|
| 1 | +"""Group fairness metrics""" |
| 2 | +# pylint: disable = import-error |
| 3 | +from typing import List, Optional, Any, Union |
| 4 | + |
| 5 | +import pandas as pd |
| 6 | +from jpype import JInt |
| 7 | +from org.kie.trustyai.explainability.metrics import FairnessMetrics |
| 8 | + |
| 9 | +from trustyai.model import Output, Value, PredictionProvider, Model |
| 10 | +from trustyai.utils.data_conversions import pandas_to_trusty |
| 11 | + |
| 12 | +ColumSelector = Union[List[int], List[str]] |
| 13 | + |
| 14 | + |
| 15 | +def _column_selector_to_index(columns: ColumSelector, dataframe: pd.DataFrame): |
| 16 | + if isinstance(columns[0], str): # passing column |
| 17 | + columns = dataframe.columns.get_indexer(columns) |
| 18 | + indices = [JInt(c) for c in columns] # Java casting |
| 19 | + return indices |
| 20 | + |
| 21 | + |
| 22 | +def statistical_parity_difference( |
| 23 | + privileged: pd.DataFrame, |
| 24 | + unprivileged: pd.DataFrame, |
| 25 | + favorable: List[Output], |
| 26 | + outputs: Optional[List[int]] = None, |
| 27 | +) -> float: |
| 28 | + """Calculate Statistical Parity Difference between privileged and unprivileged dataframes""" |
| 29 | + return FairnessMetrics.groupStatisticalParityDifference( |
| 30 | + pandas_to_trusty(privileged, outputs), |
| 31 | + pandas_to_trusty(unprivileged, outputs), |
| 32 | + favorable, |
| 33 | + ) |
| 34 | + |
| 35 | + |
| 36 | +# pylint: disable = line-too-long |
| 37 | +def statistical_parity_difference_model( |
| 38 | + samples: pd.DataFrame, |
| 39 | + model: Union[PredictionProvider, Model], |
| 40 | + privilege_columns: ColumSelector, |
| 41 | + privilege_values: List[Any], |
| 42 | + favorable: List[Output], |
| 43 | +) -> float: |
| 44 | + """Calculate Statistical Parity Difference using a samples dataframe and a model""" |
| 45 | + _privilege_values = [Value(v) for v in privilege_values] |
| 46 | + _jsamples = pandas_to_trusty(samples, no_outputs=True) |
| 47 | + return FairnessMetrics.groupStatisticalParityDifference( |
| 48 | + _jsamples, |
| 49 | + model, |
| 50 | + _column_selector_to_index(privilege_columns, samples), |
| 51 | + _privilege_values, |
| 52 | + favorable, |
| 53 | + ) |
| 54 | + |
| 55 | + |
| 56 | +def disparate_impact_ratio( |
| 57 | + privileged: pd.DataFrame, |
| 58 | + unprivileged: pd.DataFrame, |
| 59 | + favorable: List[Output], |
| 60 | + outputs: Optional[List[int]] = None, |
| 61 | +) -> float: |
| 62 | + """Calculate Disparate Impact Ration between privileged and unprivileged dataframes""" |
| 63 | + return FairnessMetrics.groupDisparateImpactRatio( |
| 64 | + pandas_to_trusty(privileged, outputs), |
| 65 | + pandas_to_trusty(unprivileged, outputs), |
| 66 | + favorable, |
| 67 | + ) |
| 68 | + |
| 69 | + |
| 70 | +# pylint: disable = line-too-long |
| 71 | +def disparate_impact_ratio_model( |
| 72 | + samples: pd.DataFrame, |
| 73 | + model: Union[PredictionProvider, Model], |
| 74 | + privilege_columns: ColumSelector, |
| 75 | + privilege_values: List[Any], |
| 76 | + favorable: List[Output], |
| 77 | +) -> float: |
| 78 | + """Calculate Disparate Impact Ration using a samples dataframe and a model""" |
| 79 | + _privilege_values = [Value(v) for v in privilege_values] |
| 80 | + _jsamples = pandas_to_trusty(samples, no_outputs=True) |
| 81 | + return FairnessMetrics.groupDisparateImpactRatio( |
| 82 | + _jsamples, |
| 83 | + model, |
| 84 | + _column_selector_to_index(privilege_columns, samples), |
| 85 | + _privilege_values, |
| 86 | + favorable, |
| 87 | + ) |
| 88 | + |
| 89 | + |
| 90 | +# pylint: disable = too-many-arguments |
| 91 | +def average_odds_difference( |
| 92 | + test: pd.DataFrame, |
| 93 | + truth: pd.DataFrame, |
| 94 | + privilege_columns: ColumSelector, |
| 95 | + privilege_values: List[Any], |
| 96 | + positive_class: List[Any], |
| 97 | + outputs: Optional[List[int]] = None, |
| 98 | +) -> float: |
| 99 | + """Calculate Average Odds between two dataframes""" |
| 100 | + if test.shape != truth.shape: |
| 101 | + raise ValueError( |
| 102 | + f"Dataframes have different shapes ({test.shape} and {truth.shape})" |
| 103 | + ) |
| 104 | + _privilege_values = [Value(v) for v in privilege_values] |
| 105 | + _positive_class = [Value(v) for v in positive_class] |
| 106 | + # determine privileged columns |
| 107 | + _privilege_columns = _column_selector_to_index(privilege_columns, test) |
| 108 | + return FairnessMetrics.groupAverageOddsDifference( |
| 109 | + pandas_to_trusty(test, outputs), |
| 110 | + pandas_to_trusty(truth, outputs), |
| 111 | + _privilege_columns, |
| 112 | + _privilege_values, |
| 113 | + _positive_class, |
| 114 | + ) |
| 115 | + |
| 116 | + |
| 117 | +def average_odds_difference_model( |
| 118 | + samples: pd.DataFrame, |
| 119 | + model: Union[PredictionProvider, Model], |
| 120 | + privilege_columns: ColumSelector, |
| 121 | + privilege_values: List[Any], |
| 122 | + positive_class: List[Any], |
| 123 | +) -> float: |
| 124 | + """Calculate Average Odds for a sample dataframe using the provided model""" |
| 125 | + _jsamples = pandas_to_trusty(samples, no_outputs=True) |
| 126 | + _privilege_values = [Value(v) for v in privilege_values] |
| 127 | + _positive_class = [Value(v) for v in positive_class] |
| 128 | + # determine privileged columns |
| 129 | + _privilege_columns = _column_selector_to_index(privilege_columns, samples) |
| 130 | + return FairnessMetrics.groupAverageOddsDifference( |
| 131 | + _jsamples, model, _privilege_columns, _privilege_values, _positive_class |
| 132 | + ) |
| 133 | + |
| 134 | + |
| 135 | +def average_predictive_value_difference( |
| 136 | + test: pd.DataFrame, |
| 137 | + truth: pd.DataFrame, |
| 138 | + privilege_columns: ColumSelector, |
| 139 | + privilege_values: List[Any], |
| 140 | + positive_class: List[Any], |
| 141 | + outputs: Optional[List[int]] = None, |
| 142 | +) -> float: |
| 143 | + """Calculate Average Predictive Value Difference between two dataframes""" |
| 144 | + if test.shape != truth.shape: |
| 145 | + raise ValueError( |
| 146 | + f"Dataframes have different shapes ({test.shape} and {truth.shape})" |
| 147 | + ) |
| 148 | + _privilege_values = [Value(v) for v in privilege_values] |
| 149 | + _positive_class = [Value(v) for v in positive_class] |
| 150 | + _privilege_columns = _column_selector_to_index(privilege_columns, test) |
| 151 | + return FairnessMetrics.groupAveragePredictiveValueDifference( |
| 152 | + pandas_to_trusty(test, outputs), |
| 153 | + pandas_to_trusty(truth, outputs), |
| 154 | + _privilege_columns, |
| 155 | + _privilege_values, |
| 156 | + _positive_class, |
| 157 | + ) |
| 158 | + |
| 159 | + |
| 160 | +# pylint: disable = line-too-long |
| 161 | +def average_predictive_value_difference_model( |
| 162 | + samples: pd.DataFrame, |
| 163 | + model: Union[PredictionProvider, Model], |
| 164 | + privilege_columns: ColumSelector, |
| 165 | + privilege_values: List[Any], |
| 166 | + positive_class: List[Any], |
| 167 | +) -> float: |
| 168 | + """Calculate Average Predictive Value Difference for a sample dataframe using the provided model""" |
| 169 | + _jsamples = pandas_to_trusty(samples, no_outputs=True) |
| 170 | + _privilege_values = [Value(v) for v in privilege_values] |
| 171 | + _positive_class = [Value(v) for v in positive_class] |
| 172 | + # determine privileged columns |
| 173 | + _privilege_columns = _column_selector_to_index(privilege_columns, samples) |
| 174 | + return FairnessMetrics.groupAveragePredictiveValueDifference( |
| 175 | + _jsamples, model, _privilege_columns, _privilege_values, _positive_class |
| 176 | + ) |
0 commit comments