|
| 1 | +# |
| 2 | +# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. |
| 3 | +# This file is a part of the vllm-ascend project. |
| 4 | +# Adapted from vllm-project/vllm/examples/offline_inference/basic.py |
| 5 | +# Copyright 2023 The vLLM team. |
| 6 | +# |
| 7 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | +# you may not use this file except in compliance with the License. |
| 9 | +# You may obtain a copy of the License at |
| 10 | +# |
| 11 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +# |
| 13 | +# Unless required by applicable law or agreed to in writing, software |
| 14 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | +# See the License for the specific language governing permissions and |
| 17 | +# limitations under the License. |
| 18 | +# |
| 19 | +import multiprocessing as mp |
| 20 | +import os |
| 21 | +import time |
| 22 | +from multiprocessing import Event, Process |
| 23 | + |
| 24 | + |
| 25 | +def clean_up(): |
| 26 | + import gc |
| 27 | + |
| 28 | + import torch |
| 29 | + from vllm.distributed.parallel_state import ( |
| 30 | + destroy_distributed_environment, destroy_model_parallel) |
| 31 | + destroy_model_parallel() |
| 32 | + destroy_distributed_environment() |
| 33 | + gc.collect() |
| 34 | + torch.npu.empty_cache() |
| 35 | + |
| 36 | + |
| 37 | +def run_prefill(prefill_done, process_close): |
| 38 | + os.environ["ASCEND_RT_VISIBLE_DEVICES"] = "0,1" |
| 39 | + |
| 40 | + from vllm import LLM, SamplingParams |
| 41 | + from vllm.config import KVTransferConfig |
| 42 | + |
| 43 | + prompts = [ |
| 44 | + "Hello, how are you today?", "Hi, what is your name?", |
| 45 | + "Tell me a very long story.", "what is your favourite book?" |
| 46 | + ] |
| 47 | + sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1) |
| 48 | + |
| 49 | + ktc = KVTransferConfig.from_cli( |
| 50 | + '{"kv_connector":"AscendHcclConnector","kv_buffer_device":"npu","kv_role":"kv_producer", "kv_parallel_size":2}' |
| 51 | + ) |
| 52 | + |
| 53 | + # Set NPU memory utilization to 0.8 |
| 54 | + llm = LLM(model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
| 55 | + kv_transfer_config=ktc, |
| 56 | + max_model_len=2000, |
| 57 | + gpu_memory_utilization=0.8, |
| 58 | + tensor_parallel_size=2) |
| 59 | + |
| 60 | + llm.generate(prompts, sampling_params) |
| 61 | + print("Prefill node is finished.") |
| 62 | + prefill_done.set() |
| 63 | + |
| 64 | + # To keep the prefill node running in case the decode node is not done |
| 65 | + # otherwise, the script might exit prematurely, causing incomplete decoding. |
| 66 | + try: |
| 67 | + while not process_close.is_set(): |
| 68 | + time.sleep(1) |
| 69 | + except KeyboardInterrupt: |
| 70 | + print("Script stopped by user.") |
| 71 | + finally: |
| 72 | + print("Cleanup prefill resources") |
| 73 | + del llm |
| 74 | + clean_up() |
| 75 | + |
| 76 | + |
| 77 | +def run_decode(prefill_done): |
| 78 | + os.environ["ASCEND_RT_VISIBLE_DEVICES"] = "2,3" |
| 79 | + |
| 80 | + from vllm import LLM, SamplingParams |
| 81 | + from vllm.config import KVTransferConfig |
| 82 | + |
| 83 | + prompts = [ |
| 84 | + "Hello, how are you today?", "Hi, what is your name?", |
| 85 | + "Tell me a very long story.", "what is your favourite book?" |
| 86 | + ] |
| 87 | + sampling_params = SamplingParams(temperature=0, top_p=0.95) |
| 88 | + |
| 89 | + ktc = KVTransferConfig.from_cli( |
| 90 | + '{"kv_connector":"AscendHcclConnector","kv_buffer_device":"npu","kv_role":"kv_consumer","kv_parallel_size":2}' |
| 91 | + ) |
| 92 | + |
| 93 | + llm = LLM(model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", |
| 94 | + kv_transfer_config=ktc, |
| 95 | + max_model_len=2000, |
| 96 | + gpu_memory_utilization=0.8, |
| 97 | + tensor_parallel_size=2) |
| 98 | + |
| 99 | + # Wait for the producer to start the consumer |
| 100 | + print("Waiting for prefill node to finish...") |
| 101 | + prefill_done.wait() |
| 102 | + |
| 103 | + # At this point when the prefill_done is set, the kv-cache should have been |
| 104 | + # transferred to this decode node, so we can start decoding. |
| 105 | + outputs = llm.generate(prompts, sampling_params) |
| 106 | + for output in outputs: |
| 107 | + prompt = output.prompt |
| 108 | + generated_text = output.outputs[0].text |
| 109 | + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
| 110 | + |
| 111 | + del llm |
| 112 | + clean_up() |
| 113 | + |
| 114 | + |
| 115 | +if __name__ == "__main__": |
| 116 | + mp.get_context('spawn') |
| 117 | + |
| 118 | + prefill_done = Event() |
| 119 | + process_close = Event() |
| 120 | + prefill_process = Process(target=run_prefill, |
| 121 | + args=( |
| 122 | + prefill_done, |
| 123 | + process_close, |
| 124 | + )) |
| 125 | + decode_process = Process(target=run_decode, args=(prefill_done, )) |
| 126 | + |
| 127 | + # Start prefill node |
| 128 | + prefill_process.start() |
| 129 | + |
| 130 | + # Start decode node |
| 131 | + decode_process.start() |
| 132 | + |
| 133 | + # Terminate the prefill node when decode is finished |
| 134 | + decode_process.join() |
| 135 | + |
| 136 | + # Terminate prefill process |
| 137 | + process_close.set() |
| 138 | + prefill_process.join() |
| 139 | + prefill_process.terminate() |
| 140 | + print("All process done!") |
0 commit comments