Skip to content

Commit a0e131e

Browse files
committed
update
1 parent cb7336d commit a0e131e

File tree

3 files changed

+4
-2
lines changed

3 files changed

+4
-2
lines changed

README.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
# 推荐系统相关论文汇总
33
([English Version is Here](/README_EN.md))
44
## 介绍
5-
1. 截至2023-03-17,本仓库收集汇总了推荐系统领域相关论文共**632**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
5+
1. 截至2023-03-18,本仓库收集汇总了推荐系统领域相关论文共**633**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
66
**纠偏****多样性****公平性****反馈延迟****蒸馏****对比学习****因果推断****Look-Alike****Learning-to-Rank****强化学习**等领域,本仓库会跟踪业界进展,持续更新。
77
2. 因文件名特殊字符的限制,故论文title中所有的`:`都改为了`-`,检索时请注意。
88
3. 文件名前缀中带有`[]`的,表明本人已经通读过,第一个`[]`中为论文年份,第二个`[]`中为发表机构或公司(可选),第三个`[]`中为论文提出的model或method的简称(可选)。
@@ -139,6 +139,7 @@
139139
#### TriggerInduced
140140
- [[2021][Tencent][R3S] Real-time Relevant Recommendation Suggestion](Industry/TriggerInduced/%5B2021%5D%5BTencent%5D%5BR3S%5D%20Real-time%20Relevant%20Recommendation%20Suggestion.pdf)
141141
- [[2022][Alibaba][DIHN] Deep Interest Highlight Network for Click-Through Rate Prediction in Trigger-Induced Recommendation](Industry/TriggerInduced/%5B2022%5D%5BAlibaba%5D%5BDIHN%5D%20Deep%20Interest%20Highlight%20Network%20for%20Click-Through%20Rate%20Prediction%20in%20Trigger-Induced%20Recommendation.pdf)
142+
- [Deep Intention-Aware Network for Click-Through Rate Prediction](Industry/TriggerInduced/Deep%20Intention-Aware%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
142143
#### Reciprocal
143144
- [[2022][Boss][DPGNN] Modeling Two-Way Selection Preference for Person-Job Fit](Industry/Reciprocal/%5B2022%5D%5BBoss%5D%5BDPGNN%5D%20Modeling%20Two-Way%20Selection%20Preference%20for%20Person-Job%20Fit.pdf)
144145
- [Latent Factor Models and Aggregation Operators for Collaborative Filtering in Reciprocal Recommender Systems](Industry/Reciprocal/Latent%20Factor%20Models%20and%20Aggregation%20Operators%20for%20Collaborative%20Filtering%20in%20Reciprocal%20Recommender%20Systems.pdf)

README_EN.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11

22
# Summary of Papers Related to Recommendation System
33
## Introduce
4-
1. Up to 2023-03-17, **632** papers related to recommendation system have been collected and summarized in this repo,
4+
1. Up to 2023-03-18, **633** papers related to recommendation system have been collected and summarized in this repo,
55
including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
66
**Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
77
**Look-Alike**, **Learning-to-Rank**, **Reinforcement Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -146,6 +146,7 @@ I will remove it immediately after verification.
146146
#### TriggerInduced
147147
- [[2021][Tencent][R3S] Real-time Relevant Recommendation Suggestion](Industry/TriggerInduced/%5B2021%5D%5BTencent%5D%5BR3S%5D%20Real-time%20Relevant%20Recommendation%20Suggestion.pdf)
148148
- [[2022][Alibaba][DIHN] Deep Interest Highlight Network for Click-Through Rate Prediction in Trigger-Induced Recommendation](Industry/TriggerInduced/%5B2022%5D%5BAlibaba%5D%5BDIHN%5D%20Deep%20Interest%20Highlight%20Network%20for%20Click-Through%20Rate%20Prediction%20in%20Trigger-Induced%20Recommendation.pdf)
149+
- [Deep Intention-Aware Network for Click-Through Rate Prediction](Industry/TriggerInduced/Deep%20Intention-Aware%20Network%20for%20Click-Through%20Rate%20Prediction.pdf)
149150
#### Reciprocal
150151
- [[2022][Boss][DPGNN] Modeling Two-Way Selection Preference for Person-Job Fit](Industry/Reciprocal/%5B2022%5D%5BBoss%5D%5BDPGNN%5D%20Modeling%20Two-Way%20Selection%20Preference%20for%20Person-Job%20Fit.pdf)
151152
- [Latent Factor Models and Aggregation Operators for Collaborative Filtering in Reciprocal Recommender Systems](Industry/Reciprocal/Latent%20Factor%20Models%20and%20Aggregation%20Operators%20for%20Collaborative%20Filtering%20in%20Reciprocal%20Recommender%20Systems.pdf)

0 commit comments

Comments
 (0)