|
10 | 10 |
|
11 | 11 | class TestSingleNull(unittest.TestCase):
|
12 | 12 |
|
13 |
| - def test_null_distribution_wald(self, n_cells: int = 2000, n_genes: int = 100): |
| 13 | + def test_null_distribution_wald(self, n_cells: int = 2000, n_genes: int = 200): |
14 | 14 | """
|
15 | 15 | Test if de.wald() generates a uniform p-value distribution
|
16 | 16 | if it is given data simulated based on the null model. Returns the p-value
|
@@ -52,7 +52,7 @@ def test_null_distribution_wald(self, n_cells: int = 2000, n_genes: int = 100):
|
52 | 52 |
|
53 | 53 | return True
|
54 | 54 |
|
55 |
| - def test_null_distribution_wald_multi(self, n_cells: int = 2000, n_genes: int = 100): |
| 55 | + def test_null_distribution_wald_multi(self, n_cells: int = 2000, n_genes: int = 200): |
56 | 56 | """
|
57 | 57 | Test if de.wald() (multivariate mode) generates a uniform p-value distribution
|
58 | 58 | if it is given data simulated based on the null model. Returns the p-value
|
@@ -92,7 +92,7 @@ def test_null_distribution_wald_multi(self, n_cells: int = 2000, n_genes: int =
|
92 | 92 |
|
93 | 93 | return True
|
94 | 94 |
|
95 |
| - def test_null_distribution_lrt(self, n_cells: int = 2000, n_genes: int = 100): |
| 95 | + def test_null_distribution_lrt(self, n_cells: int = 2000, n_genes: int = 200): |
96 | 96 | """
|
97 | 97 | Test if de.lrt() generates a uniform p-value distribution
|
98 | 98 | if it is given data simulated based on the null model. Returns the p-value
|
@@ -134,7 +134,7 @@ def test_null_distribution_lrt(self, n_cells: int = 2000, n_genes: int = 100):
|
134 | 134 |
|
135 | 135 | return True
|
136 | 136 |
|
137 |
| - def test_null_distribution_ttest(self, n_cells: int = 2000, n_genes: int = 100): |
| 137 | + def test_null_distribution_ttest(self, n_cells: int = 2000, n_genes: int = 200): |
138 | 138 | """
|
139 | 139 | Test if de.t_test() generates a uniform p-value distribution
|
140 | 140 | if it is given data simulated based on the null model. Returns the p-value
|
@@ -173,7 +173,7 @@ def test_null_distribution_ttest(self, n_cells: int = 2000, n_genes: int = 100):
|
173 | 173 |
|
174 | 174 | return True
|
175 | 175 |
|
176 |
| - def test_null_distribution_wilcoxon(self, n_cells: int = 2000, n_genes: int = 100): |
| 176 | + def test_null_distribution_wilcoxon(self, n_cells: int = 2000, n_genes: int = 200): |
177 | 177 | """
|
178 | 178 | Test if de.wilcoxon() generates a uniform p-value distribution
|
179 | 179 | if it is given data simulated based on the null model. Returns the p-value
|
|
0 commit comments