|
1 | 1 |
|
2 | 2 | # Summary of Papers Related to Recommendation System
|
3 | 3 | ## Introduce
|
4 |
| -1. Up to 2023-02-16, **580** papers related to recommendation system have been collected and summarized in this repo, |
| 4 | +1. Up to 2023-02-17, **581** papers related to recommendation system have been collected and summarized in this repo, |
5 | 5 | including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
|
6 | 6 | **Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
|
7 | 7 | **Look-Alike**, **Learning-to-Rank**, **ReinForce Learning** and other fields, the repo will track the industry progress and update continuely.
|
@@ -215,6 +215,8 @@ I will remove it immediately after verification.
|
215 | 215 | - [Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer](Industry/FeatureHashing/Learning%20Effective%20and%20Efficient%20Embedding%20via%20an%20Adaptively-Masked%20Twins-based%20Layer.pdf)
|
216 | 216 | - [Memory-efficient Embedding for Recommendations](Industry/FeatureHashing/Memory-efficient%20Embedding%20for%20Recommendations.pdf)
|
217 | 217 | - [Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems](Industry/FeatureHashing/Model%20Size%20Reduction%20Using%20Frequency%20Based%20Double%20Hashing%20for%20Recommender%20Systems.pdf)
|
| 218 | +#### Interactive |
| 219 | +- [Q&R - A Two-Stage Approach toward Interactive Recommendation](Industry/Interactive/Q%26R%20-%20A%20Two-Stage%20Approach%20toward%20Interactive%20Recommendation.pdf) |
218 | 220 | #### Regression
|
219 | 221 | - [[2014][Yahoo] Beyond Clicks - Dwell Time for Personalization](Industry/Regression/%5B2014%5D%5BYahoo%5D%20Beyond%20Clicks%20-%20Dwell%20Time%20for%20Personalization.pdf)
|
220 | 222 | - [Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation](Industry/Regression/Deconfounding%20Duration%20Bias%20in%20Watch-time%20Prediction%20for%20Video%20Recommendation.pdf)
|
@@ -287,11 +289,11 @@ I will remove it immediately after verification.
|
287 | 289 | - [[2021][Google] Self-supervised Learning for Large-scale Item Recommendations](Match/%5B2021%5D%5BGoogle%5D%20Self-supervised%20Learning%20for%20Large-scale%20Item%20Recommendations.pdf)
|
288 | 290 | - [[2021][Alibaba][MGDSPR] Embedding-based Product Retrieval in Taobao Search](Match/%5B2021%5D%5BAlibaba%5D%5BMGDSPR%5D%20Embedding-based%20Product%20Retrieval%20in%20Taobao%20Search.pdf)
|
289 | 291 | - [[2021][Alibaba][XDM] XDM - Improving Sequential Deep Matching with Unclicked User Behaviors for Recommender System](Match/%5B2021%5D%5BAlibaba%5D%5BXDM%5D%20XDM%20-%20Improving%20Sequential%20Deep%20Matching%20with%20Unclicked%20User%20Behaviors%20for%20Recommender%20System.pdf)
|
| 292 | +- [[2023] Adap-tau - Adaptively Modulating Embedding Magnitude for Recommendation](Match/%5B2023%5D%20Adap-tau%20-%20Adaptively%20Modulating%20Embedding%20Magnitude%20for%20Recommendation.pdf) |
290 | 293 | - [Attentive Collaborative Filtering - Multimedia Recommendation with Item- and Component-Level Aention](Match/Attentive%20Collaborative%20Filtering%20-%20Multimedia%20Recommendation%20with%20Item-%20and%20Component-Level%20A%C2%82ention.pdf)
|
291 | 294 | - [Attentive Sequential Models of Latent Intent for Next Item Recommendation](Match/Attentive%20Sequential%20Models%20of%20Latent%20Intent%20for%20Next%20Item%20Recommendation.pdf)
|
292 | 295 | - [A User-Centered Concept Mining System for Query and Document Understanding at Tencent](Match/A%20User-Centered%20Concept%20Mining%20System%20for%20Query%20and%20Document%20Understanding%20at%20Tencent.pdf)
|
293 | 296 | - [AutoRec - Autoencoders Meet Collaborative Filtering](Match/AutoRec%20-%20Autoencoders%20Meet%20Collaborative%20Filtering.pdf)
|
294 |
| -- [Adap-tau - Adaptively Modulating Embedding Magnitude for Recommendation](Match/Adap-tau%20-%20Adaptively%20Modulating%20Embedding%20Magnitude%20for%20Recommendation.pdf) |
295 | 297 | - [A Simple Convolutional Generative Network for Next Item Recommendation](Match/A%20Simple%20Convolutional%20Generative%20Network%20for%20Next%20Item%20Recommendation.pdf)
|
296 | 298 | - [A Dual Augmented Two-tower Model for Online Large-scale Recommendation](Match/A%20Dual%20Augmented%20Two-tower%20Model%20for%20Online%20Large-scale%20Recommendation.pdf)
|
297 | 299 | - [CROLoss - Towards a Customizable Loss for Retrieval Models in Recommender Systems](Match/CROLoss%20-%20Towards%20a%20Customizable%20Loss%20for%20Retrieval%20Models%20in%20Recommender%20Systems.pdf)
|
|
0 commit comments