Skip to content

Commit e86d1d7

Browse files
committed
update
1 parent 18cf118 commit e86d1d7

13 files changed

+24
-2
lines changed
Binary file not shown.

README.md

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
# 推荐系统相关论文汇总
33
([English Version is Here](/README_EN.md))
44
## 介绍
5-
1. 截至2022-12-23,本仓库收集汇总了推荐系统领域相关论文共**532**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
5+
1. 截至2022-12-28,本仓库收集汇总了推荐系统领域相关论文共**543**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
66
**纠偏****多样性****公平性****反馈延迟****蒸馏****对比学习****因果推断****Look-Alike****Learning-to-Rank****强化学习**等领域,本仓库会跟踪业界进展,持续更新。
77
2. 因文件名特殊字符的限制,故论文title中所有的`:`都改为了`-`,检索时请注意。
88
3. 文件名前缀中带有`[]`的,表明本人已经通读过,第一个`[]`中为论文年份,第二个`[]`中为发表机构或公司(可选),第三个`[]`中为论文提出的model或method的简称(可选)。
@@ -156,7 +156,17 @@
156156
#### Edge
157157
- [Real-time Short Video Recommendation on Mobile Devices](Industry/Edge/Real-time%20Short%20Video%20Recommendation%20on%20Mobile%20Devices.pdf)
158158
#### RepeatConsumption
159+
- [Buy It Again - Modeling Repeat Purchase Recommendations](Industry/RepeatConsumption/Buy%20It%20Again%20-%20Modeling%20Repeat%20Purchase%20Recommendations.pdf)
160+
- [Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recommender Systems](Industry/RepeatConsumption/Modeling%20Item-Specific%20Temporal%20Dynamics%20of%20Repeat%20Consumption%20for%20Recommender%20Systems.pdf)
159161
- [Modeling User Repeat Consumption Behavior for Online Novel Recommendation](Industry/RepeatConsumption/Modeling%20User%20Repeat%20Consumption%20Behavior%20for%20Online%20Novel%20Recommendation.pdf)
162+
- [On the Value of Reminders within E-Commerce Recommendations](Industry/RepeatConsumption/On%20the%20Value%20of%20Reminders%20within%20E-Commerce%20Recommendations.pdf)
163+
- [Predicting Consumption Patterns with Repeated and Novel Events](Industry/RepeatConsumption/Predicting%20Consumption%20Patterns%20with%20Repeated%20and%20Novel%20Events.pdf)
164+
- [Predicting Music Relistening Behavior Using the ACT-R Framework](Industry/RepeatConsumption/Predicting%20Music%20Relistening%20Behavior%20Using%20the%20ACT-R%20Framework.pdf)
165+
- [Recommendation on Live-Streaming Platforms - Dynamic Availability and Repeat Consumption](Industry/RepeatConsumption/Recommendation%20on%20Live-Streaming%20Platforms%20-%20Dynamic%20Availability%20and%20Repeat%20Consumption.pdf)
166+
- [RepeatNet - A Repeat Aware Neural Recommendation Machine for Session-based Recommendation](Industry/RepeatConsumption/RepeatNet%20-%20A%20Repeat%20Aware%20Neural%20Recommendation%20Machine%20for%20Session-based%20Recommendation.pdf)
167+
- [Recommendation for Repeat Consumption from User Implicit Feedback](Industry/RepeatConsumption/Recommendation%20for%20Repeat%20Consumption%20from%20User%20Implicit%20Feedback.pdf)
168+
- [The Dynamics of Repeat Consumption](Industry/RepeatConsumption/The%20Dynamics%20of%20Repeat%20Consumption.pdf)
169+
- [Will You “Reconsume” the Near Past? Fast Prediction on Short-Term Reconsumption Behaviors](Industry/RepeatConsumption/Will%20You%20%E2%80%9CReconsume%E2%80%9D%20the%20Near%20Past%3F%20Fast%20Prediction%20on%20Short-Term%20Reconsumption%20Behaviors.pdf)
160170
#### POI
161171
- [[2020][meituan][STGCN] STGCN - A Spatial-Temporal Aware Graph Learning Method for POI Recommendation](Industry/POI/%5B2020%5D%5Bmeituan%5D%5BSTGCN%5D%20STGCN%20-%20A%20Spatial-Temporal%20Aware%20Graph%20Learning%20Method%20for%20POI%20Recommendation.pdf)
162172
- [A Survey on Deep Learning Based Point-Of-Interest (POI) Recommendations](Industry/POI/A%20Survey%20on%20Deep%20Learning%20Based%20Point-Of-Interest%20%28POI%29%20Recommendations.pdf)
@@ -579,6 +589,7 @@
579589
- [Score Look-alike Audiences](Look-Alike/Score%20Look-alike%20Audiences.pdf)
580590
- [Two-Stage Audience Expansion for Financial Targeting in Marketing](Look-Alike/Two-Stage%20Audience%20Expansion%20for%20Financial%20Targeting%20in%20Marketing.pdf)
581591
## CausalInference
592+
- [A Model-Agnostic Causal Learning Framework for Recommendation using Search Data](CausalInference/A%20Model-Agnostic%20Causal%20Learning%20Framework%20for%20Recommendation%20using%20Search%20Data.pdf)
582593
- [CauseRec - Counterfactual User Sequence Synthesis for Sequential Recommendation](CausalInference/CauseRec%20-%20Counterfactual%20User%20Sequence%20Synthesis%20for%20Sequential%20Recommendation.pdf)
583594
- [Counterfactual Data-Augmented Sequential Recommendation](CausalInference/Counterfactual%20Data-Augmented%20Sequential%20Recommendation.pdf)
584595
- [Clicks can be Cheating - Counterfactual Recommendation for Mitigating Clickbait Issue](CausalInference/Clicks%20can%20be%20Cheating%20-%20Counterfactual%20Recommendation%20for%20Mitigating%20Clickbait%20Issue.pdf)

README_EN.md

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11

22
# Summary of Papers Related to Recommendation System
33
## Introduce
4-
1. Up to 2022-12-23, **532** papers related to recommendation system have been collected and summarized in this repo,
4+
1. Up to 2022-12-28, **543** papers related to recommendation system have been collected and summarized in this repo,
55
including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
66
**Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
77
**Look-Alike**, **Learning-to-Rank**, **ReinForce Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -163,7 +163,17 @@ I will remove it immediately after verification.
163163
#### Edge
164164
- [Real-time Short Video Recommendation on Mobile Devices](Industry/Edge/Real-time%20Short%20Video%20Recommendation%20on%20Mobile%20Devices.pdf)
165165
#### RepeatConsumption
166+
- [Buy It Again - Modeling Repeat Purchase Recommendations](Industry/RepeatConsumption/Buy%20It%20Again%20-%20Modeling%20Repeat%20Purchase%20Recommendations.pdf)
167+
- [Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recommender Systems](Industry/RepeatConsumption/Modeling%20Item-Specific%20Temporal%20Dynamics%20of%20Repeat%20Consumption%20for%20Recommender%20Systems.pdf)
166168
- [Modeling User Repeat Consumption Behavior for Online Novel Recommendation](Industry/RepeatConsumption/Modeling%20User%20Repeat%20Consumption%20Behavior%20for%20Online%20Novel%20Recommendation.pdf)
169+
- [On the Value of Reminders within E-Commerce Recommendations](Industry/RepeatConsumption/On%20the%20Value%20of%20Reminders%20within%20E-Commerce%20Recommendations.pdf)
170+
- [Predicting Consumption Patterns with Repeated and Novel Events](Industry/RepeatConsumption/Predicting%20Consumption%20Patterns%20with%20Repeated%20and%20Novel%20Events.pdf)
171+
- [Predicting Music Relistening Behavior Using the ACT-R Framework](Industry/RepeatConsumption/Predicting%20Music%20Relistening%20Behavior%20Using%20the%20ACT-R%20Framework.pdf)
172+
- [Recommendation on Live-Streaming Platforms - Dynamic Availability and Repeat Consumption](Industry/RepeatConsumption/Recommendation%20on%20Live-Streaming%20Platforms%20-%20Dynamic%20Availability%20and%20Repeat%20Consumption.pdf)
173+
- [RepeatNet - A Repeat Aware Neural Recommendation Machine for Session-based Recommendation](Industry/RepeatConsumption/RepeatNet%20-%20A%20Repeat%20Aware%20Neural%20Recommendation%20Machine%20for%20Session-based%20Recommendation.pdf)
174+
- [Recommendation for Repeat Consumption from User Implicit Feedback](Industry/RepeatConsumption/Recommendation%20for%20Repeat%20Consumption%20from%20User%20Implicit%20Feedback.pdf)
175+
- [The Dynamics of Repeat Consumption](Industry/RepeatConsumption/The%20Dynamics%20of%20Repeat%20Consumption.pdf)
176+
- [Will You “Reconsume” the Near Past? Fast Prediction on Short-Term Reconsumption Behaviors](Industry/RepeatConsumption/Will%20You%20%E2%80%9CReconsume%E2%80%9D%20the%20Near%20Past%3F%20Fast%20Prediction%20on%20Short-Term%20Reconsumption%20Behaviors.pdf)
167177
#### POI
168178
- [[2020][meituan][STGCN] STGCN - A Spatial-Temporal Aware Graph Learning Method for POI Recommendation](Industry/POI/%5B2020%5D%5Bmeituan%5D%5BSTGCN%5D%20STGCN%20-%20A%20Spatial-Temporal%20Aware%20Graph%20Learning%20Method%20for%20POI%20Recommendation.pdf)
169179
- [A Survey on Deep Learning Based Point-Of-Interest (POI) Recommendations](Industry/POI/A%20Survey%20on%20Deep%20Learning%20Based%20Point-Of-Interest%20%28POI%29%20Recommendations.pdf)
@@ -586,6 +596,7 @@ I will remove it immediately after verification.
586596
- [Score Look-alike Audiences](Look-Alike/Score%20Look-alike%20Audiences.pdf)
587597
- [Two-Stage Audience Expansion for Financial Targeting in Marketing](Look-Alike/Two-Stage%20Audience%20Expansion%20for%20Financial%20Targeting%20in%20Marketing.pdf)
588598
## CausalInference
599+
- [A Model-Agnostic Causal Learning Framework for Recommendation using Search Data](CausalInference/A%20Model-Agnostic%20Causal%20Learning%20Framework%20for%20Recommendation%20using%20Search%20Data.pdf)
589600
- [CauseRec - Counterfactual User Sequence Synthesis for Sequential Recommendation](CausalInference/CauseRec%20-%20Counterfactual%20User%20Sequence%20Synthesis%20for%20Sequential%20Recommendation.pdf)
590601
- [Counterfactual Data-Augmented Sequential Recommendation](CausalInference/Counterfactual%20Data-Augmented%20Sequential%20Recommendation.pdf)
591602
- [Clicks can be Cheating - Counterfactual Recommendation for Mitigating Clickbait Issue](CausalInference/Clicks%20can%20be%20Cheating%20-%20Counterfactual%20Recommendation%20for%20Mitigating%20Clickbait%20Issue.pdf)

0 commit comments

Comments
 (0)