Skip to content

Commit df2dfbf

Browse files
Conchylicultorcopybara-github
authored andcommitted
Automated documentation update
PiperOrigin-RevId: 283404735
1 parent 8cea22f commit df2dfbf

35 files changed

+72778
-856
lines changed

docs/catalog/abstract_reasoning.md

Lines changed: 0 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -120,11 +120,9 @@ https://console.cloud.google.com/storage/browser/ravens-matrices Please put all
120120
the tar.gz files in manual_dir.
121121

122122
### Statistics
123-
124123
None computed
125124

126125
### Features
127-
128126
```python
129127
FeaturesDict({
130128
'answers': Video(Image(shape=(160, 160, 1), dtype=tf.uint8)),
@@ -141,7 +139,6 @@ FeaturesDict({
141139
* [https://github.com/deepmind/abstract-reasoning-matrices](https://github.com/deepmind/abstract-reasoning-matrices)
142140

143141
## `abstract_reasoning/interpolation`
144-
145142
As in the neutral split, $S$ consisted of any \
146143
triples $[r, o, a]$. For interpolation, in the training set, when the \
147144
attribute was "colour" or "size" (i.e., the ordered attributes), the values of \
@@ -161,11 +158,9 @@ https://console.cloud.google.com/storage/browser/ravens-matrices Please put all
161158
the tar.gz files in manual_dir.
162159

163160
### Statistics
164-
165161
None computed
166162

167163
### Features
168-
169164
```python
170165
FeaturesDict({
171166
'answers': Video(Image(shape=(160, 160, 1), dtype=tf.uint8)),
@@ -182,7 +177,6 @@ FeaturesDict({
182177
* [https://github.com/deepmind/abstract-reasoning-matrices](https://github.com/deepmind/abstract-reasoning-matrices)
183178

184179
## `abstract_reasoning/extrapolation`
185-
186180
Same as in interpolation, but the values of \
187181
the attributes were restricted to the lower half of the discrete set during \
188182
training, whereas in the test set they took values in the upper half.
@@ -217,7 +211,6 @@ FeaturesDict({
217211
* [https://github.com/deepmind/abstract-reasoning-matrices](https://github.com/deepmind/abstract-reasoning-matrices)
218212

219213
## `abstract_reasoning/attr.rel.pairs`
220-
221214
All $S$ contained at least two triples, \
222215
$([r_1,o_1,a_1],[r_2,o_2,a_2]) = (t_1, t_2)$, of which 400 are viable. We \
223216
randomly allocated 360 to the training set and 40 to the test set. Members \
@@ -255,7 +248,6 @@ FeaturesDict({
255248
* [https://github.com/deepmind/abstract-reasoning-matrices](https://github.com/deepmind/abstract-reasoning-matrices)
256249

257250
## `abstract_reasoning/attr.rels`
258-
259251
In our dataset, there are 29 possible unique \
260252
triples $[r,o,a]$. We allocated seven of these for the test set, at random, \
261253
but such that each of the attributes was represented exactly once in this set. \

docs/catalog/celeb_a_hq.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,14 +2,12 @@
22
<div itemscope itemprop="includedInDataCatalog" itemtype="http://schema.org/DataCatalog">
33
<meta itemprop="name" content="TensorFlow Datasets" />
44
</div>
5-
65
<meta itemprop="name" content="celeb_a_hq" />
76
<meta itemprop="description" content="High-quality version of the CELEBA&#10;dataset, consisting of 30000 images in 1024 x 1024 resolution.&#10;&#10;WARNING: This dataset currently requires you to prepare images on your own.&#10;&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load('celeb_a_hq', split='train')&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
87
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/celeb_a_hq" />
98
<meta itemprop="sameAs" content="https://github.com/tkarras/progressive_growing_of_gans" />
109
<meta itemprop="citation" content="@article{DBLP:journals/corr/abs-1710-10196,&#10; author = {Tero Karras and&#10; Timo Aila and&#10; Samuli Laine and&#10; Jaakko Lehtinen},&#10; title = {Progressive Growing of GANs for Improved Quality, Stability, and Variation},&#10; journal = {CoRR},&#10; volume = {abs/1710.10196},&#10; year = {2017},&#10; url = {http://arxiv.org/abs/1710.10196},&#10; archivePrefix = {arXiv},&#10; eprint = {1710.10196},&#10; timestamp = {Mon, 13 Aug 2018 16:46:42 +0200},&#10; biburl = {https://dblp.org/rec/bib/journals/corr/abs-1710-10196},&#10; bibsource = {dblp computer science bibliography, https://dblp.org}&#10;}&#10;" />
1110
</div>
12-
1311
# `celeb_a_hq` (Manual download)
1412

1513
High-quality version of the CELEBA dataset, consisting of 30000 images in 1024 x

0 commit comments

Comments
 (0)