Exception trying to convert TheBloke_Wizard-Vicuna-30B-Uncensored-fp16 #203
Unanswered
markrmiller
asked this question in
Q&A
Replies: 1 comment 1 reply
-
I assume you've updated the repo, but you still have the previous version of the package installed? |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
I get through creating the measurment file fine, but then right away it hits this:
-- Quantizing...
-- Layer: model.layers.0 (Attention)
-- Linear: model.layers.0.self_attn.q_proj -> 0.05:3b_32g/0.95:2b_32g s4, 2.18 bpw
Traceback (most recent call last):
File "/home/user/exllamav2/convert.py", line 300, in
quant(job, save_job, model)
File "/home/user/exllamav2/conversion/quantize.py", line 648, in quant
do_quant(module.q_proj, quantizers["q_proj"], qparams[module.q_proj.key], job)
File "/home/user/exllamav2/conversion/quantize.py", line 480, in do_quant
recons_linear.load(recons_dict)
File "/home/user/exllamav2/exllamav2/linear.py", line 51, in load
self.q_handle = ext.make_q_matrix(w, self.temp_dq)
File "/home/user/exllamav2/exllamav2/ext.py", line 183, in make_q_matrix
return ext_c.make_q_matrix(w["q_weight"],
TypeError: make_q_matrix(): incompatible function arguments. The following argument types are supported:
1. (arg0: torch.Tensor, arg1: torch.Tensor, arg2: torch.Tensor, arg3: torch.Tensor, arg4: torch.Tensor, arg5: torch.Tensor, arg6: torch.Tensor, arg7: torch.Tensor, arg8: torch.Tensor, arg9: torch.Tensor) -> int
Invoked with: tensor([[ 811566591, 543131135, -1281677962, ..., 1820945554,
601242413, 340768092],
[ -924552998, 1223003238, -684363442, ..., -1226673607,
380491495, 1833806393],
[-1362844202, -1354312274, -2045465697, ..., -808748147,
-699863094, 1960528721],
...,
[ -152307997, -1449199898, -151607630, ..., -1427442130,
-1368743938, -1515766243],
[-1696959899, -1431670171, -306480774, ..., -23761478,
-1683300514, 2041489845],
[ 1241343673, -1452430678, 100335270, ..., 1862188703,
-1633060503, 1785458667]], device='cuda:0', dtype=torch.int32), tensor([2736, 686, 6276, ..., 5780, 5922, 5463], device='cuda:0',
dtype=torch.int16), tensor([ 163, 925, 3123, ..., 2416, 2074, 4299], device='cuda:0',
dtype=torch.int16), tensor([[ 1414878309, 1447380294, 1398166869, ..., 1452697190,
1752663656, 1433823077],
[ 1952793717, 1448432983, 1952736342, ..., 1233483623,
1734829673, 1704355957],
[ 1129530485, 1146438981, 1667457861, ..., 912549447,
1195791703, 1433753429],
...,
[ 1448432980, 1433682996, 1415861605, ..., 1718969687,
1733780841, 2022143829],
[ 1700025940, 1415856964, 1146377316, ..., 1751611238,
2020046970, -2004317832],
[ 1682199925, 1147422038, 1414878550, ..., 1735886455,
1751672441, -2004317799]], device='cuda:0', dtype=torch.int32), tensor([0.0007, 0.0005, 0.0007, 0.0006, 0.0006, 0.0004, 0.0003, 0.0003, 0.0003,
0.0005, 0.0002, 0.0006, 0.0005, 0.0005, 0.0006, 0.0005, 0.0005, 0.0005,
0.0005, 0.0005, 0.0005, 0.0005, 0.0004, 0.0005, 0.0005, 0.0005, 0.0005,
0.0004, 0.0005, 0.0004, 0.0005, 0.0005, 0.0004, 0.0004, 0.0004, 0.0004,
0.0005, 0.0005, 0.0004, 0.0004, 0.0004, 0.0006, 0.0004, 0.0005, 0.0004,
0.0004, 0.0004, 0.0005, 0.0005, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005,
0.0004, 0.0004, 0.0004, 0.0005, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0005, 0.0004, 0.0004, 0.0005, 0.0005, 0.0004,
0.0004, 0.0005, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0004,
0.0004, 0.0004, 0.0005, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0004, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0003,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0004, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0005, 0.0004, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0003, 0.0004, 0.0004,
0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004,
0.0005, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0003, 0.0004, 0.0003,
0.0003, 0.0004, 0.0003, 0.0004, 0.0005, 0.0004, 0.0004, 0.0003, 0.0004,
0.0004, 0.0004, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003, 0.0004, 0.0003,
0.0003], device='cuda:0', dtype=torch.float16), tensor([ 3, 0, 3, 3, 3, 6, 3, 9, 3, 12, 3, 15, 3, 18,
3, 21, 3, 24, 3, 27, 3, 30, 2, 33, 2, 35, 2, 37,
2, 39, 2, 41, 2, 43, 2, 45, 2, 47, 2, 49, 2, 51,
2, 53, 2, 55, 2, 57, 2, 59, 2, 61, 2, 63, 2, 65,
2, 67, 2, 69, 2, 71, 2, 73, 2, 75, 2, 77, 2, 79,
2, 81, 2, 83, 2, 85, 2, 87, 2, 89, 2, 91, 2, 93,
2, 95, 2, 97, 2, 99, 2, 101, 2, 103, 2, 105, 2, 107,
2, 109, 2, 111, 2, 113, 2, 115, 2, 117, 2, 119, 2, 121,
2, 123, 2, 125, 2, 127, 2, 129, 2, 131, 2, 133, 2, 135,
2, 137, 2, 139, 2, 141, 2, 143, 2, 145, 2, 147, 2, 149,
2, 151, 2, 153, 2, 155, 2, 157, 2, 159, 2, 161, 2, 163,
2, 165, 2, 167, 2, 169, 2, 171, 2, 173, 2, 175, 2, 177,
2, 179, 2, 181, 2, 183, 2, 185, 2, 187, 2, 189, 2, 191,
2, 193, 2, 195, 2, 197, 2, 199, 2, 201, 2, 203, 2, 205,
2, 207, 2, 209, 2, 211, 2, 213, 2, 215, 2, 217, 2, 219,
2, 221, 2, 223, 2, 225, 2, 227, 2, 229, 2, 231, 2, 233,
2, 235, 2, 237, 2, 239, 2, 241, 2, 243, 2, 245, 2, 247,
2, 249, 2, 251, 2, 253, 2, 255, 2, 257, 2, 259, 2, 261,
2, 263, 2, 265, 2, 267, 2, 269, 2, 271, 2, 273, 2, 275,
2, 277, 2, 279, 2, 281, 2, 283, 2, 285, 2, 287, 2, 289,
2, 291, 2, 293, 2, 295, 2, 297, 2, 299, 2, 301, 2, 303,
2, 305, 2, 307, 2, 309, 2, 311, 2, 313, 2, 315, 2, 317,
2, 319, 2, 321, 2, 323, 2, 325, 2, 327, 2, 329, 2, 331,
2, 333, 2, 335, 2, 337, 2, 339, 2, 341, 2, 343, 2, 345,
2, 347, 2, 349, 2, 351, 2, 353, 2, 355, 2, 357, 2, 359,
2, 361, 2, 363, 2, 365, 2, 367, 2, 369, 2, 371, 2, 373,
2, 375, 2, 377, 2, 379, 2, 381, 2, 383, 2, 385, 2, 387,
2, 389, 2, 391, 2, 393, 2, 395, 2, 397, 2, 399, 2, 401,
2, 403, 2, 405, 2, 407, 2, 409, 2, 411, 2, 413, 2, 415,
2, 417, 2, 419, 2, 421, 2, 423, 2, 425], device='cuda:0',
dtype=torch.int16), tensor([ 0, 32, 0, ..., 2, 207, 1], device='cuda:0',
dtype=torch.int16), tensor(..., device='meta', size=(1, 1)), tensor(..., device='meta', size=(1, 1)), tensor(..., device='meta', size=(1, 1)), tensor([0., 0., 0., ..., 0., 0., 0.], device='cuda:0', dtype=torch.float16)
Beta Was this translation helpful? Give feedback.
All reactions