Releases: vanderschaarlab/autoprognosis
Releases · vanderschaarlab/autoprognosis
AutoPrognosis 0.1.11 Release Notes
Changelog:
- Add readthedocs link https://autoprognosis.readthedocs.io/en/latest/
- Improve docstrings
AutoPrognosis 0.1.10 Release Notes
Changelog:
- Add
fitAPI call for the studies. Returns a trained model directly. - Random states bugfixing for studies, explainers etc.
- Add
feature_selectionparameters to the studies. - sklearn params bugfixing: RF, bagging, adaboost, version 1.2
- update default imputers: [ice, missforest, hyperimpute, mean]
- data_cleanup plugin: drop constant features, high VIF features(multicollinearity). Added by default before the prediction layer.
- Data Encoding bugfixing: handle missing/unseen values.
- update env variables:
N_LEARNERS_JOBS: number of CPUs to use by base learnersN_OPT_JOBS: number of CPUs to use for hyperparam searchREDIS_HOST: Redis IP address. useful when running in distributed clusters.REDIS_PORT: Redis port.
- Update HyperImpute
- Add evaluation tools for multiple seeds.
Tutorials:
- add MICE tutorial
- add categorical imputation tutorial
- add serialization tutorial
AutoPrognosis 0.1.9 Release Notes
AutoPrognosis 0.1.8 Release Notes
Changelog:
- feat: add option for stratified CV(thanks @HLasse )
AutoPrognosis 0.1.6 Release Notes
Changelog:
- R support: examples + tests
- Bugfixing
- KNearestNeighbor regressor
AutoPrognosis 0.1.5 Release Notes
XGB 1.7 compatibility
Update CI crons.
AutoPrognosis 0.1.4 Release Notes
Changelog:
- HyperBand optimizer
- Regression studies
AutoPrognosis 0.1.3 Release Notes
v0.1.3 Update README.md
AutoPrognosis 0.1.2 Release Notes
Changelog:
- more tutorials
AutoPrognosis 0.1.1 Release Notes
First release: base models, tests