@@ -327,32 +327,32 @@ def as_dataset(self,
327
327
ds_builder.download_and_prepare()
328
328
329
329
# Default parameters
330
- ds1 = ds_builder.as_dataset()
331
- assert isinstance(ds1 , dict)
332
- print(ds1 .keys()) # ==> ['test', 'train', 'unsupervised']
330
+ ds_all_dict = ds_builder.as_dataset()
331
+ assert isinstance(ds_all_dict , dict)
332
+ print(ds_all_dict .keys()) # ==> ['test', 'train', 'unsupervised']
333
333
334
- assert isinstance(ds1 [tfds.Split.TEST], tf.data.Dataset)
334
+ assert isinstance(ds_all_dict [tfds.Split.TEST], tf.data.Dataset)
335
335
# Each dataset (test, train, unsup.) consists of dictionaries
336
336
# {'label': <tf.Tensor: .. dtype=int64, numpy=1>,
337
337
# 'text': <tf.Tensor: .. dtype=string, numpy=b"I've watched the movie ..">}
338
338
# {'label': <tf.Tensor: .. dtype=int64, numpy=1>,
339
339
# 'text': <tf.Tensor: .. dtype=string, numpy=b'If you love Japanese ..'>}
340
340
341
341
# Only (feature, label) tuples specified in this particular DatasetBuilder
342
- ds2 = ds_builder.as_dataset(as_supervised=True)
343
- assert isinstance(ds2 , dict)
344
- print(ds2 .keys()) # ==> ['test', 'train', 'unsupervised']
342
+ ds_all_supervised = ds_builder.as_dataset(as_supervised=True)
343
+ assert isinstance(ds_all_supervised , dict)
344
+ print(ds_all_supervised .keys()) # ==> ['test', 'train', 'unsupervised']
345
345
346
- assert isinstance(ds2 [tfds.Split.TEST], tf.data.Dataset)
346
+ assert isinstance(ds_all_supervised [tfds.Split.TEST], tf.data.Dataset)
347
347
# Each dataset (test, train, unsup.) consists of tuples (text, label)
348
348
# (<tf.Tensor: ... dtype=string, numpy=b"I've watched the movie ..">,
349
349
# <tf.Tensor: ... dtype=int64, numpy=1>)
350
350
# (<tf.Tensor: ... dtype=string, numpy=b"If you love Japanese ..">,
351
351
# <tf.Tensor: ... dtype=int64, numpy=1>)
352
352
353
353
# Same as above plus requesting a particular split
354
- ds3 = ds_builder.as_dataset(as_supervised=True, split=tfds.Split.TEST)
355
- assert isinstance(ds3 , tf.data.Dataset)
354
+ ds_test_supervised = ds_builder.as_dataset(as_supervised=True, split=tfds.Split.TEST)
355
+ assert isinstance(ds_test_supervised , tf.data.Dataset)
356
356
# The dataset consists of tuples (text, label)
357
357
# (<tf.Tensor: ... dtype=string, numpy=b"I've watched the movie ..">,
358
358
# <tf.Tensor: ... dtype=int64, numpy=1>)
0 commit comments