|
25 | 25 | # will exclude deselection in versions 0.18.1, and 0.18.2 only.
|
26 | 26 |
|
27 | 27 | deselected_tests:
|
| 28 | + # Array API support |
| 29 | + # sklearnex functional Array API support doesn't guaranty namespace consistency for the estimator's array attributes. |
| 30 | + - decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-array_api_strict-None-None] |
| 31 | + - decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-array_api_strict-None-None] |
| 32 | + - decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-array_api_strict-None-None] |
| 33 | + - decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-array_api_strict-None-None] |
| 34 | + - linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-array_api_strict-None-None] |
| 35 | + - linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-array_api_strict-None-None] |
| 36 | + # `train_test_split` inconsistency for Array API inputs. |
| 37 | + - model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-array_api_strict-None-None] |
| 38 | + - model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-array_api_strict-None-None] |
| 39 | + - model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-array_api_strict-None-None] |
| 40 | + # PCA. Array API functionally supported for all factorizations. power_iteration_normalizer=["LU", "QR"] |
| 41 | + - decomposition/tests/test_pca.py::test_array_api_error_and_warnings_on_unsupported_params |
| 42 | + # PCA. InvalidParameterError: The 'M' parameter of randomized_svd must be an instance of 'numpy.ndarray' or a sparse matrix. |
| 43 | + - decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-array_api_strict-None-None] |
| 44 | + - decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-array_api_strict-None-None] |
| 45 | + # Ridge regression. Array API functionally supported for all solvers. Not raising error for non-svd solvers. |
| 46 | + - linear_model/tests/test_ridge.py::test_array_api_error_and_warnings_for_solver_parameter[array_api_strict] |
| 47 | + |
28 | 48 | # 'kulsinski' distance was deprecated in scipy 1.11 but still marked as supported in scikit-learn < 1.3
|
29 | 49 | - neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float64-kulsinski] <1.3
|
30 | 50 | - neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[kulsinski] <1.3
|
|
0 commit comments