Skip to content

Commit 33fb084

Browse files
committed
update
1 parent 6dd1822 commit 33fb084

4 files changed

+8
-2
lines changed

README.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
# 推荐系统相关论文汇总
33
([English Version is Here](/README_EN.md))
44
## 介绍
5-
1. 截至2023-07-20,本仓库收集汇总了推荐系统领域相关论文共**700**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
5+
1. 截至2023-07-20,本仓库收集汇总了推荐系统领域相关论文共**702**篇,涉及:**召回****粗排****精排****重排****多任务****多场景****多模态****冷启动****校准**
66
**纠偏****多样性****公平性****反馈延迟****蒸馏****对比学习****因果推断****Look-Alike****Learning-to-Rank****强化学习**等领域,本仓库会跟踪业界进展,持续更新。
77
2. 因文件名特殊字符的限制,故论文title中所有的`:`都改为了`-`,检索时请注意。
88
3. 文件名前缀中带有`[]`的,表明本人已经通读过,第一个`[]`中为论文年份,第二个`[]`中为发表机构或公司(可选),第三个`[]`中为论文提出的model或method的简称(可选)。
@@ -252,6 +252,9 @@
252252
- [Memory-efficient Embedding for Recommendations](Industry/FeatureHashing/Memory-efficient%20Embedding%20for%20Recommendations.pdf)
253253
#### Interactive
254254
- [Q&R - A Two-Stage Approach toward Interactive Recommendation](Industry/Interactive/Q%26R%20-%20A%20Two-Stage%20Approach%20toward%20Interactive%20Recommendation.pdf)
255+
#### IncrementalLearning
256+
- [ADER - Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation](Industry/IncrementalLearning/ADER%20-%20Adaptively%20Distilled%20Exemplar%20Replay%20Towards%20Continual%20Learning%20for%20Session-based%20Recommendation.pdf)
257+
- [A Survey on Incremental Update for Neural Recommender Systems](Industry/IncrementalLearning/A%20Survey%20on%20Incremental%20Update%20for%20Neural%20Recommender%20Systems.pdf)
255258
#### Regression
256259
- [[2014][Yahoo] Beyond Clicks - Dwell Time for Personalization](Industry/Regression/%5B2014%5D%5BYahoo%5D%20Beyond%20Clicks%20-%20Dwell%20Time%20for%20Personalization.pdf)
257260
- [Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation](Industry/Regression/Deconfounding%20Duration%20Bias%20in%20Watch-time%20Prediction%20for%20Video%20Recommendation.pdf)

README_EN.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11

22
# Summary of Papers Related to Recommendation System
33
## Introduce
4-
1. Up to 2023-07-20, **700** papers related to recommendation system have been collected and summarized in this repo,
4+
1. Up to 2023-07-20, **702** papers related to recommendation system have been collected and summarized in this repo,
55
including: **Match**, **Pre-Rank**, **Rank**, **Re-Rank**, **Multi-Task**, **Multi-Scenario**, **Multi-Modal**, **Cold-Start**, **Calibration**,
66
**Debias**, **Diversity**, **Fairness**, **Feedback-Delay**, **Distillation**, **Contrastive Learning**, **Casual Inference**,
77
**Look-Alike**, **Learning-to-Rank**, **Reinforcement Learning** and other fields, the repo will track the industry progress and update continuely.
@@ -259,6 +259,9 @@ I will remove it immediately after verification.
259259
- [Memory-efficient Embedding for Recommendations](Industry/FeatureHashing/Memory-efficient%20Embedding%20for%20Recommendations.pdf)
260260
#### Interactive
261261
- [Q&R - A Two-Stage Approach toward Interactive Recommendation](Industry/Interactive/Q%26R%20-%20A%20Two-Stage%20Approach%20toward%20Interactive%20Recommendation.pdf)
262+
#### IncrementalLearning
263+
- [ADER - Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation](Industry/IncrementalLearning/ADER%20-%20Adaptively%20Distilled%20Exemplar%20Replay%20Towards%20Continual%20Learning%20for%20Session-based%20Recommendation.pdf)
264+
- [A Survey on Incremental Update for Neural Recommender Systems](Industry/IncrementalLearning/A%20Survey%20on%20Incremental%20Update%20for%20Neural%20Recommender%20Systems.pdf)
262265
#### Regression
263266
- [[2014][Yahoo] Beyond Clicks - Dwell Time for Personalization](Industry/Regression/%5B2014%5D%5BYahoo%5D%20Beyond%20Clicks%20-%20Dwell%20Time%20for%20Personalization.pdf)
264267
- [Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation](Industry/Regression/Deconfounding%20Duration%20Bias%20in%20Watch-time%20Prediction%20for%20Video%20Recommendation.pdf)

0 commit comments

Comments
 (0)