You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-[[2017][Alibaba][ATRank] ATRank - An Attention-Based User Behavior Modeling Framework for Recommendation](Industry/%5B2017%5D%5BAlibaba%5D%5BATRank%5D%20ATRank%20-%20An%20Attention-Based%20User%20Behavior%20Modeling%20Framework%20for%20Recommendation.pdf)
65
65
-[[2018][Alibaba][DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction](Industry/%5B2018%5D%5BAlibaba%5D%5BDIEN%5D%20Deep%20Interest%20Evolution%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
66
66
-[[2018][FwFM] Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](Industry/%5B2018%5D%5BFwFM%5D%20Field-weighted%20Factorization%20Machines%20for%20Click-Through%20Rate%20Prediction%20in%20Display%20Advertising.pdf)
67
+
-[[2018][JD] Micro Behaviors - A New Perspective in E-commerce Recommender Systems](Industry/%5B2018%5D%5BJD%5D%20Micro%20Behaviors%20-%20A%20New%20Perspective%20in%20E-commerce%20Recommender%20Systems.pdf)
67
68
-[[2018][Airbnb] Real-time Personalization using Embeddings for Search Ranking at Airbnb](Industry/%5B2018%5D%5BAirbnb%5D%20Real-time%20Personalization%20using%20Embeddings%20for%20Search%20Ranking%20at%20Airbnb.pdf)
68
69
-[[2019][Alibaba][DSIN] Deep Session Interest Network for Click-Through Rate Prediction](Industry/%5B2019%5D%5BAlibaba%5D%5BDSIN%5D%20Deep%20Session%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
69
70
-[[2019][Alibaba][BST] Behavior Sequence Transformer for E-commerceRecommendation in Alibaba](Industry/%5B2019%5D%5BAlibaba%5D%5BBST%5D%20Behavior%20Sequence%20Transformer%20for%20E-commerceRecommendation%20in%20Alibaba.pdf)
@@ -79,6 +80,7 @@
79
80
-[[2021][Alibaba][DINMP] A Non-sequential Approach to Deep User Interest Model for Click-Through Rate Prediction](Industry/%5B2021%5D%5BAlibaba%5D%5BDINMP%5D%20A%20Non-sequential%20Approach%20to%20Deep%20User%20Interest%20Model%20for%20Click-Through%20Rate%20Prediction.pdf)
80
81
-[[2021][Google] Bootstrapping Recommendations at Chrome Web Store](Industry/%5B2021%5D%5BGoogle%5D%20Bootstrapping%20Recommendations%20at%20Chrome%20Web%20Store.pdf)
81
82
-[Adversarial Mixture Of Experts with Category Hierarchy Soft Constraint](Industry/Adversarial%20Mixture%20Of%20Experts%20with%20Category%20Hierarchy%20Soft%20Constraint.pdf)
83
+
-[Alternating Pointwise-Pairwise Learning for Personalized Item Ranking](Industry/Alternating%20Pointwise-Pairwise%20Learning%20for%20Personalized%20Item%20Ranking.pdf)
82
84
-[Adversarial Filtering Modeling on Long-term User Behavior Sequences for Click-Through Rate Prediction](Industry/Adversarial%20Filtering%20Modeling%20on%20Long-term%20User%20Behavior%20Sequences%20for%20Click-Through%20Rate%20Prediction.pdf)
83
85
-[Curriculum Disentangled Recommendation with Noisy Multi-feedback](Industry/Curriculum%20Disentangled%20Recommendation%20with%20Noisy%20Multi-feedback.pdf)
84
86
-[Category-Specific CNN for Visual-aware CTR Prediction at JD.com](Industry/Category-Specific%20CNN%20for%20Visual-aware%20CTR%20Prediction%20at%20JD.com.pdf)
@@ -101,6 +103,7 @@
101
103
-[GateNet - Gating-Enhanced Deep Network for Click-Through Rate Prediction](Industry/GateNet%20-%20Gating-Enhanced%20Deep%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
102
104
-[Hybrid Interest Modeling for Long-tailed Users](Industry/Hybrid%20Interest%20Modeling%20for%20Long-tailed%20Users.pdf)
103
105
-[HIEN - Hierarchical Intention Embedding Network for Click-Through Rate Prediction](Industry/HIEN%20-%20Hierarchical%20Intention%20Embedding%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
106
+
-[Improving Pairwise Learning for Item Recommendation from Implicit Feedback](Industry/Improving%20Pairwise%20Learning%20for%20Item%20Recommendation%20from%20Implicit%20Feedback.pdf)
104
107
-[Improving Recommendation Quality in Google Drive](Industry/Improving%20Recommendation%20Quality%20in%20Google%20Drive.pdf)
105
108
-[Improving Deep Learning For Airbnb Search](Industry/Improving%20Deep%20Learning%20For%20Airbnb%20Search.pdf)
106
109
-[Implicit User Awareness Modeling via Candidate Items for CTR Prediction in Search Ads](Industry/Implicit%20User%20Awareness%20Modeling%20via%20Candidate%20Items%20for%20CTR%20Prediction%20in%20Search%20Ads.pdf)
@@ -110,7 +113,6 @@
110
113
-[Learning Within-Session Budgets from Browsing Trajectories](Industry/Learning%20Within-Session%20Budgets%20from%20Browsing%20Trajectories.pdf)
111
114
-[Modeling Users’ Contextualized Page-wise Feedback for Click-Through Rate Prediction in E-commerce Search](Industry/Modeling%20Users%E2%80%99%20Contextualized%20Page-wise%20Feedback%20for%20Click-Through%20Rate%20Prediction%20in%20E-commerce%20Search.pdf)
112
115
-[MaskNet - Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask](Industry/MaskNet%20-%20Introducing%20Feature-Wise%20Multiplication%20to%20CTR%20Ranking%20Models%20by%20Instance-Guided%20Mask.pdf)
113
-
-[Micro Behaviors - A New Perspective in E-commerce Recommender Systems](Industry/Micro%20Behaviors%20-%20A%20New%20Perspective%20in%20E-commerce%20Recommender%20Systems.pdf)
114
116
-[Multi-Interactive Attention Network for Fine-grained Feature Learning in CTR Prediction](Industry/Multi-Interactive%20Attention%20Network%20for%20Fine-grained%20Feature%20Learning%20in%20CTR%20Prediction.pdf)
115
117
-[MRIF - Multi-resolution Interest Fusion for Recommendation](Industry/MRIF%20-%20Multi-resolution%20Interest%20Fusion%20for%20Recommendation.pdf)
116
118
-[News Recommendation with Candidate-aware User Modeling](Industry/News%20Recommendation%20with%20Candidate-aware%20User%20Modeling.pdf)
**Look-Alike**, **Learning-to-Rank**, **ReinForce Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -71,6 +71,7 @@ I will remove it immediately after verification.
71
71
-[[2017][Alibaba][ATRank] ATRank - An Attention-Based User Behavior Modeling Framework for Recommendation](Industry/%5B2017%5D%5BAlibaba%5D%5BATRank%5D%20ATRank%20-%20An%20Attention-Based%20User%20Behavior%20Modeling%20Framework%20for%20Recommendation.pdf)
72
72
-[[2018][Alibaba][DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction](Industry/%5B2018%5D%5BAlibaba%5D%5BDIEN%5D%20Deep%20Interest%20Evolution%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
73
73
-[[2018][FwFM] Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](Industry/%5B2018%5D%5BFwFM%5D%20Field-weighted%20Factorization%20Machines%20for%20Click-Through%20Rate%20Prediction%20in%20Display%20Advertising.pdf)
74
+
-[[2018][JD] Micro Behaviors - A New Perspective in E-commerce Recommender Systems](Industry/%5B2018%5D%5BJD%5D%20Micro%20Behaviors%20-%20A%20New%20Perspective%20in%20E-commerce%20Recommender%20Systems.pdf)
74
75
-[[2018][Airbnb] Real-time Personalization using Embeddings for Search Ranking at Airbnb](Industry/%5B2018%5D%5BAirbnb%5D%20Real-time%20Personalization%20using%20Embeddings%20for%20Search%20Ranking%20at%20Airbnb.pdf)
75
76
-[[2019][Alibaba][DSIN] Deep Session Interest Network for Click-Through Rate Prediction](Industry/%5B2019%5D%5BAlibaba%5D%5BDSIN%5D%20Deep%20Session%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
76
77
-[[2019][Alibaba][BST] Behavior Sequence Transformer for E-commerceRecommendation in Alibaba](Industry/%5B2019%5D%5BAlibaba%5D%5BBST%5D%20Behavior%20Sequence%20Transformer%20for%20E-commerceRecommendation%20in%20Alibaba.pdf)
@@ -86,6 +87,7 @@ I will remove it immediately after verification.
86
87
-[[2021][Alibaba][DINMP] A Non-sequential Approach to Deep User Interest Model for Click-Through Rate Prediction](Industry/%5B2021%5D%5BAlibaba%5D%5BDINMP%5D%20A%20Non-sequential%20Approach%20to%20Deep%20User%20Interest%20Model%20for%20Click-Through%20Rate%20Prediction.pdf)
87
88
-[[2021][Google] Bootstrapping Recommendations at Chrome Web Store](Industry/%5B2021%5D%5BGoogle%5D%20Bootstrapping%20Recommendations%20at%20Chrome%20Web%20Store.pdf)
88
89
-[Adversarial Mixture Of Experts with Category Hierarchy Soft Constraint](Industry/Adversarial%20Mixture%20Of%20Experts%20with%20Category%20Hierarchy%20Soft%20Constraint.pdf)
90
+
-[Alternating Pointwise-Pairwise Learning for Personalized Item Ranking](Industry/Alternating%20Pointwise-Pairwise%20Learning%20for%20Personalized%20Item%20Ranking.pdf)
89
91
-[Adversarial Filtering Modeling on Long-term User Behavior Sequences for Click-Through Rate Prediction](Industry/Adversarial%20Filtering%20Modeling%20on%20Long-term%20User%20Behavior%20Sequences%20for%20Click-Through%20Rate%20Prediction.pdf)
90
92
-[Curriculum Disentangled Recommendation with Noisy Multi-feedback](Industry/Curriculum%20Disentangled%20Recommendation%20with%20Noisy%20Multi-feedback.pdf)
91
93
-[Category-Specific CNN for Visual-aware CTR Prediction at JD.com](Industry/Category-Specific%20CNN%20for%20Visual-aware%20CTR%20Prediction%20at%20JD.com.pdf)
@@ -108,6 +110,7 @@ I will remove it immediately after verification.
108
110
-[GateNet - Gating-Enhanced Deep Network for Click-Through Rate Prediction](Industry/GateNet%20-%20Gating-Enhanced%20Deep%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
109
111
-[Hybrid Interest Modeling for Long-tailed Users](Industry/Hybrid%20Interest%20Modeling%20for%20Long-tailed%20Users.pdf)
110
112
-[HIEN - Hierarchical Intention Embedding Network for Click-Through Rate Prediction](Industry/HIEN%20-%20Hierarchical%20Intention%20Embedding%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
113
+
-[Improving Pairwise Learning for Item Recommendation from Implicit Feedback](Industry/Improving%20Pairwise%20Learning%20for%20Item%20Recommendation%20from%20Implicit%20Feedback.pdf)
111
114
-[Improving Recommendation Quality in Google Drive](Industry/Improving%20Recommendation%20Quality%20in%20Google%20Drive.pdf)
112
115
-[Improving Deep Learning For Airbnb Search](Industry/Improving%20Deep%20Learning%20For%20Airbnb%20Search.pdf)
113
116
-[Implicit User Awareness Modeling via Candidate Items for CTR Prediction in Search Ads](Industry/Implicit%20User%20Awareness%20Modeling%20via%20Candidate%20Items%20for%20CTR%20Prediction%20in%20Search%20Ads.pdf)
@@ -117,7 +120,6 @@ I will remove it immediately after verification.
117
120
-[Learning Within-Session Budgets from Browsing Trajectories](Industry/Learning%20Within-Session%20Budgets%20from%20Browsing%20Trajectories.pdf)
118
121
-[Modeling Users’ Contextualized Page-wise Feedback for Click-Through Rate Prediction in E-commerce Search](Industry/Modeling%20Users%E2%80%99%20Contextualized%20Page-wise%20Feedback%20for%20Click-Through%20Rate%20Prediction%20in%20E-commerce%20Search.pdf)
119
122
-[MaskNet - Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask](Industry/MaskNet%20-%20Introducing%20Feature-Wise%20Multiplication%20to%20CTR%20Ranking%20Models%20by%20Instance-Guided%20Mask.pdf)
120
-
-[Micro Behaviors - A New Perspective in E-commerce Recommender Systems](Industry/Micro%20Behaviors%20-%20A%20New%20Perspective%20in%20E-commerce%20Recommender%20Systems.pdf)
121
123
-[Multi-Interactive Attention Network for Fine-grained Feature Learning in CTR Prediction](Industry/Multi-Interactive%20Attention%20Network%20for%20Fine-grained%20Feature%20Learning%20in%20CTR%20Prediction.pdf)
122
124
-[MRIF - Multi-resolution Interest Fusion for Recommendation](Industry/MRIF%20-%20Multi-resolution%20Interest%20Fusion%20for%20Recommendation.pdf)
123
125
-[News Recommendation with Candidate-aware User Modeling](Industry/News%20Recommendation%20with%20Candidate-aware%20User%20Modeling.pdf)
0 commit comments