Skip to content

Commit db9655e

Browse files
authored
Update README and versions for 2.53.0 / 24.12 (#7864)
1 parent 83d0e30 commit db9655e

File tree

27 files changed

+72
-298
lines changed

27 files changed

+72
-298
lines changed

Dockerfile.sdk

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@
2929
#
3030

3131
# Base image on the minimum Triton container
32-
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.11-py3-min
32+
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.12-py3-min
3333

3434
ARG TRITON_CLIENT_REPO_SUBDIR=clientrepo
3535
ARG TRITON_PA_REPO_SUBDIR=perfanalyzerrepo

Dockerfile.win10.min

Lines changed: 18 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -37,9 +37,9 @@ RUN choco install unzip -y
3737
#
3838
# Installing TensorRT
3939
#
40-
ARG TENSORRT_VERSION=10.4.0.26
40+
ARG TENSORRT_VERSION=10.7.0.23
4141
ARG TENSORRT_ZIP="TensorRT-${TENSORRT_VERSION}.Windows.win10.cuda-12.6.zip"
42-
ARG TENSORRT_SOURCE=https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.4.0/zip/TensorRT-10.4.0.26.Windows.win10.cuda-12.6.zip
42+
ARG TENSORRT_SOURCE=https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.7.0/zip/TensorRT-10.7.0.23.Windows.win10.cuda-12.6.zip
4343
# COPY ${TENSORRT_ZIP} /tmp/${TENSORRT_ZIP}
4444
ADD ${TENSORRT_SOURCE} /tmp/${TENSORRT_ZIP}
4545
RUN unzip /tmp/%TENSORRT_ZIP%
@@ -51,9 +51,9 @@ LABEL TENSORRT_VERSION="${TENSORRT_VERSION}"
5151
#
5252
# Installing cuDNN
5353
#
54-
ARG CUDNN_VERSION=9.4.0.58
54+
ARG CUDNN_VERSION=9.6.0.74
5555
ARG CUDNN_ZIP=cudnn-windows-x86_64-${CUDNN_VERSION}_cuda12-archive.zip
56-
ARG CUDNN_SOURCE=https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/windows-x86_64/cudnn-windows-x86_64-9.4.0.58_cuda12-archive.zip
56+
ARG CUDNN_SOURCE=https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/windows-x86_64/cudnn-windows-x86_64-9.6.0.74_cuda12-archive.zip
5757
ADD ${CUDNN_SOURCE} /tmp/${CUDNN_ZIP}
5858
RUN unzip /tmp/%CUDNN_ZIP%
5959
RUN move cudnn-* cudnn
@@ -75,20 +75,19 @@ RUN choco install git docker unzip -y
7575
#
7676
# Installing python
7777
#
78-
ARG PYTHON_VERSION=3.10.11
78+
ARG PYTHON_VERSION=3.12.3
7979
ARG PYTHON_SOURCE=https://www.python.org/ftp/python/${PYTHON_VERSION}/python-${PYTHON_VERSION}-amd64.exe
8080
ADD ${PYTHON_SOURCE} python-${PYTHON_VERSION}-amd64.exe
8181
RUN python-%PYTHON_VERSION%-amd64.exe /quiet InstallAllUsers=1 PrependPath=1 Include_doc=0 TargetDir="C:\python%PYTHON_VERSION%"
8282
RUN mklink "C:\python%PYTHON_VERSION%\python3.exe" "C:\python%PYTHON_VERSION%\python.exe"
8383
RUN pip install --upgrade wheel setuptools docker
84-
RUN pip install grpcio-tools psutil
8584

8685
LABEL PYTHON_VERSION=${PYTHON_VERSION}
8786

8887
#
8988
# Installing CMake
9089
#
91-
ARG CMAKE_VERSION=3.30.0
90+
ARG CMAKE_VERSION=3.30.5
9291
RUN pip install cmake==%CMAKE_VERSION%
9392

9493
ENV CMAKE_TOOLCHAIN_FILE /vcpkg/scripts/buildsystems/vcpkg.cmake
@@ -101,14 +100,16 @@ LABEL CMAKE_VERSION=${CMAKE_VERSION}
101100
#
102101
# Installing Visual Studio BuildTools: VS17 2022
103102
#
104-
ARG BUILDTOOLS_VERSION=17.10.35201.131
105103
# Download collect.exe in case of an install failure.
106104
ADD https://aka.ms/vscollect.exe "C:\tmp\collect.exe"
107105

108106
# Use the latest release channel. For more control, specify the location of an internal layout.
109107
# Download the Build Tools bootstrapper.
110108
# ARG BUILD_TOOLS_SOURCE=https://aka.ms/vs/17/release/vs_buildtools.exe
111-
ARG BUILD_TOOLS_SOURCE=https://download.visualstudio.microsoft.com/download/pr/28626b4b-f88f-4b55-a0cf-f3eaa2c643fb/e6c43d4dfb36338d954cdb3ad9010ab2a479e712088f4f6b016eadcc721bab28/vs_BuildTools.exe
109+
110+
ARG BUILDTOOLS_VERSION=17.12.35506.116
111+
ARG BUILD_TOOLS_SOURCE=https://download.visualstudio.microsoft.com/download/pr/5536698c-711c-4834-876f-2817d31a2ef2/58894fc272e86d3c3a6d85bf3a1df1e5a0685be8b9ab65d9f3cc5c2a8c6921cc/vs_BuildTools.exe
112+
112113
ADD ${BUILD_TOOLS_SOURCE} vs_buildtools.exe
113114
# Install Build Tools with the Microsoft.VisualStudio.Workload.VCTools workload, including recommended.
114115
ARG VS_INSTALL_PATH_WP="C:\BuildTools"
@@ -149,12 +150,13 @@ WORKDIR /
149150
# Installing CUDA
150151
#
151152
ARG CUDA_MAJOR=12
152-
ARG CUDA_MINOR=5
153-
ARG CUDA_PATCH=1
153+
ARG CUDA_MINOR=6
154+
ARG CUDA_PATCH=3
154155
ARG CUDA_VERSION=${CUDA_MAJOR}.${CUDA_MINOR}.${CUDA_PATCH}
155156
ARG CUDA_PACKAGES="nvcc_${CUDA_MAJOR}.${CUDA_MINOR} \
156157
cudart_${CUDA_MAJOR}.${CUDA_MINOR} \
157158
nvml_dev_${CUDA_MAJOR}.${CUDA_MINOR} \
159+
nvrtc_${CUDA_MAJOR}.${CUDA_MINOR} nvrtc_dev_${CUDA_MAJOR}.${CUDA_MINOR} \
158160
cublas_${CUDA_MAJOR}.${CUDA_MINOR} cublas_dev_${CUDA_MAJOR}.${CUDA_MINOR} \
159161
cufft_${CUDA_MAJOR}.${CUDA_MINOR} cufft_dev_${CUDA_MAJOR}.${CUDA_MINOR} \
160162
curand_${CUDA_MAJOR}.${CUDA_MINOR} curand_dev_${CUDA_MAJOR}.${CUDA_MINOR} \
@@ -175,21 +177,23 @@ RUN copy "%CUDA_INSTALL_ROOT_WP%\extras\visual_studio_integration\MSBuildExtensi
175177

176178
RUN setx PATH "%CUDA_INSTALL_ROOT_WP%\bin;%PATH%"
177179

178-
ARG CUDNN_VERSION=9.4.0.58
180+
ENV CUDA_VERSION=${CUDA_VERSION}
181+
LABEL CUDA_VERSION="${CUDA_VERSION}"
182+
183+
ARG CUDNN_VERSION=9.6.0.74
179184
ENV CUDNN_VERSION ${CUDNN_VERSION}
180185
COPY --from=dependency_base /cudnn /cudnn
181186
RUN copy cudnn\bin\cudnn*.dll "%CUDA_INSTALL_ROOT_WP%\bin\."
182187
RUN copy cudnn\lib\x64\cudnn*.lib "%CUDA_INSTALL_ROOT_WP%\lib\x64\."
183188
RUN copy cudnn\include\cudnn*.h "%CUDA_INSTALL_ROOT_WP%\include\."
184189
LABEL CUDNN_VERSION="${CUDNN_VERSION}"
185190

186-
ARG TENSORRT_VERSION=10.4.0.26
191+
ARG TENSORRT_VERSION=10.7.0.23
187192
ENV TRT_VERSION ${TENSORRT_VERSION}
188193
COPY --from=dependency_base /TensorRT /TensorRT
189194
RUN setx PATH "c:\TensorRT\lib;%PATH%"
190195
LABEL TENSORRT_VERSION="${TENSORRT_VERSION}"
191196

192-
LABEL CUDA_VERSION="${CUDA_VERSION}"
193197
# It is important that the entrypoint initialize VisualStudio
194198
# environment otherwise the build will fail. Also set
195199
# CMAKE_TOOLCHAIN_FILE and VCPKG_TARGET_TRIPLET so

README.md

Lines changed: 2 additions & 232 deletions
Original file line numberDiff line numberDiff line change
@@ -30,235 +30,5 @@
3030

3131
[![License](https://img.shields.io/badge/License-BSD3-lightgrey.svg)](https://opensource.org/licenses/BSD-3-Clause)
3232

33-
>[!WARNING]
34-
>You are currently on the `main` branch which tracks under-development progress
35-
>towards the next release. The current release is version [2.52.0](https://github.com/triton-inference-server/server/releases/latest)
36-
>and corresponds to the 24.11 container release on NVIDIA GPU Cloud (NGC).
37-
38-
Triton Inference Server is an open source inference serving software that
39-
streamlines AI inferencing. Triton enables teams to deploy any AI model from
40-
multiple deep learning and machine learning frameworks, including TensorRT,
41-
TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton
42-
Inference Server supports inference across cloud, data center, edge and embedded
43-
devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton Inference
44-
Server delivers optimized performance for many query types, including real time,
45-
batched, ensembles and audio/video streaming. Triton inference Server is part of
46-
[NVIDIA AI Enterprise](https://www.nvidia.com/en-us/data-center/products/ai-enterprise/),
47-
a software platform that accelerates the data science pipeline and streamlines
48-
the development and deployment of production AI.
49-
50-
Major features include:
51-
52-
- [Supports multiple deep learning
53-
frameworks](https://github.com/triton-inference-server/backend#where-can-i-find-all-the-backends-that-are-available-for-triton)
54-
- [Supports multiple machine learning
55-
frameworks](https://github.com/triton-inference-server/fil_backend)
56-
- [Concurrent model
57-
execution](docs/user_guide/architecture.md#concurrent-model-execution)
58-
- [Dynamic batching](docs/user_guide/model_configuration.md#dynamic-batcher)
59-
- [Sequence batching](docs/user_guide/model_configuration.md#sequence-batcher) and
60-
[implicit state management](docs/user_guide/architecture.md#implicit-state-management)
61-
for stateful models
62-
- Provides [Backend API](https://github.com/triton-inference-server/backend) that
63-
allows adding custom backends and pre/post processing operations
64-
- Supports writing custom backends in python, a.k.a.
65-
[Python-based backends.](https://github.com/triton-inference-server/backend/blob/main/docs/python_based_backends.md#python-based-backends)
66-
- Model pipelines using
67-
[Ensembling](docs/user_guide/architecture.md#ensemble-models) or [Business
68-
Logic Scripting
69-
(BLS)](https://github.com/triton-inference-server/python_backend#business-logic-scripting)
70-
- [HTTP/REST and GRPC inference
71-
protocols](docs/customization_guide/inference_protocols.md) based on the community
72-
developed [KServe
73-
protocol](https://github.com/kserve/kserve/tree/master/docs/predict-api/v2)
74-
- A [C API](docs/customization_guide/inference_protocols.md#in-process-triton-server-api) and
75-
[Java API](docs/customization_guide/inference_protocols.md#java-bindings-for-in-process-triton-server-api)
76-
allow Triton to link directly into your application for edge and other in-process use cases
77-
- [Metrics](docs/user_guide/metrics.md) indicating GPU utilization, server
78-
throughput, server latency, and more
79-
80-
**New to Triton Inference Server?** Make use of
81-
[these tutorials](https://github.com/triton-inference-server/tutorials)
82-
to begin your Triton journey!
83-
84-
Join the [Triton and TensorRT community](https://www.nvidia.com/en-us/deep-learning-ai/triton-tensorrt-newsletter/) and
85-
stay current on the latest product updates, bug fixes, content, best practices,
86-
and more. Need enterprise support? NVIDIA global support is available for Triton
87-
Inference Server with the
88-
[NVIDIA AI Enterprise software suite](https://www.nvidia.com/en-us/data-center/products/ai-enterprise/).
89-
90-
## Serve a Model in 3 Easy Steps
91-
92-
```bash
93-
# Step 1: Create the example model repository
94-
git clone -b r24.11 https://github.com/triton-inference-server/server.git
95-
cd server/docs/examples
96-
./fetch_models.sh
97-
98-
# Step 2: Launch triton from the NGC Triton container
99-
docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:24.11-py3 tritonserver --model-repository=/models
100-
101-
# Step 3: Sending an Inference Request
102-
# In a separate console, launch the image_client example from the NGC Triton SDK container
103-
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:24.11-py3-sdk
104-
/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION /workspace/images/mug.jpg
105-
106-
# Inference should return the following
107-
Image '/workspace/images/mug.jpg':
108-
15.346230 (504) = COFFEE MUG
109-
13.224326 (968) = CUP
110-
10.422965 (505) = COFFEEPOT
111-
```
112-
Please read the [QuickStart](docs/getting_started/quickstart.md) guide for additional information
113-
regarding this example. The quickstart guide also contains an example of how to launch Triton on [CPU-only systems](docs/getting_started/quickstart.md#run-on-cpu-only-system). New to Triton and wondering where to get started? Watch the [Getting Started video](https://youtu.be/NQDtfSi5QF4).
114-
115-
## Examples and Tutorials
116-
117-
Check out [NVIDIA LaunchPad](https://www.nvidia.com/en-us/data-center/products/ai-enterprise-suite/trial/)
118-
for free access to a set of hands-on labs with Triton Inference Server hosted on
119-
NVIDIA infrastructure.
120-
121-
Specific end-to-end examples for popular models, such as ResNet, BERT, and DLRM
122-
are located in the
123-
[NVIDIA Deep Learning Examples](https://github.com/NVIDIA/DeepLearningExamples)
124-
page on GitHub. The
125-
[NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-triton-inference-server)
126-
contains additional documentation, presentations, and examples.
127-
128-
## Documentation
129-
130-
### Build and Deploy
131-
132-
The recommended way to build and use Triton Inference Server is with Docker
133-
images.
134-
135-
- [Install Triton Inference Server with Docker containers](docs/customization_guide/build.md#building-with-docker) (*Recommended*)
136-
- [Install Triton Inference Server without Docker containers](docs/customization_guide/build.md#building-without-docker)
137-
- [Build a custom Triton Inference Server Docker container](docs/customization_guide/compose.md)
138-
- [Build Triton Inference Server from source](docs/customization_guide/build.md#building-on-unsupported-platforms)
139-
- [Build Triton Inference Server for Windows 10](docs/customization_guide/build.md#building-for-windows-10)
140-
- Examples for deploying Triton Inference Server with Kubernetes and Helm on [GCP](deploy/gcp/README.md),
141-
[AWS](deploy/aws/README.md), and [NVIDIA FleetCommand](deploy/fleetcommand/README.md)
142-
- [Secure Deployment Considerations](docs/customization_guide/deploy.md)
143-
144-
### Using Triton
145-
146-
#### Preparing Models for Triton Inference Server
147-
148-
The first step in using Triton to serve your models is to place one or
149-
more models into a [model repository](docs/user_guide/model_repository.md). Depending on
150-
the type of the model and on what Triton capabilities you want to enable for
151-
the model, you may need to create a [model
152-
configuration](docs/user_guide/model_configuration.md) for the model.
153-
154-
- [Add custom operations to Triton if needed by your model](docs/user_guide/custom_operations.md)
155-
- Enable model pipelining with [Model Ensemble](docs/user_guide/architecture.md#ensemble-models)
156-
and [Business Logic Scripting (BLS)](https://github.com/triton-inference-server/python_backend#business-logic-scripting)
157-
- Optimize your models setting [scheduling and batching](docs/user_guide/architecture.md#models-and-schedulers)
158-
parameters and [model instances](docs/user_guide/model_configuration.md#instance-groups).
159-
- Use the [Model Analyzer tool](https://github.com/triton-inference-server/model_analyzer)
160-
to help optimize your model configuration with profiling
161-
- Learn how to [explicitly manage what models are available by loading and
162-
unloading models](docs/user_guide/model_management.md)
163-
164-
#### Configure and Use Triton Inference Server
165-
166-
- Read the [Quick Start Guide](docs/getting_started/quickstart.md) to run Triton Inference
167-
Server on both GPU and CPU
168-
- Triton supports multiple execution engines, called
169-
[backends](https://github.com/triton-inference-server/backend#where-can-i-find-all-the-backends-that-are-available-for-triton), including
170-
[TensorRT](https://github.com/triton-inference-server/tensorrt_backend),
171-
[TensorFlow](https://github.com/triton-inference-server/tensorflow_backend),
172-
[PyTorch](https://github.com/triton-inference-server/pytorch_backend),
173-
[ONNX](https://github.com/triton-inference-server/onnxruntime_backend),
174-
[OpenVINO](https://github.com/triton-inference-server/openvino_backend),
175-
[Python](https://github.com/triton-inference-server/python_backend), and more
176-
- Not all the above backends are supported on every platform supported by Triton.
177-
Look at the
178-
[Backend-Platform Support Matrix](https://github.com/triton-inference-server/backend/blob/main/docs/backend_platform_support_matrix.md)
179-
to learn which backends are supported on your target platform.
180-
- Learn how to [optimize performance](docs/user_guide/optimization.md) using the
181-
[Performance Analyzer](https://github.com/triton-inference-server/perf_analyzer/blob/main/README.md)
182-
and
183-
[Model Analyzer](https://github.com/triton-inference-server/model_analyzer)
184-
- Learn how to [manage loading and unloading models](docs/user_guide/model_management.md) in
185-
Triton
186-
- Send requests directly to Triton with the [HTTP/REST JSON-based
187-
or gRPC protocols](docs/customization_guide/inference_protocols.md#httprest-and-grpc-protocols)
188-
189-
#### Client Support and Examples
190-
191-
A Triton *client* application sends inference and other requests to Triton. The
192-
[Python and C++ client libraries](https://github.com/triton-inference-server/client)
193-
provide APIs to simplify this communication.
194-
195-
- Review client examples for [C++](https://github.com/triton-inference-server/client/blob/main/src/c%2B%2B/examples),
196-
[Python](https://github.com/triton-inference-server/client/blob/main/src/python/examples),
197-
and [Java](https://github.com/triton-inference-server/client/blob/main/src/java/src/main/java/triton/client/examples)
198-
- Configure [HTTP](https://github.com/triton-inference-server/client#http-options)
199-
and [gRPC](https://github.com/triton-inference-server/client#grpc-options)
200-
client options
201-
- Send input data (e.g. a jpeg image) directly to Triton in the [body of an HTTP
202-
request without any additional metadata](https://github.com/triton-inference-server/server/blob/main/docs/protocol/extension_binary_data.md#raw-binary-request)
203-
204-
### Extend Triton
205-
206-
[Triton Inference Server's architecture](docs/user_guide/architecture.md) is specifically
207-
designed for modularity and flexibility
208-
209-
- [Customize Triton Inference Server container](docs/customization_guide/compose.md) for your use case
210-
- [Create custom backends](https://github.com/triton-inference-server/backend)
211-
in either [C/C++](https://github.com/triton-inference-server/backend/blob/main/README.md#triton-backend-api)
212-
or [Python](https://github.com/triton-inference-server/python_backend)
213-
- Create [decoupled backends and models](docs/user_guide/decoupled_models.md) that can send
214-
multiple responses for a request or not send any responses for a request
215-
- Use a [Triton repository agent](docs/customization_guide/repository_agents.md) to add functionality
216-
that operates when a model is loaded and unloaded, such as authentication,
217-
decryption, or conversion
218-
- Deploy Triton on [Jetson and JetPack](docs/user_guide/jetson.md)
219-
- [Use Triton on AWS
220-
Inferentia](https://github.com/triton-inference-server/python_backend/tree/main/inferentia)
221-
222-
### Additional Documentation
223-
224-
- [FAQ](docs/user_guide/faq.md)
225-
- [User Guide](docs/README.md#user-guide)
226-
- [Customization Guide](docs/README.md#customization-guide)
227-
- [Release Notes](https://docs.nvidia.com/deeplearning/triton-inference-server/release-notes/index.html)
228-
- [GPU, Driver, and CUDA Support
229-
Matrix](https://docs.nvidia.com/deeplearning/dgx/support-matrix/index.html)
230-
231-
## Contributing
232-
233-
Contributions to Triton Inference Server are more than welcome. To
234-
contribute please review the [contribution
235-
guidelines](CONTRIBUTING.md). If you have a backend, client,
236-
example or similar contribution that is not modifying the core of
237-
Triton, then you should file a PR in the [contrib
238-
repo](https://github.com/triton-inference-server/contrib).
239-
240-
## Reporting problems, asking questions
241-
242-
We appreciate any feedback, questions or bug reporting regarding this project.
243-
When posting [issues in GitHub](https://github.com/triton-inference-server/server/issues),
244-
follow the process outlined in the [Stack Overflow document](https://stackoverflow.com/help/mcve).
245-
Ensure posted examples are:
246-
- minimal – use as little code as possible that still produces the
247-
same problem
248-
- complete – provide all parts needed to reproduce the problem. Check
249-
if you can strip external dependencies and still show the problem. The
250-
less time we spend on reproducing problems the more time we have to
251-
fix it
252-
- verifiable – test the code you're about to provide to make sure it
253-
reproduces the problem. Remove all other problems that are not
254-
related to your request/question.
255-
256-
For issues, please use the provided bug report and feature request templates.
257-
258-
For questions, we recommend posting in our community
259-
[GitHub Discussions.](https://github.com/triton-inference-server/server/discussions)
260-
261-
## For more information
262-
263-
Please refer to the [NVIDIA Developer Triton page](https://developer.nvidia.com/nvidia-triton-inference-server)
264-
for more information.
33+
> [!WARNING]
34+
> You are currently on the `24.12` branch which tracks under-development and unreleased features.

TRITON_VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
2.53.0dev
1+
2.53.0

build.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -71,10 +71,10 @@
7171
#
7272

7373
DEFAULT_TRITON_VERSION_MAP = {
74-
"release_version": "2.53.0dev",
75-
"triton_container_version": "24.12dev",
76-
"upstream_container_version": "24.11",
77-
"ort_version": "1.19.2",
74+
"release_version": "2.53.0",
75+
"triton_container_version": "24.12",
76+
"upstream_container_version": "24.12",
77+
"ort_version": "1.20.1",
7878
"ort_openvino_version": "2024.4.0",
7979
"standalone_openvino_version": "2024.4.0",
8080
"dcgm_version": "3.3.6",

deploy/aws/values.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@
2727
replicaCount: 1
2828

2929
image:
30-
imageName: nvcr.io/nvidia/tritonserver:24.11-py3
30+
imageName: nvcr.io/nvidia/tritonserver:24.12-py3
3131
pullPolicy: IfNotPresent
3232
modelRepositoryPath: s3://triton-inference-server-repository/model_repository
3333
numGpus: 1

deploy/fleetcommand/Chart.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626

2727
apiVersion: v1
2828
# appVersion is the Triton version; update when changing release
29-
appVersion: "2.51.0"
29+
appVersion: "2.53.0"
3030
description: Triton Inference Server (Fleet Command)
3131
name: triton-inference-server
3232
# version is the Chart version; update when changing anything in the chart

0 commit comments

Comments
 (0)