Skip to content

Question regarding discrete model prediction layer activation function and model loss function #121

@ericparakal

Description

@ericparakal

For the case of the discrete model, specifically the model definition in the file kdd99_model.py; why is the prediction layer activation function sigmoid and not softmax as the KDD99 problem is a multi-class classification problem?

pred = tf.keras.layers.Dense(n_labels, activation='sigmoid')(net)

Also, why is the from_logits parameter set to True in the SparseCategoricalCrossentropy loss function, if the prediction layer of the model already has a sigmoid activation function?

model_full.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), \
metrics=['accuracy'],
optimizer='adam')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions