Skip to content

Commit e76a4af

Browse files
committed
update
1 parent 4adfe8d commit e76a4af

4 files changed

+6
-2
lines changed
Binary file not shown.

README.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
# 推荐系统相关论文汇总
33
([English Version is Here](/README_EN.md))
44
## 介绍
5-
1. 截至2023-06-25,本仓库收集汇总了推荐系统领域相关论文共**683**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
5+
1. 截至2023-06-26,本仓库收集汇总了推荐系统领域相关论文共**685**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
66
**纠偏****多样性****公平性****反馈延迟****蒸馏****对比学习****因果推断****Look-Alike****Learning-to-Rank****强化学习**等领域,本仓库会跟踪业界进展,持续更新。
77
2. 因文件名特殊字符的限制,故论文title中所有的`:`都改为了`-`,检索时请注意。
88
3. 文件名前缀中带有`[]`的,表明本人已经通读过,第一个`[]`中为论文年份,第二个`[]`中为发表机构或公司(可选),第三个`[]`中为论文提出的model或method的简称(可选)。
@@ -355,6 +355,7 @@
355355
- [Learning Deep Structured Semantic Models for Web Search using Clickthrough Data](Match/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf)
356356
- [Locker - Locally Constrained Self-Attentive Sequential Recommendation](Match/Locker%20-%20Locally%20Constrained%20Self-Attentive%20Sequential%20Recommendation.pdf)
357357
- [Modeling Dynamic Missingness of Implicit Feedback for Recommendation](Match/Modeling%20Dynamic%20Missingness%20of%20Implicit%20Feedback%20for%20Recommendation.pdf)
358+
- [Neighborhood-based Hard Negative Mining for Sequential Recommendation](Match/Neighborhood-based%20Hard%20Negative%20Mining%20for%20Sequential%20Recommendation.pdf)
358359
- [NAIS - Neural Attentive Item Similarity Model for Recommendation](Match/NAIS%20-%20Neural%20Attentive%20Item%20Similarity%20Model%20for%20Recommendation.pdf)
359360
- [Neural Aentive Session-based Recommendation](Match/Neural%20A%1Dentive%20Session-based%20Recommendation.pdf)
360361
- [Octopus - Comprehensive and Elastic User Representation for the Generation of Recommendation Candidates](Match/Octopus%20-%20Comprehensive%20and%20Elastic%20User%20Representation%20for%20the%20Generation%20of%20Recommendation%20Candidates.pdf)
@@ -493,6 +494,7 @@
493494
- [Perceive Your Users in Depth - Learning Universal User Representations from Multiple E-commerce Tasks](Multi-Task/Perceive%20Your%20Users%20in%20Depth%20-%20Learning%20Universal%20User%20Representations%20from%20Multiple%20E-commerce%20Tasks.pdf)
494495
- [Personalized Approximate Pareto-Efficient Recommendation](Multi-Task/Personalized%20Approximate%20Pareto-Efficient%20Recommendation.pdf)
495496
- [Pareto Multi-Task Learning](Multi-Task/Pareto%20Multi-Task%20Learning.pdf)
497+
- [STAN - Stage-Adaptive Network for Multi-Task Recommendation by Learning User Lifecycle-Based Representation](Multi-Task/STAN%20-%20Stage-Adaptive%20Network%20for%20Multi-Task%20Recommendation%20by%20Learning%20User%20Lifecycle-Based%20Representation.pdf)
496498
- [SNR - Sub-Network Routing for Flexible Parameter Sharing in Multi-Task Learning](Multi-Task/SNR%20-%20Sub-Network%20Routing%20for%20Flexible%20Parameter%20Sharing%20in%20Multi-Task%20Learning.pdf)
497499
- [Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning](Multi-Task/Understanding%20and%20Improving%20Fairness-Accuracy%20Trade-offs%20in%20Multi-Task%20Learning.pdf)
498500
- [Why I like it - multi-task learning for recommendation and explanation](Multi-Task/Why%20I%20like%20it%20-%20multi-task%20learning%20for%20recommendation%20and%20explanation.pdf)

README_EN.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11

22
# Summary of Papers Related to Recommendation System
33
## Introduce
4-
1. Up to 2023-06-25, **683** papers related to recommendation system have been collected and summarized in this repo,
4+
1. Up to 2023-06-26, **685** papers related to recommendation system have been collected and summarized in this repo,
55
including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
66
**Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
77
**Look-Alike**, **Learning-to-Rank**, **Reinforcement Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -362,6 +362,7 @@ I will remove it immediately after verification.
362362
- [Learning Deep Structured Semantic Models for Web Search using Clickthrough Data](Match/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf)
363363
- [Locker - Locally Constrained Self-Attentive Sequential Recommendation](Match/Locker%20-%20Locally%20Constrained%20Self-Attentive%20Sequential%20Recommendation.pdf)
364364
- [Modeling Dynamic Missingness of Implicit Feedback for Recommendation](Match/Modeling%20Dynamic%20Missingness%20of%20Implicit%20Feedback%20for%20Recommendation.pdf)
365+
- [Neighborhood-based Hard Negative Mining for Sequential Recommendation](Match/Neighborhood-based%20Hard%20Negative%20Mining%20for%20Sequential%20Recommendation.pdf)
365366
- [NAIS - Neural Attentive Item Similarity Model for Recommendation](Match/NAIS%20-%20Neural%20Attentive%20Item%20Similarity%20Model%20for%20Recommendation.pdf)
366367
- [Neural Aentive Session-based Recommendation](Match/Neural%20A%1Dentive%20Session-based%20Recommendation.pdf)
367368
- [Octopus - Comprehensive and Elastic User Representation for the Generation of Recommendation Candidates](Match/Octopus%20-%20Comprehensive%20and%20Elastic%20User%20Representation%20for%20the%20Generation%20of%20Recommendation%20Candidates.pdf)
@@ -500,6 +501,7 @@ I will remove it immediately after verification.
500501
- [Perceive Your Users in Depth - Learning Universal User Representations from Multiple E-commerce Tasks](Multi-Task/Perceive%20Your%20Users%20in%20Depth%20-%20Learning%20Universal%20User%20Representations%20from%20Multiple%20E-commerce%20Tasks.pdf)
501502
- [Personalized Approximate Pareto-Efficient Recommendation](Multi-Task/Personalized%20Approximate%20Pareto-Efficient%20Recommendation.pdf)
502503
- [Pareto Multi-Task Learning](Multi-Task/Pareto%20Multi-Task%20Learning.pdf)
504+
- [STAN - Stage-Adaptive Network for Multi-Task Recommendation by Learning User Lifecycle-Based Representation](Multi-Task/STAN%20-%20Stage-Adaptive%20Network%20for%20Multi-Task%20Recommendation%20by%20Learning%20User%20Lifecycle-Based%20Representation.pdf)
503505
- [SNR - Sub-Network Routing for Flexible Parameter Sharing in Multi-Task Learning](Multi-Task/SNR%20-%20Sub-Network%20Routing%20for%20Flexible%20Parameter%20Sharing%20in%20Multi-Task%20Learning.pdf)
504506
- [Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning](Multi-Task/Understanding%20and%20Improving%20Fairness-Accuracy%20Trade-offs%20in%20Multi-Task%20Learning.pdf)
505507
- [Why I like it - multi-task learning for recommendation and explanation](Multi-Task/Why%20I%20like%20it%20-%20multi-task%20learning%20for%20recommendation%20and%20explanation.pdf)

0 commit comments

Comments
 (0)