|
14 | 14 | from test import evaluate
|
15 | 15 |
|
16 | 16 | parser = argparse.ArgumentParser()
|
17 |
| -parser.add_argument("--epochs", type=int, default=100, help="number of epochs") |
18 |
| -parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step") |
| 17 | +parser.add_argument("--epoch", type=int, default=100, help="number of epoch") |
| 18 | +parser.add_argument("--gradient_accumulation", type=int, default=1, help="number of gradient accums before step") |
19 | 19 | parser.add_argument("--multiscale_training", type=bool, default=True, help="allow for multi-scale training")
|
20 | 20 | parser.add_argument("--batch_size", type=int, default=32, help="size of each image batch")
|
21 | 21 | parser.add_argument("--num_workers", type=int, default=8, help="number of cpu threads to use during batch generation")
|
|
68 | 68 | loss_log = tqdm.tqdm(total=0, position=2, bar_format='{desc}', leave=False)
|
69 | 69 |
|
70 | 70 | # Train code.
|
71 |
| -for epoch in tqdm.tqdm(range(args.epochs), desc='Epoch'): |
| 71 | +for epoch in tqdm.tqdm(range(args.epoch), desc='Epoch'): |
72 | 72 | # 모델을 train mode로 설정
|
73 | 73 | model.train()
|
74 | 74 |
|
|
85 | 85 | loss.backward()
|
86 | 86 |
|
87 | 87 | # 기울기 누적 (Accumulate gradient)
|
88 |
| - if step % args.gradient_accumulations == 0: |
| 88 | + if step % args.gradient_accumulation == 0: |
89 | 89 | optimizer.step()
|
90 | 90 | optimizer.zero_grad()
|
91 | 91 |
|
|
0 commit comments