|
15 | 15 | # limitations under the License.
|
16 | 16 | # This file is a part of the vllm-ascend project.
|
17 | 17 | # Adapted from vllm-project/vllm/vllm/worker/gpu_model_runner.py
|
18 |
| -# |
19 | 18 |
|
20 | 19 | import gc
|
21 | 20 | import os
|
@@ -1335,86 +1334,77 @@ def _get_spec_token_ids(
|
1335 | 1334 | assert isinstance(self.drafter, NgramProposer)
|
1336 | 1335 | spec_token_ids = self._generate_draft_token_ids(
|
1337 | 1336 | valid_sampled_token_ids, sampling_metadata)
|
1338 |
| - elif self.speculative_config.method == "eagle": |
1339 |
| - raise NotImplementedError("Eagle Is Not Supported Yet.") |
1340 |
| - elif self.speculative_config.method == "eagle3": |
| 1337 | + elif self.use_eagle: |
1341 | 1338 | assert isinstance(self.drafter, EagleProposer)
|
1342 |
| - if self.speculative_config.use_eagle(): |
1343 |
| - next_token_ids: list[int] = [] |
1344 |
| - for i, token_ids in enumerate(valid_sampled_token_ids): |
1345 |
| - if token_ids: |
1346 |
| - # Common case. |
1347 |
| - next_token_id = token_ids[-1] |
1348 |
| - else: |
1349 |
| - # Partial prefill (rare case). |
1350 |
| - # Get the next token id from the request state. |
1351 |
| - req_id = self.input_batch.req_ids[i] |
1352 |
| - req_state = self.requests[req_id] |
1353 |
| - seq_len = ( |
1354 |
| - req_state.num_computed_tokens + |
1355 |
| - scheduler_output.num_scheduled_tokens[req_id]) |
1356 |
| - |
1357 |
| - next_token_id = req_state.get_token_id(seq_len) |
1358 |
| - next_token_ids.append(next_token_id) |
1359 |
| - next_token_ids = torch.tensor(next_token_ids, |
1360 |
| - dtype=torch.int32, |
1361 |
| - device=self.device) |
1362 |
| - eagle_attn_metadata = attn_metadata[ |
1363 |
| - self.drafter.attn_layer_name] |
1364 |
| - num_input_tokens = scheduler_output.total_num_scheduled_tokens |
1365 |
| - if spec_decode_metadata is None: |
1366 |
| - # input_ids can be None for multimodal models. |
1367 |
| - target_token_ids = self.input_ids[:num_scheduled_tokens] |
1368 |
| - target_positions = positions[:num_scheduled_tokens] |
1369 |
| - if self.use_aux_hidden_state_outputs: |
1370 |
| - target_hidden_states = torch.cat([ |
1371 |
| - h[:num_scheduled_tokens] for h in aux_hidden_states |
1372 |
| - ], |
1373 |
| - dim=-1) |
1374 |
| - else: |
1375 |
| - target_hidden_states = hidden_states[: |
1376 |
| - num_scheduled_tokens] |
1377 |
| - target_slot_mapping = eagle_attn_metadata.slot_mapping |
1378 |
| - cu_num_tokens = eagle_attn_metadata.query_start_loc |
| 1339 | + next_token_ids: list[int] = [] |
| 1340 | + for i, token_ids in enumerate(valid_sampled_token_ids): |
| 1341 | + if token_ids: |
| 1342 | + # Common case. |
| 1343 | + next_token_id = token_ids[-1] |
1379 | 1344 | else:
|
1380 |
| - num_draft_tokens = spec_decode_metadata.num_draft_tokens |
1381 |
| - num_rejected_tokens = [ |
1382 |
| - n + 1 - len(valid_sampled_token_ids[i]) if n > 0 else 0 |
1383 |
| - for i, n in enumerate(num_draft_tokens) |
1384 |
| - ] |
1385 |
| - num_rejected_tokens = torch.tensor( |
1386 |
| - num_rejected_tokens, |
1387 |
| - dtype=torch.int32, |
1388 |
| - device=self.device, |
1389 |
| - ) |
1390 |
| - num_tokens = num_scheduled_tokens - sum( |
1391 |
| - num_rejected_tokens) |
1392 |
| - cu_num_tokens, token_indices = self.drafter.prepare_inputs( |
1393 |
| - eagle_attn_metadata.query_start_loc, |
1394 |
| - num_rejected_tokens, num_tokens) |
1395 |
| - target_token_ids = self.input_ids[token_indices] |
1396 |
| - target_positions = positions[token_indices] |
1397 |
| - if self.use_aux_hidden_state_outputs: |
1398 |
| - target_hidden_states = torch.cat( |
1399 |
| - [h[token_indices] for h in aux_hidden_states], |
1400 |
| - dim=-1) |
1401 |
| - else: |
1402 |
| - target_hidden_states = hidden_states[token_indices] |
1403 |
| - target_slot_mapping = eagle_attn_metadata.slot_mapping[ |
1404 |
| - token_indices] |
1405 |
| - |
1406 |
| - positions = self.positions[:num_input_tokens] |
1407 |
| - draft_token_ids = self.drafter.propose( |
1408 |
| - target_token_ids=target_token_ids, |
1409 |
| - target_positions=target_positions, |
1410 |
| - target_hidden_states=target_hidden_states, |
1411 |
| - target_slot_mapping=target_slot_mapping, |
1412 |
| - next_token_ids=next_token_ids, |
1413 |
| - cu_num_tokens=cu_num_tokens, |
1414 |
| - block_table=eagle_attn_metadata.block_tables, |
1415 |
| - sampling_metadata=sampling_metadata, |
| 1345 | + # Partial prefill (rare case). |
| 1346 | + # Get the next token id from the request state. |
| 1347 | + req_id = self.input_batch.req_ids[i] |
| 1348 | + req_state = self.requests[req_id] |
| 1349 | + seq_len = (req_state.num_computed_tokens + |
| 1350 | + scheduler_output.num_scheduled_tokens[req_id]) |
| 1351 | + |
| 1352 | + next_token_id = req_state.get_token_id(seq_len) |
| 1353 | + next_token_ids.append(next_token_id) |
| 1354 | + next_token_ids = torch.tensor(next_token_ids, |
| 1355 | + dtype=torch.int32, |
| 1356 | + device=self.device) |
| 1357 | + eagle_attn_metadata = attn_metadata[self.drafter.attn_layer_name] |
| 1358 | + num_input_tokens = scheduler_output.total_num_scheduled_tokens |
| 1359 | + if spec_decode_metadata is None: |
| 1360 | + # input_ids can be None for multimodal models. |
| 1361 | + target_token_ids = self.input_ids[:num_scheduled_tokens] |
| 1362 | + target_positions = positions[:num_scheduled_tokens] |
| 1363 | + if self.use_aux_hidden_state_outputs: |
| 1364 | + target_hidden_states = torch.cat( |
| 1365 | + [h[:num_scheduled_tokens] for h in aux_hidden_states], |
| 1366 | + dim=-1) |
| 1367 | + else: |
| 1368 | + target_hidden_states = hidden_states[:num_scheduled_tokens] |
| 1369 | + target_slot_mapping = eagle_attn_metadata.slot_mapping |
| 1370 | + cu_num_tokens = eagle_attn_metadata.query_start_loc |
| 1371 | + else: |
| 1372 | + num_draft_tokens = spec_decode_metadata.num_draft_tokens |
| 1373 | + num_rejected_tokens = [ |
| 1374 | + n + 1 - len(valid_sampled_token_ids[i]) if n > 0 else 0 |
| 1375 | + for i, n in enumerate(num_draft_tokens) |
| 1376 | + ] |
| 1377 | + num_rejected_tokens = torch.tensor( |
| 1378 | + num_rejected_tokens, |
| 1379 | + dtype=torch.int32, |
| 1380 | + device=self.device, |
1416 | 1381 | )
|
1417 |
| - spec_token_ids = draft_token_ids.tolist() |
| 1382 | + num_tokens = num_scheduled_tokens - sum(num_rejected_tokens) |
| 1383 | + cu_num_tokens, token_indices = self.drafter.prepare_inputs( |
| 1384 | + eagle_attn_metadata.query_start_loc, num_rejected_tokens, |
| 1385 | + num_tokens) |
| 1386 | + target_token_ids = self.input_ids[token_indices] |
| 1387 | + target_positions = positions[token_indices] |
| 1388 | + if self.use_aux_hidden_state_outputs: |
| 1389 | + target_hidden_states = torch.cat( |
| 1390 | + [h[token_indices] for h in aux_hidden_states], dim=-1) |
| 1391 | + else: |
| 1392 | + target_hidden_states = hidden_states[token_indices] |
| 1393 | + target_slot_mapping = eagle_attn_metadata.slot_mapping[ |
| 1394 | + token_indices] |
| 1395 | + |
| 1396 | + positions = self.positions[:num_input_tokens] |
| 1397 | + draft_token_ids = self.drafter.propose( |
| 1398 | + target_token_ids=target_token_ids, |
| 1399 | + target_positions=target_positions, |
| 1400 | + target_hidden_states=target_hidden_states, |
| 1401 | + target_slot_mapping=target_slot_mapping, |
| 1402 | + next_token_ids=next_token_ids, |
| 1403 | + cu_num_tokens=cu_num_tokens, |
| 1404 | + block_table=eagle_attn_metadata.block_tables, |
| 1405 | + sampling_metadata=sampling_metadata, |
| 1406 | + ) |
| 1407 | + spec_token_ids = draft_token_ids.tolist() |
1418 | 1408 | elif self.speculative_config.method == 'deepseek_mtp':
|
1419 | 1409 | assert isinstance(self.drafter, MtpProposer)
|
1420 | 1410 | spec_token_ids = self._generate_mtp_token_ids(
|
@@ -1798,10 +1788,11 @@ def load_model(self) -> None:
|
1798 | 1788 | self.model = get_model(vllm_config=self.vllm_config)
|
1799 | 1789 | if self.drafter:
|
1800 | 1790 | logger.info("Loading drafter model...")
|
1801 |
| - if self.use_aux_hidden_state_outputs: |
| 1791 | + if self.use_eagle: |
1802 | 1792 | self.drafter.load_model(self.model)
|
1803 |
| - self.model.set_aux_hidden_state_layers( |
1804 |
| - self.model.get_eagle3_aux_hidden_state_layers()) |
| 1793 | + if self.use_aux_hidden_state_outputs: |
| 1794 | + self.model.set_aux_hidden_state_layers( |
| 1795 | + self.model.get_eagle3_aux_hidden_state_layers()) |
1805 | 1796 | else:
|
1806 | 1797 | self.drafter.load_model()
|
1807 | 1798 | if self.lora_config:
|
|
0 commit comments