Skip to content

Commit 19ed6ed

Browse files
Conchylicultorcopybara-github
authored andcommitted
Automated documentation update
PiperOrigin-RevId: 278690756
1 parent 6c86e90 commit 19ed6ed

23 files changed

+1799
-0
lines changed

docs/catalog/_toc.yaml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -92,6 +92,8 @@ toc:
9292
title: kmnist
9393
- path: /datasets/catalog/lfw
9494
title: lfw
95+
- path: /datasets/catalog/lost_and_found
96+
title: lost_and_found
9597
- path: /datasets/catalog/lsun
9698
title: lsun
9799
- path: /datasets/catalog/malaria

docs/catalog/lost_and_found.md

Lines changed: 172 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,172 @@
1+
<div itemscope itemtype="http://schema.org/Dataset">
2+
<div itemscope itemprop="includedInDataCatalog" itemtype="http://schema.org/DataCatalog">
3+
<meta itemprop="name" content="TensorFlow Datasets" />
4+
</div>
5+
6+
<meta itemprop="name" content="lost_and_found" />
7+
<meta itemprop="description" content="&#10;The LostAndFound Dataset addresses the problem of detecting unexpected small obstacles on&#10;the road often caused by lost cargo. The dataset comprises 112 stereo video sequences&#10;with 2104 annotated frames (picking roughly every tenth frame from the recorded data).&#10;&#10;The dataset is designed analogous to the 'Cityscapes' dataset. The datset provides:&#10;- stereo image pairs in either 8 or 16 bit color resolution&#10;- precomputed disparity maps&#10;- coarse semantic labels for objects and street&#10;&#10;Descriptions of the labels are given here: http://www.6d-vision.com/laf_table.pdf&#10;&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load('lost_and_found', split='train')&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
8+
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/lost_and_found" />
9+
<meta itemprop="sameAs" content="http://www.6d-vision.com/lostandfounddataset" />
10+
<meta itemprop="citation" content="&#10;@inproceedings{pinggera2016lost,&#10; title={Lost and found: detecting small road hazards for self-driving vehicles},&#10; author={Pinggera, Peter and Ramos, Sebastian and Gehrig, Stefan and Franke, Uwe and Rother, Carsten and Mester, Rudolf},&#10; booktitle={2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},&#10; year={2016}&#10;}&#10;" />
11+
</div>
12+
13+
# `lost_and_found`
14+
15+
* URL:
16+
[http://www.6d-vision.com/lostandfounddataset](http://www.6d-vision.com/lostandfounddataset)
17+
* `DatasetBuilder`:
18+
[`tfds.image.lost_and_found.LostAndFound`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image/lost_and_found.py)
19+
20+
`lost_and_found` is configured with
21+
`tfds.image.lost_and_found.LostAndFoundConfig` and has the following
22+
configurations predefined (defaults to the first one):
23+
24+
* `semantic_segmentation` (`v1.0.0`) (`Size: 5.44 GiB`): Lost and Found
25+
semantic segmentation dataset.
26+
27+
* `stereo_disparity` (`v1.0.0`) (`Size: 12.16 GiB`): Lost and Found stereo
28+
images and disparity maps.
29+
30+
* `full` (`v1.0.0`) (`Size: 12.19 GiB`): Full Lost and Found dataset.
31+
32+
* `full_16bit` (`v1.0.0`) (`Size: 34.90 GiB`): Full Lost and Found dataset.
33+
34+
## `lost_and_found/semantic_segmentation`
35+
36+
Lost and Found semantic segmentation dataset.
37+
38+
Versions:
39+
40+
* **`1.0.0`** (default):
41+
42+
### Statistics
43+
44+
Split | Examples
45+
:---- | -------:
46+
ALL | 2,239
47+
TEST | 1,203
48+
TRAIN | 1,036
49+
50+
### Features
51+
52+
```python
53+
FeaturesDict({
54+
'image_id': Text(shape=(), dtype=tf.string),
55+
'image_left': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
56+
'segmentation_label': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
57+
})
58+
```
59+
60+
### Homepage
61+
62+
* [http://www.6d-vision.com/lostandfounddataset](http://www.6d-vision.com/lostandfounddataset)
63+
64+
## `lost_and_found/stereo_disparity`
65+
66+
Lost and Found stereo images and disparity maps.
67+
68+
Versions:
69+
70+
* **`1.0.0`** (default):
71+
72+
### Statistics
73+
74+
Split | Examples
75+
:---- | -------:
76+
ALL | 2,239
77+
TEST | 1,203
78+
TRAIN | 1,036
79+
80+
### Features
81+
82+
```python
83+
FeaturesDict({
84+
'disparity_map': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
85+
'image_id': Text(shape=(), dtype=tf.string),
86+
'image_left': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
87+
'image_right': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
88+
})
89+
```
90+
91+
### Homepage
92+
93+
* [http://www.6d-vision.com/lostandfounddataset](http://www.6d-vision.com/lostandfounddataset)
94+
95+
## `lost_and_found/full`
96+
97+
Full Lost and Found dataset.
98+
99+
Versions:
100+
101+
* **`1.0.0`** (default):
102+
103+
### Statistics
104+
105+
Split | Examples
106+
:---- | -------:
107+
ALL | 2,239
108+
TEST | 1,203
109+
TRAIN | 1,036
110+
111+
### Features
112+
113+
```python
114+
FeaturesDict({
115+
'disparity_map': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
116+
'image_id': Text(shape=(), dtype=tf.string),
117+
'image_left': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
118+
'image_right': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
119+
'instance_id': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
120+
'segmentation_label': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
121+
})
122+
```
123+
124+
### Homepage
125+
126+
* [http://www.6d-vision.com/lostandfounddataset](http://www.6d-vision.com/lostandfounddataset)
127+
128+
## `lost_and_found/full_16bit`
129+
130+
Full Lost and Found dataset.
131+
132+
Versions:
133+
134+
* **`1.0.0`** (default):
135+
136+
### Statistics
137+
138+
Split | Examples
139+
:---- | -------:
140+
ALL | 2,239
141+
TEST | 1,203
142+
TRAIN | 1,036
143+
144+
### Features
145+
146+
```python
147+
FeaturesDict({
148+
'disparity_map': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
149+
'image_id': Text(shape=(), dtype=tf.string),
150+
'image_left': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
151+
'image_right': Image(shape=(1024, 2048, 3), dtype=tf.uint8),
152+
'instance_id': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
153+
'segmentation_label': Image(shape=(1024, 2048, 1), dtype=tf.uint8),
154+
})
155+
```
156+
157+
### Homepage
158+
159+
* [http://www.6d-vision.com/lostandfounddataset](http://www.6d-vision.com/lostandfounddataset)
160+
161+
## Citation
162+
163+
```
164+
@inproceedings{pinggera2016lost,
165+
title={Lost and found: detecting small road hazards for self-driving vehicles},
166+
author={Pinggera, Peter and Ramos, Sebastian and Gehrig, Stefan and Franke, Uwe and Rother, Carsten and Mester, Rudolf},
167+
booktitle={2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
168+
year={2016}
169+
}
170+
```
171+
172+
--------------------------------------------------------------------------------

docs/catalog/overview.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,7 @@ np_datasets = tfds.as_numpy(datasets)
8080
* [`imagenet_resized`](imagenet_resized.md)
8181
* [`kmnist`](kmnist.md)
8282
* [`lfw`](lfw.md)
83+
* [`lost_and_found`](lost_and_found.md)
8384
* [`lsun`](lsun.md)
8485
* [`malaria`](malaria.md)
8586
* [`mnist`](mnist.md)

0 commit comments

Comments
 (0)