Skip to content

Commit 486f702

Browse files
committed
update
1 parent 7a6d447 commit 486f702

4 files changed

+8
-4
lines changed

README.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
# 推荐系统相关论文汇总
33
([English Version is Here](/README_EN.md))
44
## 介绍
5-
1. 截至2023-02-16,本仓库收集汇总了推荐系统领域相关论文共**580**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
5+
1. 截至2023-02-17,本仓库收集汇总了推荐系统领域相关论文共**581**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
66
**纠偏****多样性****公平性****反馈延迟****蒸馏****对比学习****因果推断****Look-Alike****Learning-to-Rank****强化学习**等领域,本仓库会跟踪业界进展,持续更新。
77
2. 因文件名特殊字符的限制,故论文title中所有的`:`都改为了`-`,检索时请注意。
88
3. 文件名前缀中带有`[]`的,表明本人已经通读过,第一个`[]`中为论文年份,第二个`[]`中为发表机构或公司(可选),第三个`[]`中为论文提出的model或method的简称(可选)。
@@ -208,6 +208,8 @@
208208
- [Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer](Industry/FeatureHashing/Learning%20Effective%20and%20Efficient%20Embedding%20via%20an%20Adaptively-Masked%20Twins-based%20Layer.pdf)
209209
- [Memory-efficient Embedding for Recommendations](Industry/FeatureHashing/Memory-efficient%20Embedding%20for%20Recommendations.pdf)
210210
- [Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems](Industry/FeatureHashing/Model%20Size%20Reduction%20Using%20Frequency%20Based%20Double%20Hashing%20for%20Recommender%20Systems.pdf)
211+
#### Interactive
212+
- [Q&R - A Two-Stage Approach toward Interactive Recommendation](Industry/Interactive/Q%26R%20-%20A%20Two-Stage%20Approach%20toward%20Interactive%20Recommendation.pdf)
211213
#### Regression
212214
- [[2014][Yahoo] Beyond Clicks - Dwell Time for Personalization](Industry/Regression/%5B2014%5D%5BYahoo%5D%20Beyond%20Clicks%20-%20Dwell%20Time%20for%20Personalization.pdf)
213215
- [Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation](Industry/Regression/Deconfounding%20Duration%20Bias%20in%20Watch-time%20Prediction%20for%20Video%20Recommendation.pdf)
@@ -280,11 +282,11 @@
280282
- [[2021][Google] Self-supervised Learning for Large-scale Item Recommendations](Match/%5B2021%5D%5BGoogle%5D%20Self-supervised%20Learning%20for%20Large-scale%20Item%20Recommendations.pdf)
281283
- [[2021][Alibaba][MGDSPR] Embedding-based Product Retrieval in Taobao Search](Match/%5B2021%5D%5BAlibaba%5D%5BMGDSPR%5D%20Embedding-based%20Product%20Retrieval%20in%20Taobao%20Search.pdf)
282284
- [[2021][Alibaba][XDM] XDM - Improving Sequential Deep Matching with Unclicked User Behaviors for Recommender System](Match/%5B2021%5D%5BAlibaba%5D%5BXDM%5D%20XDM%20-%20Improving%20Sequential%20Deep%20Matching%20with%20Unclicked%20User%20Behaviors%20for%20Recommender%20System.pdf)
285+
- [[2023] Adap-tau - Adaptively Modulating Embedding Magnitude for Recommendation](Match/%5B2023%5D%20Adap-tau%20-%20Adaptively%20Modulating%20Embedding%20Magnitude%20for%20Recommendation.pdf)
283286
- [Attentive Collaborative Filtering - Multimedia Recommendation with Item- and Component-Level A‚ention](Match/Attentive%20Collaborative%20Filtering%20-%20Multimedia%20Recommendation%20with%20Item-%20and%20Component-Level%20A%C2%82ention.pdf)
284287
- [Attentive Sequential Models of Latent Intent for Next Item Recommendation](Match/Attentive%20Sequential%20Models%20of%20Latent%20Intent%20for%20Next%20Item%20Recommendation.pdf)
285288
- [A User-Centered Concept Mining System for Query and Document Understanding at Tencent](Match/A%20User-Centered%20Concept%20Mining%20System%20for%20Query%20and%20Document%20Understanding%20at%20Tencent.pdf)
286289
- [AutoRec - Autoencoders Meet Collaborative Filtering](Match/AutoRec%20-%20Autoencoders%20Meet%20Collaborative%20Filtering.pdf)
287-
- [Adap-tau - Adaptively Modulating Embedding Magnitude for Recommendation](Match/Adap-tau%20-%20Adaptively%20Modulating%20Embedding%20Magnitude%20for%20Recommendation.pdf)
288290
- [A Simple Convolutional Generative Network for Next Item Recommendation](Match/A%20Simple%20Convolutional%20Generative%20Network%20for%20Next%20Item%20Recommendation.pdf)
289291
- [A Dual Augmented Two-tower Model for Online Large-scale Recommendation](Match/A%20Dual%20Augmented%20Two-tower%20Model%20for%20Online%20Large-scale%20Recommendation.pdf)
290292
- [CROLoss - Towards a Customizable Loss for Retrieval Models in Recommender Systems](Match/CROLoss%20-%20Towards%20a%20Customizable%20Loss%20for%20Retrieval%20Models%20in%20Recommender%20Systems.pdf)

README_EN.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11

22
# Summary of Papers Related to Recommendation System
33
## Introduce
4-
1. Up to 2023-02-16, **580** papers related to recommendation system have been collected and summarized in this repo,
4+
1. Up to 2023-02-17, **581** papers related to recommendation system have been collected and summarized in this repo,
55
including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
66
**Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
77
**Look-Alike**, **Learning-to-Rank**, **ReinForce Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -215,6 +215,8 @@ I will remove it immediately after verification.
215215
- [Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer](Industry/FeatureHashing/Learning%20Effective%20and%20Efficient%20Embedding%20via%20an%20Adaptively-Masked%20Twins-based%20Layer.pdf)
216216
- [Memory-efficient Embedding for Recommendations](Industry/FeatureHashing/Memory-efficient%20Embedding%20for%20Recommendations.pdf)
217217
- [Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems](Industry/FeatureHashing/Model%20Size%20Reduction%20Using%20Frequency%20Based%20Double%20Hashing%20for%20Recommender%20Systems.pdf)
218+
#### Interactive
219+
- [Q&R - A Two-Stage Approach toward Interactive Recommendation](Industry/Interactive/Q%26R%20-%20A%20Two-Stage%20Approach%20toward%20Interactive%20Recommendation.pdf)
218220
#### Regression
219221
- [[2014][Yahoo] Beyond Clicks - Dwell Time for Personalization](Industry/Regression/%5B2014%5D%5BYahoo%5D%20Beyond%20Clicks%20-%20Dwell%20Time%20for%20Personalization.pdf)
220222
- [Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation](Industry/Regression/Deconfounding%20Duration%20Bias%20in%20Watch-time%20Prediction%20for%20Video%20Recommendation.pdf)
@@ -287,11 +289,11 @@ I will remove it immediately after verification.
287289
- [[2021][Google] Self-supervised Learning for Large-scale Item Recommendations](Match/%5B2021%5D%5BGoogle%5D%20Self-supervised%20Learning%20for%20Large-scale%20Item%20Recommendations.pdf)
288290
- [[2021][Alibaba][MGDSPR] Embedding-based Product Retrieval in Taobao Search](Match/%5B2021%5D%5BAlibaba%5D%5BMGDSPR%5D%20Embedding-based%20Product%20Retrieval%20in%20Taobao%20Search.pdf)
289291
- [[2021][Alibaba][XDM] XDM - Improving Sequential Deep Matching with Unclicked User Behaviors for Recommender System](Match/%5B2021%5D%5BAlibaba%5D%5BXDM%5D%20XDM%20-%20Improving%20Sequential%20Deep%20Matching%20with%20Unclicked%20User%20Behaviors%20for%20Recommender%20System.pdf)
292+
- [[2023] Adap-tau - Adaptively Modulating Embedding Magnitude for Recommendation](Match/%5B2023%5D%20Adap-tau%20-%20Adaptively%20Modulating%20Embedding%20Magnitude%20for%20Recommendation.pdf)
290293
- [Attentive Collaborative Filtering - Multimedia Recommendation with Item- and Component-Level A‚ention](Match/Attentive%20Collaborative%20Filtering%20-%20Multimedia%20Recommendation%20with%20Item-%20and%20Component-Level%20A%C2%82ention.pdf)
291294
- [Attentive Sequential Models of Latent Intent for Next Item Recommendation](Match/Attentive%20Sequential%20Models%20of%20Latent%20Intent%20for%20Next%20Item%20Recommendation.pdf)
292295
- [A User-Centered Concept Mining System for Query and Document Understanding at Tencent](Match/A%20User-Centered%20Concept%20Mining%20System%20for%20Query%20and%20Document%20Understanding%20at%20Tencent.pdf)
293296
- [AutoRec - Autoencoders Meet Collaborative Filtering](Match/AutoRec%20-%20Autoencoders%20Meet%20Collaborative%20Filtering.pdf)
294-
- [Adap-tau - Adaptively Modulating Embedding Magnitude for Recommendation](Match/Adap-tau%20-%20Adaptively%20Modulating%20Embedding%20Magnitude%20for%20Recommendation.pdf)
295297
- [A Simple Convolutional Generative Network for Next Item Recommendation](Match/A%20Simple%20Convolutional%20Generative%20Network%20for%20Next%20Item%20Recommendation.pdf)
296298
- [A Dual Augmented Two-tower Model for Online Large-scale Recommendation](Match/A%20Dual%20Augmented%20Two-tower%20Model%20for%20Online%20Large-scale%20Recommendation.pdf)
297299
- [CROLoss - Towards a Customizable Loss for Retrieval Models in Recommender Systems](Match/CROLoss%20-%20Towards%20a%20Customizable%20Loss%20for%20Retrieval%20Models%20in%20Recommender%20Systems.pdf)

0 commit comments

Comments
 (0)