@@ -392,9 +392,9 @@ tune_grid_loop_iter <- function(split,
392
392
# on `analysis(inner_split(split))`, the inner analysis set (just
393
393
# referred to as analysis)
394
394
# * that model generates predictions on `assessment(inner_split(split))`,
395
- # the potato set
395
+ # the calibration set
396
396
# * the post-processor is trained on the predictions generated from the
397
- # potato set
397
+ # calibration set
398
398
# * the model (including the post-processor) generates predictions on the
399
399
# assessment set and those predictions are assessed with performance metrics
400
400
# todo: check if workflow's `method` is incompatible with `class(split)`?
@@ -406,13 +406,13 @@ tune_grid_loop_iter <- function(split,
406
406
analysis <- rsample :: analysis(split )
407
407
408
408
# inline rsample::assessment so that we can pass indices to `predict_model()`
409
- potato_rows <- as.integer(split , data = " assessment" )
410
- potato <- vctrs :: vec_slice(split $ data , potato_rows )
409
+ calibration_rows <- as.integer(split , data = " assessment" )
410
+ calibration <- vctrs :: vec_slice(split $ data , calibration_rows )
411
411
} else {
412
412
analysis <- rsample :: analysis(split )
413
413
414
- potato_rows <- NULL
415
- potato <- NULL
414
+ calibration_rows <- NULL
415
+ calibration <- NULL
416
416
}
417
417
418
418
rm(split )
@@ -520,7 +520,7 @@ tune_grid_loop_iter <- function(split,
520
520
iter_msg_predictions <- paste(iter_msg_model , " (predictions)" )
521
521
522
522
iter_predictions <- .catch_and_log(
523
- predict_model(potato %|| % assessment , potato_rows %|| % assessment_rows ,
523
+ predict_model(calibration %|| % assessment , calibration_rows %|| % assessment_rows ,
524
524
workflow , iter_grid , metrics , iter_submodels ,
525
525
metrics_info = metrics_info , eval_time = eval_time ),
526
526
control ,
@@ -537,17 +537,17 @@ tune_grid_loop_iter <- function(split,
537
537
538
538
if (has_postprocessor(workflow )) {
539
539
# note that, since we're training a postprocessor, `iter_predictions`
540
- # are the predictions from the potato set rather than the
540
+ # are the predictions from the calibration set rather than the
541
541
# assessment set
542
542
543
543
# train the post-processor on the predictions generated from the model
544
- # on the potato set
544
+ # on the calibration set
545
545
# todo: needs a `.catch_and_log`
546
546
#
547
- # if the postprocessor does not require training, then `potato ` will
547
+ # if the postprocessor does not require training, then `calibration ` will
548
548
# be NULL and nothing other than the column names is learned from
549
549
# `assessment`.
550
- workflow_with_post <- .fit_post(workflow , potato %|| % assessment )
550
+ workflow_with_post <- .fit_post(workflow , calibration %|| % assessment )
551
551
552
552
workflow_with_post <- .fit_finalize(workflow_with_post )
553
553
0 commit comments