|
| 1 | +import unittest |
| 2 | +import logging |
| 3 | +import numpy as np |
| 4 | +import pandas as pd |
| 5 | +import scipy.stats as stats |
| 6 | + |
| 7 | +from batchglm.api.models.glm_nb import Simulator |
| 8 | +import diffxpy.api as de |
| 9 | + |
| 10 | + |
| 11 | +class _TestSingleDE: |
| 12 | + |
| 13 | + def _prepare_data(self, n_cells: int = 2000, n_genes: int = 100): |
| 14 | + """ |
| 15 | +
|
| 16 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 17 | + :param n_genes: Number of genes to simulate (number of tests). |
| 18 | + """ |
| 19 | + num_non_de = n_genes // 2 |
| 20 | + sim = Simulator(num_observations=n_cells, num_features=n_genes) |
| 21 | + sim.generate_sample_description(num_batches=0, num_conditions=2) |
| 22 | + sim.generate_params( |
| 23 | + rand_fn_ave=lambda shape: np.random.poisson(500, shape) + 1, |
| 24 | + rand_fn=lambda shape: np.abs(np.random.uniform(1, 0.5, shape)) |
| 25 | + ) |
| 26 | + sim.params["a_var"][1, :num_non_de] = 0 |
| 27 | + sim.params["b_var"][1, :num_non_de] = 0 |
| 28 | + sim.params["isDE"] = ("features",), np.arange(n_genes) >= num_non_de |
| 29 | + sim.generate_data() |
| 30 | + |
| 31 | + return sim |
| 32 | + |
| 33 | + def _eval(self, sim, test): |
| 34 | + idx_de = np.where(sim.params["isDE"] == True)[0] |
| 35 | + idx_nonde = np.where(sim.params["isDE"] == False)[0] |
| 36 | + |
| 37 | + frac_de_of_non_de = np.sum(test.qval[idx_nonde] < 0.05) / len(idx_nonde) |
| 38 | + frac_de_of_de = np.sum(test.qval[idx_de] < 0.05) / len(idx_de) |
| 39 | + |
| 40 | + logging.getLogger("diffxpy").info( |
| 41 | + 'fraction of non-DE genes with q-value < 0.05: %.1f%%' % |
| 42 | + float(100 * frac_de_of_non_de) |
| 43 | + ) |
| 44 | + logging.getLogger("diffxpy").info( |
| 45 | + 'fraction of DE genes with q-value < 0.05: %.1f%%' % |
| 46 | + float(100 * frac_de_of_de) |
| 47 | + ) |
| 48 | + assert frac_de_of_non_de <= 0.1, "too many false-positives" |
| 49 | + assert frac_de_of_de >= 0.5, "too many false-negatives" |
| 50 | + |
| 51 | + return sim |
| 52 | + |
| 53 | + def _test_rank_de(self, n_cells: int = 2000, n_genes: int = 100): |
| 54 | + """ |
| 55 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 56 | + :param n_genes: Number of genes to simulate (number of tests). |
| 57 | + """ |
| 58 | + logging.getLogger("tensorflow").setLevel(logging.ERROR) |
| 59 | + logging.getLogger("batchglm").setLevel(logging.WARNING) |
| 60 | + logging.getLogger("diffxpy").setLevel(logging.WARNING) |
| 61 | + |
| 62 | + sim = self._prepare_data(n_cells=n_cells, n_genes=n_genes) |
| 63 | + |
| 64 | + test = de.test.rank_test( |
| 65 | + data=sim.X, |
| 66 | + grouping="condition", |
| 67 | + sample_description=sim.sample_description, |
| 68 | + dtype="float64" |
| 69 | + ) |
| 70 | + |
| 71 | + self._eval(sim=sim, test=test) |
| 72 | + |
| 73 | + return True |
| 74 | + |
| 75 | + def _test_t_test_de(self, n_cells: int = 2000, n_genes: int = 100): |
| 76 | + """ |
| 77 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 78 | + :param n_genes: Number of genes to simulate (number of tests). |
| 79 | + """ |
| 80 | + logging.getLogger("tensorflow").setLevel(logging.ERROR) |
| 81 | + logging.getLogger("batchglm").setLevel(logging.WARNING) |
| 82 | + logging.getLogger("diffxpy").setLevel(logging.WARNING) |
| 83 | + |
| 84 | + sim = self._prepare_data(n_cells=n_cells, n_genes=n_genes) |
| 85 | + |
| 86 | + test = de.test.t_test( |
| 87 | + data=sim.X, |
| 88 | + grouping="condition", |
| 89 | + sample_description=sim.sample_description, |
| 90 | + dtype="float64" |
| 91 | + ) |
| 92 | + |
| 93 | + self._eval(sim=sim, test=test) |
| 94 | + |
| 95 | + return True |
| 96 | + |
| 97 | + def _test_wald_de( |
| 98 | + self, |
| 99 | + n_cells: int, |
| 100 | + n_genes: int, |
| 101 | + noise_model: str |
| 102 | + ): |
| 103 | + """ |
| 104 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 105 | + :param n_genes: Number of genes to simulate (number of tests). |
| 106 | + :param noise_model: Noise model to use for data fitting. |
| 107 | + """ |
| 108 | + logging.getLogger("tensorflow").setLevel(logging.ERROR) |
| 109 | + logging.getLogger("batchglm").setLevel(logging.WARNING) |
| 110 | + logging.getLogger("diffxpy").setLevel(logging.WARNING) |
| 111 | + |
| 112 | + sim = self._prepare_data(n_cells=n_cells, n_genes=n_genes) |
| 113 | + |
| 114 | + test = de.test.wald( |
| 115 | + data=sim.X, |
| 116 | + factor_loc_totest="condition", |
| 117 | + formula_loc="~ 1 + condition", |
| 118 | + sample_description=sim.sample_description, |
| 119 | + noise_model=noise_model, |
| 120 | + training_strategy="DEFAULT", |
| 121 | + dtype="float64" |
| 122 | + ) |
| 123 | + |
| 124 | + self._eval(sim=sim, test=test) |
| 125 | + |
| 126 | + return True |
| 127 | + |
| 128 | + def _test_lrt_de( |
| 129 | + self, |
| 130 | + n_cells: int, |
| 131 | + n_genes: int, |
| 132 | + noise_model: str |
| 133 | + ): |
| 134 | + """ |
| 135 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 136 | + :param n_genes: Number of genes to simulate (number of tests). |
| 137 | + :param noise_model: Noise model to use for data fitting. |
| 138 | + """ |
| 139 | + logging.getLogger("tensorflow").setLevel(logging.ERROR) |
| 140 | + logging.getLogger("batchglm").setLevel(logging.WARNING) |
| 141 | + logging.getLogger("diffxpy").setLevel(logging.WARNING) |
| 142 | + |
| 143 | + sim = self._prepare_data(n_cells=n_cells, n_genes=n_genes) |
| 144 | + |
| 145 | + test = de.test.lrt( |
| 146 | + data=sim.X, |
| 147 | + full_formula_loc="~ 1 + condition", |
| 148 | + full_formula_scale="~ 1", |
| 149 | + reduced_formula_loc="~ 1", |
| 150 | + reduced_formula_scale="~ 1", |
| 151 | + sample_description=sim.sample_description, |
| 152 | + noise_model=noise_model, |
| 153 | + training_strategy="DEFAULT", |
| 154 | + dtype="float64" |
| 155 | + ) |
| 156 | + |
| 157 | + self._eval(sim=sim, test=test) |
| 158 | + |
| 159 | + return True |
| 160 | + |
| 161 | + |
| 162 | +class TestSingleDE_STANDARD(_TestSingleDE, unittest.TestCase): |
| 163 | + """ |
| 164 | + Noise model-independent tests unit tests that tests false positive and false negative rates. |
| 165 | + """ |
| 166 | + |
| 167 | + def test_ttest_de( |
| 168 | + self, |
| 169 | + n_cells: int = 2000, |
| 170 | + n_genes: int = 200 |
| 171 | + ): |
| 172 | + """ |
| 173 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 174 | + :param n_genes: Number of genes to simulate (number of tests). |
| 175 | + """ |
| 176 | + return self._test_t_test_de( |
| 177 | + n_cells=n_cells, |
| 178 | + n_genes=n_genes |
| 179 | + ) |
| 180 | + |
| 181 | + def test_rank_de( |
| 182 | + self, |
| 183 | + n_cells: int = 2000, |
| 184 | + n_genes: int = 200 |
| 185 | + ): |
| 186 | + """ |
| 187 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 188 | + :param n_genes: Number of genes to simulate (number of tests). |
| 189 | + """ |
| 190 | + return self._test_rank_de( |
| 191 | + n_cells=n_cells, |
| 192 | + n_genes=n_genes |
| 193 | + ) |
| 194 | + |
| 195 | + |
| 196 | +class TestSingleDE_NB(_TestSingleDE, unittest.TestCase): |
| 197 | + """ |
| 198 | + Negative binomial noise model unit tests that tests false positive and false negative rates. |
| 199 | + """ |
| 200 | + |
| 201 | + def test_wald_de_nb( |
| 202 | + self, |
| 203 | + n_cells: int = 2000, |
| 204 | + n_genes: int = 200 |
| 205 | + ): |
| 206 | + """ |
| 207 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 208 | + :param n_genes: Number of genes to simulate (number of tests). |
| 209 | + """ |
| 210 | + return self._test_wald_de( |
| 211 | + n_cells=n_cells, |
| 212 | + n_genes=n_genes, |
| 213 | + noise_model="nb" |
| 214 | + ) |
| 215 | + |
| 216 | + def test_lrt_de_nb( |
| 217 | + self, |
| 218 | + n_cells: int = 2000, |
| 219 | + n_genes: int = 200 |
| 220 | + ): |
| 221 | + """ |
| 222 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 223 | + :param n_genes: Number of genes to simulate (number of tests). |
| 224 | + """ |
| 225 | + return self._test_lrt_de( |
| 226 | + n_cells=n_cells, |
| 227 | + n_genes=n_genes, |
| 228 | + noise_model="nb" |
| 229 | + ) |
| 230 | + |
| 231 | + |
| 232 | +class TestSingleDE_NORM(_TestSingleDE, unittest.TestCase): |
| 233 | + """ |
| 234 | + Normal noise model unit tests that tests false positive and false negative rates. |
| 235 | + """ |
| 236 | + |
| 237 | + def test_wald_de_norm( |
| 238 | + self, |
| 239 | + n_cells: int = 2000, |
| 240 | + n_genes: int = 200 |
| 241 | + ): |
| 242 | + """ |
| 243 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 244 | + :param n_genes: Number of genes to simulate (number of tests). |
| 245 | + """ |
| 246 | + return self._test_wald_de( |
| 247 | + n_cells=n_cells, |
| 248 | + n_genes=n_genes, |
| 249 | + noise_model="norm" |
| 250 | + ) |
| 251 | + |
| 252 | + def test_lrt_de_norm( |
| 253 | + self, |
| 254 | + n_cells: int = 2000, |
| 255 | + n_genes: int = 200 |
| 256 | + ): |
| 257 | + """ |
| 258 | + :param n_cells: Number of cells to simulate (number of observations per test). |
| 259 | + :param n_genes: Number of genes to simulate (number of tests). |
| 260 | + """ |
| 261 | + return self._test_lrt_de( |
| 262 | + n_cells=n_cells, |
| 263 | + n_genes=n_genes, |
| 264 | + noise_model="norm" |
| 265 | + ) |
| 266 | + |
| 267 | +if __name__ == '__main__': |
| 268 | + unittest.main() |
0 commit comments