-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
It might be useful to have class functions to create dummy data using dreem.io.Frame
, dreem.io.Instance
, and dreem.io.AssociationMatirx
eg
class Instance:
@classmethod
def dummy(cls, gt_track_id=0, pred_track_id=-1, crop_size=64, feature_dim=128, track_score=-1.0, device="cpu"):
return cls(gt_track_id=gt_track_id,
pred_track_id=pred_track_id,
crop=torch.randn(1, 3, cropsize),
bbox=torch.rand(1,1,4) * cropsize,
features=torch.randn(1, feature_dim),
track_score=track_score,
emb={"pos": torch.randn(1,feature_dim), "temp": torch.randn(1, feature_dim)},
device=device
)
class Frame
@classmethod
def dummy(cls, frame_id=0, video_id=0, n_instances=2, img_shape=(3,256,256))
return cls(frame_id=frame_id, video_id=video_id, img_shape=img_shape, instances = [Instance.dummy(gt_track_id=i) for i in range(n_instances)])
class AssociationMatrix:
@classmethod
def dummy(cls, n_ref, n_query):
return cls(torch.randn(n_query, n_ref), ref_instances = [Instance.dummy(gt_track_id=i, pred_track_id=i) for i in range(n_ref), query_instances = [Instance.dummy(gt_track_id=i) for i in range(n_query)])
Metadata
Metadata
Assignees
Labels
No labels