|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2020 The TensorFlow Datasets Authors. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +"""SpeechCommands dataset.""" |
| 17 | + |
| 18 | +from __future__ import absolute_import |
| 19 | +from __future__ import division |
| 20 | +from __future__ import print_function |
| 21 | + |
| 22 | +import os |
| 23 | +import numpy as np |
| 24 | + |
| 25 | +from tensorflow_datasets.core import lazy_imports_lib |
| 26 | +import tensorflow_datasets.public_api as tfds |
| 27 | + |
| 28 | +_CITATION = """ |
| 29 | +@article{speechcommandsv2, |
| 30 | + author = {{Warden}, P.}, |
| 31 | + title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}", |
| 32 | + journal = {ArXiv e-prints}, |
| 33 | + archivePrefix = "arXiv", |
| 34 | + eprint = {1804.03209}, |
| 35 | + primaryClass = "cs.CL", |
| 36 | + keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction}, |
| 37 | + year = 2018, |
| 38 | + month = apr, |
| 39 | + url = {https://arxiv.org/abs/1804.03209}, |
| 40 | +} |
| 41 | +""" |
| 42 | + |
| 43 | +_DESCRIPTION = """ |
| 44 | +An audio dataset of spoken words designed to help train and evaluate keyword |
| 45 | +spotting systems. Its primary goal is to provide a way to build and test small |
| 46 | +models that detect when a single word is spoken, from a set of ten target words, |
| 47 | +with as few false positives as possible from background noise or unrelated |
| 48 | +speech. Note that in the train and validation set, the label "unknown" is much |
| 49 | +more prevalent than the labels of the target words or background noise. |
| 50 | +One difference from the release version is the handling of silent segments. |
| 51 | +While in the test set the silence segments are regular 1 second files, in the |
| 52 | +training they are provided as long segments under "background_noise" folder. |
| 53 | +Here we split these background noise into 1 second clips, and also keep one of |
| 54 | +the files for the validation set. |
| 55 | +""" |
| 56 | + |
| 57 | +_DOWNLOAD_PATH = 'http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz' |
| 58 | +_TEST_DOWNLOAD_PATH_ = 'http://download.tensorflow.org/data/speech_commands_test_set_v0.02.tar.gz' |
| 59 | + |
| 60 | +_SPLITS = ['train', 'valid', 'test'] |
| 61 | + |
| 62 | +WORDS = ['down', 'go', 'left', 'no', 'off', 'on', 'right', 'stop', 'up', 'yes'] |
| 63 | +SILENCE = '_silence_' |
| 64 | +UNKNOWN = '_unknown_' |
| 65 | +BACKGROUND_NOISE = '_background_noise_' |
| 66 | +SAMPLE_RATE = 16000 |
| 67 | + |
| 68 | + |
| 69 | +class SpeechCommands(tfds.core.GeneratorBasedBuilder): |
| 70 | + """The Speech Commands dataset for keyword detection.""" |
| 71 | + |
| 72 | + VERSION = tfds.core.Version('0.0.2') |
| 73 | + |
| 74 | + def _info(self): |
| 75 | + return tfds.core.DatasetInfo( |
| 76 | + builder=self, |
| 77 | + description=_DESCRIPTION, |
| 78 | + # tfds.features.FeatureConnectors |
| 79 | + features=tfds.features.FeaturesDict({ |
| 80 | + 'audio': tfds.features.Audio(file_format='wav'), |
| 81 | + 'label': tfds.features.ClassLabel(names=WORDS + [SILENCE, UNKNOWN]) |
| 82 | + }), |
| 83 | + supervised_keys=('audio', 'label'), |
| 84 | + # Homepage of the dataset for documentation |
| 85 | + homepage='https://arxiv.org/abs/1804.03209', |
| 86 | + citation=_CITATION, |
| 87 | + ) |
| 88 | + |
| 89 | + def _split_generators(self, dl_manager): |
| 90 | + """Returns SplitGenerators.""" |
| 91 | + |
| 92 | + dl_path, dl_test_path = dl_manager.download( |
| 93 | + [_DOWNLOAD_PATH, _TEST_DOWNLOAD_PATH_]) |
| 94 | + |
| 95 | + train_paths, validation_paths = self._split_archive( |
| 96 | + dl_manager.iter_archive(dl_path)) |
| 97 | + |
| 98 | + return [ |
| 99 | + tfds.core.SplitGenerator( |
| 100 | + name=tfds.Split.TRAIN, |
| 101 | + gen_kwargs={'archive': dl_manager.iter_archive(dl_path), |
| 102 | + 'file_list': train_paths}, |
| 103 | + ), |
| 104 | + tfds.core.SplitGenerator( |
| 105 | + name=tfds.Split.VALIDATION, |
| 106 | + gen_kwargs={'archive': dl_manager.iter_archive(dl_path), |
| 107 | + 'file_list': validation_paths}, |
| 108 | + ), |
| 109 | + tfds.core.SplitGenerator( |
| 110 | + name=tfds.Split.TEST, |
| 111 | + gen_kwargs={'archive': dl_manager.iter_archive(dl_test_path), |
| 112 | + 'file_list': None}, |
| 113 | + ), |
| 114 | + ] |
| 115 | + |
| 116 | + def _generate_examples(self, archive, file_list): |
| 117 | + """Yields examples.""" |
| 118 | + for path, file_obj in archive: |
| 119 | + if file_list is not None and path not in file_list: |
| 120 | + continue |
| 121 | + relpath, wavname = os.path.split(path) |
| 122 | + _, word = os.path.split(relpath) |
| 123 | + example_id = '{}_{}'.format(word, wavname) |
| 124 | + if word in WORDS: |
| 125 | + label = word |
| 126 | + elif word == SILENCE or word == BACKGROUND_NOISE: |
| 127 | + # The main tar file already contains all of the test files, except for |
| 128 | + # the silence ones. In fact it does not contain silence files at all. |
| 129 | + # So for the test set we take the silence files from the test tar file, |
| 130 | + # while for train and validation we build them from the |
| 131 | + # _background_noise_ folder. |
| 132 | + label = SILENCE |
| 133 | + else: |
| 134 | + # Note that in the train and validation there are a lot more _unknown_ |
| 135 | + # labels than any of the other ones. |
| 136 | + label = UNKNOWN |
| 137 | + |
| 138 | + if word == BACKGROUND_NOISE: |
| 139 | + # Special handling of background noise. We need to cut these files to |
| 140 | + # many small files with 1 seconds length, and transform it to silence. |
| 141 | + audio_samples = np.array( |
| 142 | + lazy_imports_lib.lazy_imports.pydub.AudioSegment.from_file( |
| 143 | + file_obj, format='wav').get_array_of_samples()) |
| 144 | + |
| 145 | + for start in range(0, |
| 146 | + len(audio_samples) - SAMPLE_RATE, SAMPLE_RATE // 2): |
| 147 | + audio_segment = audio_samples[start:start + SAMPLE_RATE] |
| 148 | + cur_id = '{}_{}'.format(example_id, start) |
| 149 | + example = {'audio': audio_segment, 'label': label} |
| 150 | + yield cur_id, example |
| 151 | + else: |
| 152 | + try: |
| 153 | + example = { |
| 154 | + 'audio': |
| 155 | + np.array( |
| 156 | + lazy_imports_lib.lazy_imports.pydub.AudioSegment |
| 157 | + .from_file(file_obj, |
| 158 | + format='wav').get_array_of_samples()), |
| 159 | + 'label': |
| 160 | + label, |
| 161 | + } |
| 162 | + yield example_id, example |
| 163 | + except lazy_imports_lib.lazy_imports.pydub.exceptions.CouldntDecodeError: |
| 164 | + pass |
| 165 | + |
| 166 | + def _split_archive(self, train_archive): |
| 167 | + train_paths = [] |
| 168 | + for path, file_obj in train_archive: |
| 169 | + if 'testing_list.txt' in path: |
| 170 | + train_test_paths = file_obj.read().strip().splitlines() |
| 171 | + train_test_paths = [p.decode('ascii') for p in train_test_paths] |
| 172 | + elif 'validation_list.txt' in path: |
| 173 | + validation_paths = file_obj.read().strip().splitlines() |
| 174 | + validation_paths = [p.decode('ascii') for p in validation_paths] |
| 175 | + elif path.endswith('.wav'): |
| 176 | + train_paths.append(path) |
| 177 | + |
| 178 | + # Original validation files did include silence - we add them manually here |
| 179 | + validation_paths.append( |
| 180 | + os.path.join(BACKGROUND_NOISE, 'running_tap.wav')) |
| 181 | + |
| 182 | + # The paths for the train set is just whichever paths that do not exist in |
| 183 | + # either the test or validation splits. |
| 184 | + train_paths = ( |
| 185 | + set(train_paths) - set(validation_paths) - set(train_test_paths)) |
| 186 | + |
| 187 | + return train_paths, validation_paths |
0 commit comments