_state._PP', |
| 318 | + new_callable=lambda: MagicMock(spec=GroupCoordinator, |
| 319 | + is_last_rank=False)) |
| 320 | + def test_execute_model_lora_config(self, mock_pp, set_active_loras, |
| 321 | + mock_set_forward): |
| 322 | + """Test LoRA configuration handling""" |
| 323 | + # Setup |
| 324 | + |
| 325 | + self.runner.lora_config = True |
| 326 | + mock_input = MagicMock() |
| 327 | + mock_input.lora_requests = ["req1"] |
| 328 | + mock_input.lora_mapping = {"map": 1} |
| 329 | + |
| 330 | + # Execute |
| 331 | + self.runner.execute_model(model_input=mock_input, |
| 332 | + kv_caches=[], |
| 333 | + num_steps=1) |
| 334 | + |
| 335 | + # Verify LoRA call |
| 336 | + set_active_loras.assert_called_once_with(["req1"], {"map": 1}) |
| 337 | + |
| 338 | + @patch('vllm.forward_context.set_forward_context') |
| 339 | + @patch('vllm.distributed.parallel_state._PP', |
| 340 | + new_callable=lambda: MagicMock(spec=GroupCoordinator, |
| 341 | + is_last_rank=False)) |
| 342 | + def test_execute_model_not_last_rank(self, mock_pp, mock_set_forward): |
| 343 | + """Test behavior when not the last pipeline rank""" |
| 344 | + # Setup |
| 345 | + |
| 346 | + # Execute |
| 347 | + self.runner.execute_model(model_input=MagicMock( |
| 348 | + input_tokens=torch.tensor([1]), |
| 349 | + input_positions=torch.tensor([0]), |
| 350 | + multi_modal_kwargs={}), |
| 351 | + kv_caches=[], |
| 352 | + num_steps=1) |
| 353 | + |
| 354 | + # Verify pooler not called |
| 355 | + self.runner.model.pooler.assert_not_called() |
0 commit comments