2020 < link rel ="stylesheet " href ="https://fonts.googleapis.com/css2?family=Montserrat&display=swap " media ="print " onload ="this.media='all' ">
2121
2222 <!-- Load Highlight JS -->
23- < link rel ="stylesheet " href ="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10 /styles/atelier-forest -light.min.css ">
24- < script src ="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.10 /highlight.min.js "> </ script >
23+ < link rel ="stylesheet " href ="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.10.0 /styles/stackoverflow -light.min.css ">
24+ < script src ="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.10.0 /highlight.min.js "> </ script >
2525
2626 <!-- Bootstrap core CSS -->
2727 < link rel ="stylesheet " href ="./css/bootstrap.min.css ">
4141
4242 < main >
4343
44- <!-- -->
44+ <!-- Main sections -->
4545 < section class ="container py-3 ">
4646 < h1 class ="py-2 border-bottom " id ="setting_up "> API Reference</ h1 >
4747 < p > The RFFLearn library consists of the several sub modules. <!--
4848 --> Click the module name to see the details of each module.</ p >
4949
5050 < div class ="row align-items-center justify-content-center "> < div class ="col-8 "> < table class ="table table-hover ">
51- < thead > < tr >
52- < th scope ="col "> Sub module name</ th >
53- < th scope ="col "> Description</ th >
51+ < thead class =" head " > < tr class =" head " >
52+ < th class =" head " scope ="col "> Sub module name</ th >
53+ < th class =" head " scope ="col "> Description</ th >
5454 </ tr > </ thead >
5555 < tbody > < tr >
5656 < td > < a href ="#rfflearn_cpu "> rfflearn.cpu</ a > </ td >
5757 < td > Regressors and classifiers of random Fourier features on CPU.</ td >
5858 </ tr > < tr >
5959 < td > < a href ="#rfflearn_gpu "> rfflearn.gpu</ a > </ td >
6060 < td > Regressors and classifiers of random Fourier features on GPU.</ td >
61- </ tr > < tr >
62- < td > < a href ="#rfflearn_explainer "> rfflearn.explainer</ a > </ td >
63- < td > Classes and functions to get model explanation for RFF-based models.</ td >
64- </ tr > < tr >
65- < td > < a href ="#rfflearn_tuner "> rfflearn.tuner</ a > </ td >
66- < td > Classes and functions for automatic hyperparameter tuning.</ td >
6761 </ tr > </ tbody >
6862 </ table > </ div > </ div >
6963 </ section >
7064
7165 < section class ="container py-3 ">
7266 < h2 class ="py-2 " id ="rfflearn_cpu "> rfflearn.cpu</ h2 >
73- < p > Sub module for machine learning algorithm of random Fourier feature runnable on CPU. <!--
74- --> This sub module contains machine learning algorithm (e.g. regressors, classifiers) which is designed to be run on CPU. <!--
75- --> Interfaces of classes and functions in this module have quite close interfaces with scikit-learn library. <!--
76- --> Most (but not all) of the classes uses scikit-learn as a back end.</ p >
77-
78- < div class ="row align-items-center justify-content-center "> < div class ="col-8 "> < table class ="table table-hover ">
79- < thead > < tr >
80- < th scope ="col "> Class name</ th >
81- < th scope ="col "> Description</ th >
67+ < p > This sub-module is a module for machine learning algorithms of random Fourier feature runnable on CPU. <!--
68+ --> This sub-module contains machine learning algorithms (e.g. regressors, classifiers) that are designed <!--
69+ --> to be run on CPU. The interfaces of classes and functions in this module are quite close to <!--
70+ --> the scikit-learn library. Most (but not all) of the classes use the scikit-learn as a backend.</ p >
71+ < p > This sub-module contains three types of classes and functions: (1) ML models such as support vector machines <!--
72+ --> with random Fourier features, (2) hyperparameter tuners that are wrapper functions of Optuna, and (3) ML model <!--
73+ --> explainers that are wrapper functions of explainer functions in scikit-learn and SHAP.</ p >
74+
75+ < div class ="row align-items-center justify-content-center "> < div class ="col-8 "> < table class ="table table-hover mt-2 ">
76+ < thead > < tr class ="heading ">
77+ < th class ="head " scope ="col "> ML class</ th >
78+ < th class ="head " scope ="col "> Description</ th >
8279 </ tr > </ thead >
8380 < tbody > < tr >
8481 < td > < a href ="./api_reference_RFFCCA.html "> rfflearn.cpu.RFFCCA</ a > </ td >
@@ -101,21 +98,85 @@ <h2 class="py-2" id="rfflearn_cpu">rfflearn.cpu</h2>
10198 </ tr > < tr >
10299 < td > < a href ="./api_reference_RFFSVR.html "> rfflearn.cpu.RFFSVR</ a > </ td >
103100 < td > Support vector regression with random Fourier features.</ td >
104- </ tr > < tr >
105- < td > < a href ="./api_reference_RFFBatchSVC.html "> rfflearn.cpu.RFFBatchSVC</ a > </ td >
106- < td > Batch learning version of < code > rfflearn.cpu.RFFSVC</ code > .</ td >
107101 </ tr > < tr >
108102 < td > < a href ="# "> rfflearn.cpu.ORF*</ a > </ td >
109103 < td > ORF (orthogonal random features) version of estimators. For example, < code > rfflearn.cpu.ORFSVC</ code > <!--
110104 --> is a support vector classifier with ORF. The arguments of constructor and member functions are the same as RFF version, <!--
111105 --> so please see the document of < code > rfflearn.cpu.RFF*</ code > for the details of the usage of each class.</ td >
112106 </ tr > < tr >
113107 < td > < a href ="# "> rfflearn.cpu.QRF*</ a > </ td >
114- < td > QRF (quasi random features) version of estimators. For example, < code > rfflearn.cpu.QRFSVC</ code > <!--
108+ < td > QRF (quasi- random features) version of estimators. For example, < code > rfflearn.cpu.QRFSVC</ code > <!--
115109 --> is a support vector classifier with QRF. The arguments of constructor and member functions are the same as RFF version, <!--
116110 --> so please see the document of < code > rfflearn.cpu.RFF*</ code > for the details of the usage of each class.</ td >
117111 </ tr > </ tbody >
118112 </ table > </ div > </ div >
113+
114+ < div class ="row align-items-center justify-content-center "> < div class ="col-8 "> < table class ="table table-hover mt-3 ">
115+ < thead > < tr class ="heading ">
116+ < th class ="head " scope ="col "> Explainer function</ th >
117+ < th class ="head " scope ="col "> Description</ th >
118+ </ tr > </ thead >
119+ < tbody > < tr >
120+ < td > < a href ="./api_reference_explainers.html#permutation_feature_importance "> rfflearn.cpu.permutation_feature_importance</ a > </ td >
121+ < td > Calculate permutation importance, and set the feature importance <!--
122+ --> (mean of permutation importance for each trial) as < code > model.feature_importances_</ code > .</ td >
123+ </ tr > < tr >
124+ < td > < a href ="./api_reference_explainers.html#permutation_plot "> rfflearn.cpu.permutation_plot</ a > </ td >
125+ < td > Visualize permutation importance as a box diagram.</ td >
126+ </ tr > < tr >
127+ < td > < a href ="./api_reference_explainers.html#shap_feature_importance "> rfflearn.cpu.shap_feature_importance</ a > </ td >
128+ < td > Calculate SHAP values using shap library, and set the feature importance <!--
129+ --> (absolute of SHAP values) as < code > model.feature_importances_</ code > .</ td >
130+ </ tr > < tr >
131+ < td > < a href ="./api_reference_explainers.html#shap_plot "> rfflearn.cpu.shap_plot</ a > </ td >
132+ < td > Create a bar plot of SHAP values.</ td >
133+ </ tr > </ tbody >
134+ </ table > </ div > </ div >
135+
136+ < div class ="row align-items-center justify-content-center "> < div class ="col-8 "> < table class ="table table-hover mt-3 ">
137+ < thead > < tr class ="heading ">
138+ < th class ="head " scope ="col "> Tuner function</ th >
139+ < th class ="head " scope ="col "> Description</ th >
140+ </ tr > </ thead >
141+ < tbody > < tr >
142+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.RFFRegressor_tuner</ a > </ td >
143+ < td > Hyperparameter tuner for < code > RFFRegressor</ code > models.</ td >
144+ </ tr > < tr >
145+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.ORFRegressor_tuner</ a > </ td >
146+ < td > Hyperparameter tuner for < code > OFFRegressor</ code > models.</ td >
147+ </ tr > < tr >
148+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.QRFRegressor_tuner</ a > </ td >
149+ < td > Hyperparameter tuner for < code > QFFRegressor</ code > models.</ td >
150+ </ tr > < tr >
151+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.RFFSVC_tuner</ a > </ td >
152+ < td > Hyperparameter tuner for < code > RFFSVC</ code > models.</ td >
153+ </ tr > < tr >
154+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.ORFSVC_tuner</ a > </ td >
155+ < td > Hyperparameter tuner for < code > ORFSVC</ code > models.</ td >
156+ </ tr > < tr >
157+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.QRFSVC_tuner</ a > </ td >
158+ < td > Hyperparameter tuner for < code > QRFSVC</ code > models.</ td >
159+ </ tr > < tr >
160+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.RFFGPC_tuner</ a > </ td >
161+ < td > Hyperparameter tuner for < code > RFFGPC</ code > models.</ td >
162+ </ tr > < tr >
163+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.ORFGPC_tuner</ a > </ td >
164+ < td > Hyperparameter tuner for < code > ORFGPC</ code > models.</ td >
165+ </ tr > < tr >
166+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.QRFGPC_tuner</ a > </ td >
167+ < td > Hyperparameter tuner for < code > QRFGPC</ code > models.</ td >
168+ </ tr > < tr >
169+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.RFFGPR_tuner</ a > </ td >
170+ < td > Hyperparameter tuner for < code > RFFGPR</ code > models.</ td >
171+ </ tr > < tr >
172+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.ORFGPR_tuner</ a > </ td >
173+ < td > Hyperparameter tuner for < code > ORFGPR</ code > models.</ td >
174+ </ tr > < tr >
175+ < td > < a href ="./api_reference_tuners.html "> rfflearn.cpu.QRFGPR_tuner</ a > </ td >
176+ < td > Hyperparameter tuner for < code > QRFGPR</ code > models.</ td >
177+ </ tr > </ tbody >
178+ </ table > </ div > </ div >
179+
119180 </ section >
120181
121182 < section class ="container py-3 ">
@@ -125,16 +186,6 @@ <h2 class="py-2" id="rfflearn_gpu">rfflearn.gpu</h2>
125186 --> See the < a href ="#rfflearn_cpu "> API reference of rfflearn.cpu</ a > for the details of this module.</ p >
126187 </ section >
127188
128- < section class ="container py-3 ">
129- < h2 class ="py-2 " id ="rfflearn_explainer "> rfflearn.explainer</ h2 >
130- < p > TBD</ p >
131- </ section >
132-
133- < section class ="container py-3 ">
134- < h2 class ="py-2 " id ="rfflearn_tuner "> rfflearn.tuner</ h2 >
135- < p > TBD</ p >
136- </ section >
137-
138189 </ main >
139190
140191 <!-- Footer -->
0 commit comments