@@ -127,6 +127,7 @@ def _fit(
127
127
}
128
128
129
129
if isinstance (training_strategy , str ) and training_strategy .lower () == 'bfgs' :
130
+ assert False , "depreceated"
130
131
lib_size = np .zeros (data .shape [0 ])
131
132
if noise_model == "nb" or noise_model == "negative_binomial" :
132
133
estim = Estim_BFGS (X = data , design_loc = design_loc , design_scale = design_scale ,
@@ -143,8 +144,6 @@ def _fit(
143
144
else :
144
145
raise ValueError ('base.test(): `noise_model="%s"` not recognized.' % noise_model )
145
146
146
- logging .getLogger ("diffxpy" ).info ("Fitting model..." )
147
- logging .getLogger ("diffxpy" ).debug (" * Assembling input data..." )
148
147
input_data = InputDataGLM (
149
148
data = data ,
150
149
design_loc = design_loc ,
@@ -155,7 +154,6 @@ def _fit(
155
154
feature_names = gene_names ,
156
155
)
157
156
158
- logging .getLogger ("diffxpy" ).debug (" * Set up Estimator..." )
159
157
constructor_args = {}
160
158
if batch_size is not None :
161
159
constructor_args ["batch_size" ] = batch_size
@@ -173,22 +171,17 @@ def _fit(
173
171
dtype = dtype ,
174
172
** constructor_args
175
173
)
176
-
177
- logging .getLogger ("diffxpy" ).debug (" * Initializing Estimator..." )
178
174
estim .initialize ()
179
175
180
- logging .getLogger ("diffxpy" ).debug (" * Run estimation..." )
181
- # training:
176
+ # Training:
182
177
if callable (training_strategy ):
183
178
# call training_strategy if it is a function
184
179
training_strategy (estim )
185
180
else :
186
181
estim .train_sequence (training_strategy = training_strategy )
187
182
188
183
if close_session :
189
- logging .getLogger ("diffxpy" ).debug (" * Finalize estimation..." )
190
184
estim .finalize ()
191
- logging .getLogger ("diffxpy" ).debug (" * Model fitting done." )
192
185
193
186
return estim
194
187
0 commit comments