You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/getting_started.md
+9-3Lines changed: 9 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -245,6 +245,12 @@ python -c "import crisp_gym"
245
245
246
246
1. This will set some environment variable pre-installation as well as checking that you defined the previous script properly.
247
247
248
+
You can also check that your configs are set up with:
249
+
250
+
```sh
251
+
pixi shell crisp-check-config
252
+
```
253
+
248
254
If the previous steps worked, then you are good to go.
249
255
250
256
### Teleoperation: Record data in [LeRobotFormat](https://github.com/huggingface/lerobot)
@@ -263,7 +269,7 @@ For your specific setup you need to:
263
269
264
270
Then, to record data use:
265
271
```sh
266
-
pixi run -e humble-lerobot python scripts/record_lerobot_format_leader_follower.py \
272
+
pixi run -e humble-lerobot crisp-record-leader-follower \
267
273
--repo-id <your_account>/<repo_name># (1)!
268
274
```
269
275
@@ -366,7 +372,7 @@ a similar record script to [`scripts/record_lerobot_format_leader_follower.py`](
366
372
367
373
You can use LeRobot train scripts to train a policy simply by running:
368
374
```sh
369
-
pixi run -e lerobot python -m lerobot.scripts.train \
375
+
pixi run -e lerobot python -m lerobot.scripts.lerobot-train \
370
376
--dataset.repo_id=<your_account>/<repo_name> \
371
377
--policy.type=diffusion \
372
378
--policy.push_to_hub=false
@@ -382,7 +388,7 @@ Check [LeRobot](https://github.com/huggingface/lerobot) for more information.
382
388
383
389
After training with LeRobot, you can deploy the policy with:
384
390
```sh
385
-
pixi run -e humble-lerobot python scripts/deploy_policy.py# (1)!
391
+
pixi run -e humble-lerobot crisp-deploy-policy # (1)!
386
392
```
387
393
388
394
1. The script will interactively allow you to choose a model inside `outputs/train`. If you want to explicitly pass a path you can override it with `--path`
0 commit comments