Closed
Description
I've recently updated my R/Bioconductor installation and am now getting issues with saving svg images via ggsave()
. When I try this, I get an error message about vector memory, even for the smallest test cases, eg
> (ggplot(mtcars, aes(x=hp, y=mpg, color=cyl)) + geom_point(size=3)) %>% ggplot2::ggsave(filename = "test.svg")
Saving 9.19 x 6.36 in image
Error: vector memory limit of 100.0 Gb reached, see mem.maxVSize()
I've got svglite installed as suggested elsewhere, and saving to svg via svg() ... dev.off()
works fine. Saving to other file types (eg pdf, png etc) with ggsave()
also seems to be ok.
I found this similar problem on SO, but I'm not using renv on this project, so that shouldn't be a factor - any advice appreciated, thanks!
Session info:
> sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-apple-darwin20
Running under: macOS Big Sur 11.7.8
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/London
tzcode source: internal
attached base packages:
[1] grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplotify_0.1.2 magrittr_2.0.3 svglite_2.1.3 GSVA_2.0.4
[5] e1071_1.7-16 preprocessCore_1.68.0 limSolve_1.5.7.1 limma_3.62.1
[9] patchwork_1.3.0 survminer_0.5.0 ggpubr_0.6.0 survival_3.8-3
[13] lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
[17] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1 ggplot2_3.5.1
[21] tidyverse_2.0.0 tibble_3.2.1 clusterProfiler_4.14.4 tidyHeatmap_1.8.1
[25] ComplexHeatmap_2.22.0
loaded via a namespace (and not attached):
[1] splines_4.4.2 R.oo_1.27.0 graph_1.84.0
[4] XML_3.99-0.18 lifecycle_1.0.4 rstatix_0.7.2
[7] doParallel_1.0.17 lattice_0.22-6 MASS_7.3-64
[10] dendextend_1.19.0 backports_1.5.0 ggtangle_0.0.6
[13] cowplot_1.1.3 DBI_1.2.3 RColorBrewer_1.1-3
[16] abind_1.4-8 zlibbioc_1.52.0 GenomicRanges_1.58.0
[19] quadprog_1.5-8 R.utils_2.12.3 BiocGenerics_0.52.0
[22] yulab.utils_0.1.9 circlize_0.4.16 GenomeInfoDbData_1.2.13
[25] IRanges_2.40.1 KMsurv_0.1-5 S4Vectors_0.44.0
[28] enrichplot_1.26.5 ggrepel_0.9.6 irlba_2.3.5.1
[31] tidytree_0.4.6 annotate_1.84.0 codetools_0.2-20
[34] DelayedArray_0.32.0 DOSE_4.0.0 tidyselect_1.2.1
[37] shape_1.4.6.1 aplot_0.2.4 UCSC.utils_1.2.0
[40] farver_2.1.2 ScaledMatrix_1.14.0 viridis_0.6.5
[43] matrixStats_1.5.0 stats4_4.4.2 jsonlite_1.8.9
[46] GetoptLong_1.0.5 Formula_1.2-5 iterators_1.0.14
[49] systemfonts_1.1.0 foreach_1.5.2 tools_4.4.2
[52] ragg_1.3.3 treeio_1.30.0 Rcpp_1.0.13-1
[55] glue_1.8.0 gridExtra_2.3 SparseArray_1.6.0
[58] mgcv_1.9-1 xfun_0.50 qvalue_2.38.0
[61] MatrixGenerics_1.18.0 GenomeInfoDb_1.42.1 HDF5Array_1.34.0
[64] withr_3.0.2 fastmap_1.2.0 rhdf5filters_1.18.0
[67] digest_0.6.37 rsvd_1.0.5 timechange_0.3.0
[70] R6_2.5.1 gridGraphics_0.5-1 textshaping_0.4.1
[73] colorspace_2.1-1 GO.db_3.20.0 lpSolve_5.6.23
[76] RSQLite_2.3.9 R.methodsS3_1.8.2 generics_0.1.3
[79] renv_1.0.11 data.table_1.16.4 class_7.3-23
[82] httr_1.4.7 S4Arrays_1.6.0 pkgconfig_2.0.3
[85] gtable_0.3.6 blob_1.2.4 SingleCellExperiment_1.28.1
[88] XVector_0.46.0 survMisc_0.5.6 carData_3.0-5
[91] fgsea_1.32.0 GSEABase_1.68.0 clue_0.3-66
[94] scales_1.3.0 Biobase_2.66.0 png_0.1-8
[97] SpatialExperiment_1.16.0 ggfun_0.1.8 knitr_1.49
[100] km.ci_0.5-6 rstudioapi_0.17.1 tzdb_0.4.0
[103] reshape2_1.4.4 rjson_0.2.23 nlme_3.1-166
[106] rhdf5_2.50.1 proxy_0.4-27 cachem_1.1.0
[109] zoo_1.8-12 GlobalOptions_0.1.2 parallel_4.4.2
[112] AnnotationDbi_1.68.0 pillar_1.10.1 vctrs_0.6.5
[115] car_3.1-3 BiocSingular_1.22.0 beachmat_2.22.0
[118] xtable_1.8-4 cluster_2.1.8 evaluate_1.0.1
[121] magick_2.8.5 cli_3.6.3 compiler_4.4.2
[124] rlang_1.1.4 crayon_1.5.3 ggsignif_0.6.4
[127] labeling_0.4.3 plyr_1.8.9 fs_1.6.5
[130] stringi_1.8.4 viridisLite_0.4.2 BiocParallel_1.40.0
[133] munsell_0.5.1 Biostrings_2.74.1 lazyeval_0.2.2
[136] GOSemSim_2.32.0 Matrix_1.7-1 hms_1.1.3
[139] sparseMatrixStats_1.18.0 bit64_4.5.2 Rhdf5lib_1.28.0
[142] KEGGREST_1.46.0 statmod_1.5.0 SummarizedExperiment_1.36.0
[145] igraph_2.1.2 broom_1.0.7 memoise_2.0.1
[148] ggtree_3.14.0 fastmatch_1.1-6 bit_4.5.0.1
[151] ape_5.8-1 gson_0.1.0
Metadata
Metadata
Assignees
Labels
No labels