@@ -89,25 +89,26 @@ def _load_vectors_from_file(self, vec_file: str) -> None:
8989                    self .vectors [token ] =  vector 
9090
9191    def  _binarize_vectors (self ):
92-         """Binarize word  vectors by converting continuous values into discrete values. 
92+         """Binarize vectors by converting continuous values into discrete values [1] . 
9393
9494        For each word vector, calculate the average value of the positive elements and 
9595        the negative elements. Replace each element of each word vector according to: 
9696        if value < negative_average: 
97-             "NEG " 
97+             "VNEG " 
9898        elif value > positive_average 
99-             "POS " 
99+             "VPOS " 
100100        else 
101-             "0 " 
101+             "V0 " 
102102
103103        The resulting word vectors are stored in the binarized_vectors attribute. 
104104
105105        References 
106106        ---------- 
107-         J. Guo, W. Che, H. Wang, and T. Liu, ‘Revisiting Embedding Features for Simple 
108-         Semi-supervised Learning’, in Proceedings of the 2014 Conference on Empirical 
109-         Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for 
110-         Computational Linguistics, 2014, pp. 110–120. doi: 10.3115/v1/D14-1012. 
107+         .. [1] J. Guo, W. Che, H. Wang, and T. Liu, ‘Revisiting Embedding Features for 
108+            Simple Semi-supervised Learning’, in Proceedings of the 2014 Conference on 
109+            EmpiricalMethods in Natural Language Processing (EMNLP), Doha, Qatar: 
110+            Association for Computational Linguistics, 2014, pp. 110–120. 
111+            doi: 10.3115/v1/D14-1012. 
111112        """ 
112113        self .binarized_vectors  =  {}
113114        for  word , vec  in  self .vectors .items ():
0 commit comments