You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-[Reweighting Clicks with Dwell Time in Recommendation](Industry/Reweighting%20Clicks%20with%20Dwell%20Time%20in%20Recommendation.pdf)
154
154
-[Sequential Modeling with Multiple Attributes for Watchlist Recommendation in E-Commerce](Industry/Sequential%20Modeling%20with%20Multiple%20Attributes%20for%20Watchlist%20Recommendation%20in%20E-Commerce.pdf)
155
155
-[Sparse Attentive Memory Network for Click-through Rate Prediction with Long Sequences](Industry/Sparse%20Attentive%20Memory%20Network%20for%20Click-through%20Rate%20Prediction%20with%20Long%20Sequences.pdf)
156
+
-[Surrogate for Long-Term User Experience in Recommender Systems](Industry/Surrogate%20for%20Long-Term%20User%20Experience%20in%20Recommender%20Systems.pdf)
156
157
-[Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction](Industry/Sampling%20Is%20All%20You%20Need%20on%20Modeling%20Long-Term%20User%20Behaviors%20for%20CTR%20Prediction.pdf)
157
158
-[Triangle Graph Interest Network for Click-through Rate Prediction](Industry/Triangle%20Graph%20Interest%20Network%20for%20Click-through%20Rate%20Prediction.pdf)
158
159
-[TencentRec - Real-time Stream Recommendation in Practice](Industry/TencentRec%20-%20Real-time%20Stream%20Recommendation%20in%20Practice.pdf)
@@ -661,6 +662,7 @@
661
662
-[Handling many conversions per click in modeling delayed feedback](Feedback-Delay/Handling%20many%20conversions%20per%20click%20in%20modeling%20delayed%20feedback.pdf)
662
663
-[Modeling Delayed Feedback in Display Advertising](Feedback-Delay/Modeling%20Delayed%20Feedback%20in%20Display%20Advertising.pdf)
663
664
## ContrastiveLearning
665
+
-[Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation](ContrastiveLearning/Are%20Graph%20Augmentations%20Necessary%3F%20Simple%20Graph%20Contrastive%20Learning%20for%20Recommendation.pdf)
664
666
-[An Empirical Study of Training Self-Supervised Vision Transformers](ContrastiveLearning/An%20Empirical%20Study%20of%20Training%20Self-Supervised%20Vision%20Transformers.pdf)
665
667
-[A Simple Framework for Contrastive Learning of Visual Representations](ContrastiveLearning/A%20Simple%20Framework%20for%20Contrastive%20Learning%20of%20Visual%20Representations.pdf)
666
668
-[Bootstrap Your Own Latent A New Approach to Self-Supervised Learning](ContrastiveLearning/Bootstrap%20Your%20Own%20Latent%20A%20New%20Approach%20to%20Self-Supervised%20Learning.pdf)
@@ -692,6 +694,8 @@
692
694
-[A Practical Exploration System for Search Advertising](Cold-Start/A%20Practical%20Exploration%20System%20for%20Search%20Advertising.pdf)
693
695
-[A Model of Two Tales - Dual Transfer Learning Framework for Improved Long-tail Item Recommendation](Cold-Start/A%20Model%20of%20Two%20Tales%20-%20Dual%20Transfer%20Learning%20Framework%20for%20Improved%20Long-tail%20Item%20Recommendation.pdf)
694
696
-[A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps](Cold-Start/A%20Semi-Personalized%20System%20for%20User%20Cold%20Start%20Recommendation%20on%20Music%20Streaming%20Apps.pdf)
697
+
-[Bootstrapping Contrastive Learning Enhanced Music Cold-Start Matching](Cold-Start/Bootstrapping%20Contrastive%20Learning%20Enhanced%20Music%20Cold-Start%20Matching.pdf)
698
+
-[CB2CF - A Neural Multiview Content-to-Collaborative Filtering Model for Completely Cold Item Recommendations](Cold-Start/CB2CF%20-%20A%20Neural%20Multiview%20Content-to-Collaborative%20Filtering%20Model%20for%20Completely%20Cold%20Item%20Recommendations.pdf)
695
699
-[Cold-start Sequential Recommendation via Meta Learner](Cold-Start/Cold-start%20Sequential%20Recommendation%20via%20Meta%20Learner.pdf)
696
700
-[Contrastive Collaborative Filtering for Cold-Start Item Recommendation](Cold-Start/Contrastive%20Collaborative%20Filtering%20for%20Cold-Start%20Item%20Recommendation.pdf)
697
701
-[Fresh Content Needs More Attention - Multi-funnel Fresh Content Recommendation](Cold-Start/Fresh%20Content%20Needs%20More%20Attention%20-%20Multi-funnel%20Fresh%20Content%20Recommendation.pdf)
@@ -706,6 +710,7 @@
706
710
-[Task-adaptive Neural Process for User Cold-Start Recommendation](Cold-Start/Task-adaptive%20Neural%20Process%20for%20User%20Cold-Start%20Recommendation.pdf)
707
711
-[Transform Cold-Start Users into Warm via Fused Behaviors in Large-Scale Recommendation](Cold-Start/Transform%20Cold-Start%20Users%20into%20Warm%20via%20Fused%20Behaviors%20in%20Large-Scale%20Recommendation.pdf)
708
712
-[Telepath - Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems](Cold-Start/Telepath%20-%20Understanding%20Users%20from%20a%20Human%20Vision%20Perspective%20in%20Large-Scale%20Recommender%20Systems.pdf)
713
+
-[Value of Exploration - Measurements, Findings and Algorithms](Cold-Start/Value%20of%20Exploration%20-%20Measurements%2C%20Findings%20and%20Algorithms.pdf)
709
714
-[What You Look Matters Offline Evaluation of Advertising Creatives for Cold-start Problem](Cold-Start/What%20You%20Look%20Matters%20Offline%20Evaluation%20of%20Advertising%20Creatives%20for%20Cold-start%20Problem.pdf)
710
715
-[Warm Up Cold-start Advertisements - Improving CTR Predictions via Learning to Learn ID Embeddings](Cold-Start/Warm%20Up%20Cold-start%20Advertisements%20-%20Improving%20CTR%20Predictions%20via%20Learning%20to%20Learn%20ID%20Embeddings.pdf)
711
716
#### Exploration&Exploitation
@@ -779,6 +784,7 @@
779
784
-[A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks](Diversity/A%20Framework%20for%20Recommending%20Accurate%20and%20Diverse%20Items%20Using%20Bayesian%20Graph%20Convolutional%20Neural%20Networks.pdf)
780
785
-[A Survey of Diversification Techniques in Search and Recommendation](Diversity/A%20Survey%20of%20Diversification%20Techniques%20in%20Search%20and%20Recommendation.pdf)
781
786
-[Adaptive, Personalized Diversity for Visual Discovery](Diversity/Adaptive%2C%20Personalized%20Diversity%20for%20Visual%20Discovery.pdf)
-[Diversity on the Go! Streaming Determinantal Point Processes under a Maximum Induced Cardinality Objective](Diversity/Diversity%20on%20the%20Go%21%20Streaming%20Determinantal%20Point%20Processes%20under%20a%20Maximum%20Induced%20Cardinality%20Objective.pdf)
783
789
-[DGCN - Diversified Recommendation with Graph Convolutional Networks](Diversity/DGCN%20-%20Diversified%20Recommendation%20with%20Graph%20Convolutional%20Networks.pdf)
784
790
-[DGRec - Graph Neural Network for Recommendation with Diversified Embedding Generation](Diversity/DGRec%20-%20Graph%20Neural%20Network%20for%20Recommendation%20with%20Diversified%20Embedding%20Generation.pdf)
@@ -793,6 +799,7 @@
793
799
-[Managing Diversity in Airbnb Search](Diversity/Managing%20Diversity%20in%20Airbnb%20Search.pdf)
794
800
-[Novelty and Diversity in Information Retrieval Evaluation](Diversity/Novelty%20and%20Diversity%20in%20Information%20Retrieval%20Evaluation.pdf)
795
801
-[P-Companion - A Principled Framework for Diversified Complementary Product Recommendation](Diversity/P-Companion%20-%20A%20Principled%20Framework%20for%20Diversified%20Complementary%20Product%20Recommendation.pdf)
802
+
-[Sliding Spectrum Decomposition for Diversified Recommendation](Diversity/Sliding%20Spectrum%20Decomposition%20for%20Diversified%20Recommendation.pdf)
796
803
-[User-controllable Recommendation Against Filter Bubbles](Diversity/User-controllable%20Recommendation%20Against%20Filter%20Bubbles.pdf)
797
804
-[UNDERSTANDING DIVERSITY IN SESSION-BASED RECOMMENDATION](Diversity/UNDERSTANDING%20DIVERSITY%20IN%20SESSION-BASED%20RECOMMENDATION.pdf)
**Look-Alike**, **Learning-to-Rank**, **Reinforcement Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -160,6 +160,7 @@ I will remove it immediately after verification.
160
160
-[Reweighting Clicks with Dwell Time in Recommendation](Industry/Reweighting%20Clicks%20with%20Dwell%20Time%20in%20Recommendation.pdf)
161
161
-[Sequential Modeling with Multiple Attributes for Watchlist Recommendation in E-Commerce](Industry/Sequential%20Modeling%20with%20Multiple%20Attributes%20for%20Watchlist%20Recommendation%20in%20E-Commerce.pdf)
162
162
-[Sparse Attentive Memory Network for Click-through Rate Prediction with Long Sequences](Industry/Sparse%20Attentive%20Memory%20Network%20for%20Click-through%20Rate%20Prediction%20with%20Long%20Sequences.pdf)
163
+
-[Surrogate for Long-Term User Experience in Recommender Systems](Industry/Surrogate%20for%20Long-Term%20User%20Experience%20in%20Recommender%20Systems.pdf)
163
164
-[Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction](Industry/Sampling%20Is%20All%20You%20Need%20on%20Modeling%20Long-Term%20User%20Behaviors%20for%20CTR%20Prediction.pdf)
164
165
-[Triangle Graph Interest Network for Click-through Rate Prediction](Industry/Triangle%20Graph%20Interest%20Network%20for%20Click-through%20Rate%20Prediction.pdf)
165
166
-[TencentRec - Real-time Stream Recommendation in Practice](Industry/TencentRec%20-%20Real-time%20Stream%20Recommendation%20in%20Practice.pdf)
@@ -668,6 +669,7 @@ I will remove it immediately after verification.
668
669
-[Handling many conversions per click in modeling delayed feedback](Feedback-Delay/Handling%20many%20conversions%20per%20click%20in%20modeling%20delayed%20feedback.pdf)
669
670
-[Modeling Delayed Feedback in Display Advertising](Feedback-Delay/Modeling%20Delayed%20Feedback%20in%20Display%20Advertising.pdf)
670
671
## ContrastiveLearning
672
+
-[Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation](ContrastiveLearning/Are%20Graph%20Augmentations%20Necessary%3F%20Simple%20Graph%20Contrastive%20Learning%20for%20Recommendation.pdf)
671
673
-[An Empirical Study of Training Self-Supervised Vision Transformers](ContrastiveLearning/An%20Empirical%20Study%20of%20Training%20Self-Supervised%20Vision%20Transformers.pdf)
672
674
-[A Simple Framework for Contrastive Learning of Visual Representations](ContrastiveLearning/A%20Simple%20Framework%20for%20Contrastive%20Learning%20of%20Visual%20Representations.pdf)
673
675
-[Bootstrap Your Own Latent A New Approach to Self-Supervised Learning](ContrastiveLearning/Bootstrap%20Your%20Own%20Latent%20A%20New%20Approach%20to%20Self-Supervised%20Learning.pdf)
@@ -699,6 +701,8 @@ I will remove it immediately after verification.
699
701
-[A Practical Exploration System for Search Advertising](Cold-Start/A%20Practical%20Exploration%20System%20for%20Search%20Advertising.pdf)
700
702
-[A Model of Two Tales - Dual Transfer Learning Framework for Improved Long-tail Item Recommendation](Cold-Start/A%20Model%20of%20Two%20Tales%20-%20Dual%20Transfer%20Learning%20Framework%20for%20Improved%20Long-tail%20Item%20Recommendation.pdf)
701
703
-[A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps](Cold-Start/A%20Semi-Personalized%20System%20for%20User%20Cold%20Start%20Recommendation%20on%20Music%20Streaming%20Apps.pdf)
704
+
-[Bootstrapping Contrastive Learning Enhanced Music Cold-Start Matching](Cold-Start/Bootstrapping%20Contrastive%20Learning%20Enhanced%20Music%20Cold-Start%20Matching.pdf)
705
+
-[CB2CF - A Neural Multiview Content-to-Collaborative Filtering Model for Completely Cold Item Recommendations](Cold-Start/CB2CF%20-%20A%20Neural%20Multiview%20Content-to-Collaborative%20Filtering%20Model%20for%20Completely%20Cold%20Item%20Recommendations.pdf)
702
706
-[Cold-start Sequential Recommendation via Meta Learner](Cold-Start/Cold-start%20Sequential%20Recommendation%20via%20Meta%20Learner.pdf)
703
707
-[Contrastive Collaborative Filtering for Cold-Start Item Recommendation](Cold-Start/Contrastive%20Collaborative%20Filtering%20for%20Cold-Start%20Item%20Recommendation.pdf)
704
708
-[Fresh Content Needs More Attention - Multi-funnel Fresh Content Recommendation](Cold-Start/Fresh%20Content%20Needs%20More%20Attention%20-%20Multi-funnel%20Fresh%20Content%20Recommendation.pdf)
@@ -713,6 +717,7 @@ I will remove it immediately after verification.
713
717
-[Task-adaptive Neural Process for User Cold-Start Recommendation](Cold-Start/Task-adaptive%20Neural%20Process%20for%20User%20Cold-Start%20Recommendation.pdf)
714
718
-[Transform Cold-Start Users into Warm via Fused Behaviors in Large-Scale Recommendation](Cold-Start/Transform%20Cold-Start%20Users%20into%20Warm%20via%20Fused%20Behaviors%20in%20Large-Scale%20Recommendation.pdf)
715
719
-[Telepath - Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems](Cold-Start/Telepath%20-%20Understanding%20Users%20from%20a%20Human%20Vision%20Perspective%20in%20Large-Scale%20Recommender%20Systems.pdf)
720
+
-[Value of Exploration - Measurements, Findings and Algorithms](Cold-Start/Value%20of%20Exploration%20-%20Measurements%2C%20Findings%20and%20Algorithms.pdf)
716
721
-[What You Look Matters Offline Evaluation of Advertising Creatives for Cold-start Problem](Cold-Start/What%20You%20Look%20Matters%20Offline%20Evaluation%20of%20Advertising%20Creatives%20for%20Cold-start%20Problem.pdf)
717
722
-[Warm Up Cold-start Advertisements - Improving CTR Predictions via Learning to Learn ID Embeddings](Cold-Start/Warm%20Up%20Cold-start%20Advertisements%20-%20Improving%20CTR%20Predictions%20via%20Learning%20to%20Learn%20ID%20Embeddings.pdf)
718
723
#### Exploration&Exploitation
@@ -786,6 +791,7 @@ I will remove it immediately after verification.
786
791
-[A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks](Diversity/A%20Framework%20for%20Recommending%20Accurate%20and%20Diverse%20Items%20Using%20Bayesian%20Graph%20Convolutional%20Neural%20Networks.pdf)
787
792
-[A Survey of Diversification Techniques in Search and Recommendation](Diversity/A%20Survey%20of%20Diversification%20Techniques%20in%20Search%20and%20Recommendation.pdf)
788
793
-[Adaptive, Personalized Diversity for Visual Discovery](Diversity/Adaptive%2C%20Personalized%20Diversity%20for%20Visual%20Discovery.pdf)
-[Diversity on the Go! Streaming Determinantal Point Processes under a Maximum Induced Cardinality Objective](Diversity/Diversity%20on%20the%20Go%21%20Streaming%20Determinantal%20Point%20Processes%20under%20a%20Maximum%20Induced%20Cardinality%20Objective.pdf)
790
796
-[DGCN - Diversified Recommendation with Graph Convolutional Networks](Diversity/DGCN%20-%20Diversified%20Recommendation%20with%20Graph%20Convolutional%20Networks.pdf)
791
797
-[DGRec - Graph Neural Network for Recommendation with Diversified Embedding Generation](Diversity/DGRec%20-%20Graph%20Neural%20Network%20for%20Recommendation%20with%20Diversified%20Embedding%20Generation.pdf)
@@ -800,6 +806,7 @@ I will remove it immediately after verification.
800
806
-[Managing Diversity in Airbnb Search](Diversity/Managing%20Diversity%20in%20Airbnb%20Search.pdf)
801
807
-[Novelty and Diversity in Information Retrieval Evaluation](Diversity/Novelty%20and%20Diversity%20in%20Information%20Retrieval%20Evaluation.pdf)
802
808
-[P-Companion - A Principled Framework for Diversified Complementary Product Recommendation](Diversity/P-Companion%20-%20A%20Principled%20Framework%20for%20Diversified%20Complementary%20Product%20Recommendation.pdf)
809
+
-[Sliding Spectrum Decomposition for Diversified Recommendation](Diversity/Sliding%20Spectrum%20Decomposition%20for%20Diversified%20Recommendation.pdf)
803
810
-[User-controllable Recommendation Against Filter Bubbles](Diversity/User-controllable%20Recommendation%20Against%20Filter%20Bubbles.pdf)
804
811
-[UNDERSTANDING DIVERSITY IN SESSION-BASED RECOMMENDATION](Diversity/UNDERSTANDING%20DIVERSITY%20IN%20SESSION-BASED%20RECOMMENDATION.pdf)
0 commit comments