Skip to content

Commit 82f88bd

Browse files
committed
update
1 parent 0a0dc1e commit 82f88bd

4 files changed

+6
-2
lines changed

README.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
# 推荐系统相关论文汇总
33
([English Version is Here](/README_EN.md))
44
## 介绍
5-
1. 截至2025-04-29,本仓库收集汇总了推荐系统领域相关论文共**903**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
5+
1. 截至2025-04-30,本仓库收集汇总了推荐系统领域相关论文共**905**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
66
**纠偏****多样性****公平性****反馈延迟****蒸馏****对比学习****因果推断****Look-Alike****Learning-to-Rank****强化学习**等领域,本仓库会跟踪业界进展,持续更新。
77
2. 因文件名特殊字符的限制,故论文title中所有的`:`都改为了`-`,检索时请注意。
88
3. 文件名前缀中带有`[]`的,表明本人已经通读过,第一个`[]`中为论文年份,第二个`[]`中为发表机构或公司(可选),第三个`[]`中为论文提出的model或method的简称(可选)。
@@ -437,6 +437,7 @@
437437
- [Collaborative Denoising Auto-Encoders for Top-N Recommender Systems](Match/Collaborative%20Denoising%20Auto-Encoders%20for%20Top-N%20Recommender%20Systems.pdf)
438438
- [Coarse-to-Fine Sparse Sequential Recommendation](Match/Coarse-to-Fine%20Sparse%20Sequential%20Recommendation.pdf)
439439
- [Cross-Batch Negative Sampling for Training Two-Tower Recommenders](Match/Cross-Batch%20Negative%20Sampling%20for%20Training%20Two-Tower%20Recommenders.pdf)
440+
- [CSMF - Cascaded Selective Mask Fine-Tuning for Multi-Objective Embedding-Based Retrieval](Match/CSMF%20-%20Cascaded%20Selective%20Mask%20Fine-Tuning%20for%20Multi-Objective%20Embedding-Based%20Retrieval.pdf)
440441
- [Collaborative Deep Learning for Recommender Systems](Match/Collaborative%20Deep%20Learning%20for%20Recommender%20Systems.pdf)
441442
- [CRM - Retrieval Model with Controllable Condition](Match/CRM%20-%20Retrieval%20Model%20with%20Controllable%20Condition.pdf)
442443
- [Deep Matrix Factorization Models for Recommender Systems](Match/Deep%20Matrix%20Factorization%20Models%20for%20Recommender%20Systems.pdf)
@@ -778,6 +779,7 @@
778779
- [Posterior Probability Matters - Doubly-Adaptive Calibration for Neural Predictions in Online Advertising](Calibration/Posterior%20Probability%20Matters%20-%20Doubly-Adaptive%20Calibration%20for%20Neural%20Predictions%20in%20Online%20Advertising.pdf)
779780
- [Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance](Calibration/Regression%20Compatible%20Listwise%20Objectives%20for%20Calibrated%20Ranking%20with%20Binary%20Relevance.pdf)
780781
- [Transforming Classifier Scores into Accurate Multiclass Probability Estimates](Calibration/Transforming%20Classifier%20Scores%20into%20Accurate%20Multiclass%20Probability%20Estimates.pdf)
782+
- [Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems](Calibration/Unconstrained%20Monotonic%20Calibration%20of%20Predictions%20in%20Deep%20Ranking%20Systems.pdf)
781783
## Distillation
782784
- [[2021][Tencent][DMTL] Distillation based Multi-task Learning - A Candidate Generation Model for Improving Reading Duration](Distillation/%5B2021%5D%5BTencent%5D%5BDMTL%5D%20Distillation%20based%20Multi-task%20Learning%20-%20A%20Candidate%20Generation%20Model%20for%20Improving%20Reading%20Duration.pdf)
783785
- [Ensembled CTR Prediction via Knowledge Distillation](Distillation/Ensembled%20CTR%20Prediction%20via%20Knowledge%20Distillation.pdf)

README_EN.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11

22
# Summary of Papers Related to Recommendation System
33
## Introduce
4-
1. Up to 2025-04-29, **903** papers related to recommendation system have been collected and summarized in this repo,
4+
1. Up to 2025-04-30, **905** papers related to recommendation system have been collected and summarized in this repo,
55
including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
66
**Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
77
**Look-Alike**, **Learning-to-Rank**, **Reinforcement Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -444,6 +444,7 @@ I will remove it immediately after verification.
444444
- [Collaborative Denoising Auto-Encoders for Top-N Recommender Systems](Match/Collaborative%20Denoising%20Auto-Encoders%20for%20Top-N%20Recommender%20Systems.pdf)
445445
- [Coarse-to-Fine Sparse Sequential Recommendation](Match/Coarse-to-Fine%20Sparse%20Sequential%20Recommendation.pdf)
446446
- [Cross-Batch Negative Sampling for Training Two-Tower Recommenders](Match/Cross-Batch%20Negative%20Sampling%20for%20Training%20Two-Tower%20Recommenders.pdf)
447+
- [CSMF - Cascaded Selective Mask Fine-Tuning for Multi-Objective Embedding-Based Retrieval](Match/CSMF%20-%20Cascaded%20Selective%20Mask%20Fine-Tuning%20for%20Multi-Objective%20Embedding-Based%20Retrieval.pdf)
447448
- [Collaborative Deep Learning for Recommender Systems](Match/Collaborative%20Deep%20Learning%20for%20Recommender%20Systems.pdf)
448449
- [CRM - Retrieval Model with Controllable Condition](Match/CRM%20-%20Retrieval%20Model%20with%20Controllable%20Condition.pdf)
449450
- [Deep Matrix Factorization Models for Recommender Systems](Match/Deep%20Matrix%20Factorization%20Models%20for%20Recommender%20Systems.pdf)
@@ -785,6 +786,7 @@ I will remove it immediately after verification.
785786
- [Posterior Probability Matters - Doubly-Adaptive Calibration for Neural Predictions in Online Advertising](Calibration/Posterior%20Probability%20Matters%20-%20Doubly-Adaptive%20Calibration%20for%20Neural%20Predictions%20in%20Online%20Advertising.pdf)
786787
- [Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance](Calibration/Regression%20Compatible%20Listwise%20Objectives%20for%20Calibrated%20Ranking%20with%20Binary%20Relevance.pdf)
787788
- [Transforming Classifier Scores into Accurate Multiclass Probability Estimates](Calibration/Transforming%20Classifier%20Scores%20into%20Accurate%20Multiclass%20Probability%20Estimates.pdf)
789+
- [Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems](Calibration/Unconstrained%20Monotonic%20Calibration%20of%20Predictions%20in%20Deep%20Ranking%20Systems.pdf)
788790
## Distillation
789791
- [[2021][Tencent][DMTL] Distillation based Multi-task Learning - A Candidate Generation Model for Improving Reading Duration](Distillation/%5B2021%5D%5BTencent%5D%5BDMTL%5D%20Distillation%20based%20Multi-task%20Learning%20-%20A%20Candidate%20Generation%20Model%20for%20Improving%20Reading%20Duration.pdf)
790792
- [Ensembled CTR Prediction via Knowledge Distillation](Distillation/Ensembled%20CTR%20Prediction%20via%20Knowledge%20Distillation.pdf)

0 commit comments

Comments
 (0)