-
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Description
Hi
I am trying to load a vision model using FastVisionModel.from_pretrained where the model and the tokenizer/processor are located in different Hugging Face repositories. When I pass the tokenizer_name parameter to specify a different tokenizer, I get a TypeError: got multiple values for keyword argument 'tokenizer_name'.
model, processor = FastVisionModel.from_pretrained(
"unsloth/Qwen2.5-VL-3B-Instruct",
load_in_4bit = False,
use_gradient_checkpointing = "unsloth",
tokenizer_name="unsloth/Qwen2.5-VL-3B-Instruct"
)
the error:
TypeError Traceback (most recent call last)
/tmp/ipython-input-1738901268.py in <cell line: 0>()
----> 1 model, processor = FastVisionModel.from_pretrained(
--> 857 model, tokenizer = FastBaseModel.from_pretrained(
858 model_name = model_name,
859 max_seq_length = max_seq_length,
TypeError: unsloth.models.vision.FastBaseModel.from_pretrained() got multiple values for keyword argument 'tokenizer_name'
After checking the source code and I think this error occurs because the tokenizer_name parameter is passed twice internally: once from the user's kwargs and once from the internal logic in FastModel.from_pretrained.
Environment:
Python: 3.12.11
OS: Linux 6.1.123+
PyTorch: 2.8.0+cu126
CUDA: 12.6
GPU: Tesla T4
Unsloth: 2025.9.1
Transformers: 4.55.4
Accelerate: 1.10.1
Bitsandbytes: 0.47.0