Skip to content

Commit eac3732

Browse files
committed
Final changes for version 1.0 release
Relatively minor cleanup.
1 parent 10f613a commit eac3732

File tree

2 files changed

+13
-109
lines changed

2 files changed

+13
-109
lines changed

ch-computer/computer-signals.tex

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -680,25 +680,25 @@ \section{Problems}
680680
\begin{enumerate}
681681

682682
\item What is the RMS magnitude of the sine wave $A\sin(\omega t)$?
683-
%answer: A/sqrt(2)
683+
684684
\item What is the RMS magnitude of the sawtooth waveform
685685
\begin{equation*}
686686
x(t) = \frac{A}{T} t\text{, } 0<t<=T
687687
\end{equation*}
688688
where $x(t)$ repeats every $T$ seconds
689-
%answer: A/sqrt(3)
689+
690690
\item The sin wave from problem 1 is sampled in noise,
691691
if the desired SNR is 20 dB, how large can the RMS magnitude of the noise be?
692-
%answer: 20 = 20 log(A/(sqrt(2) Nrms)), Nrms=A/(sqrt(2)*exp(1))
692+
693693
\item If the sawtooth waveform from problem 2 is considered noise and
694694
the sine wave from problem 1 is the signal, what is the SNR in dB?
695-
%answer: 10 log(sqrt(3/2))=5 log(3/2)=0.9dB
695+
696696
\item The signal $e^{j 2\pi \times200 t}$ is sampled at $\omega_s=2\pi\times300$.
697697
What are the actual, digital, and apparent frequencies?
698-
% answer: 2pi*200rad/s, -2/3 pi rad/sample, -100 *2pi rad/s
698+
699699
\item The signal $\cos( 2\pi \times200 t)$ is sampled at $\omega_s=2\pi\times250$.
700700
What are the actual, digital and apparent frequencies of the resulting cosines?
701-
%answer: 2pi*200rad/s, 2/5 pi rad/sample, 50 *2pi rad/s
701+
702702
\item Consider the 50\% duty cycle square wave with amplitude from -1 to 1 and period $T$.
703703
\begin{enumerate}
704704
\item What is the RMS magnitude?

ch-physical/physical-signals.tex

Lines changed: 7 additions & 103 deletions
Original file line numberDiff line numberDiff line change
@@ -1525,81 +1525,28 @@ \section{Problems}
15251525
\item A complex number can be written in rectangular coordinates as $z
15261526
= x + j y$. Write the relations to calculate the polar form, $z=(r,
15271527
\theta)$ or $z = r e^{j\theta}$.
1528-
% \answer{$r = \sqrt{x^2+y^2}, \theta=\arctan(y/x)$\stepbystep{. This is readily seen using the Pythagorean theorem in the complex plane. For a right triangle the $\tan(\theta)=\frac{\text{opposite}}{\text{adjacent}}=\frac{\text{imaginary component}}{\text{real component}}$}}
1528+
15291529
\item Using Euler's formula, express $\cos x$ and $\sin x$ as a
15301530
combination of complex exponentials. Recall that Euler's Formula is given by: $e^{\pm j\omega t}=\cos(\omega t) \pm j \sin(\omega t)$.
1531-
% \answer{$\frac{1}{2}(e^{j\omega t}+e^{-j\omega t})$
1532-
% \stepbystep{ which we can derive using,
1533-
% \begin{align*}
1534-
% e^{j\omega t}+e^{-j\omega t}=&\left[\cos(\omega t) + j \sin(\omega t)\right] + \left[\cos(\omega t) - j \sin(\omega t)\right] \\
1535-
% =&2\cos(\omega t) \\
1536-
% \therefore \cos(\omega t) =& \frac{1}{2}(e^{j\omega t}+e^{-j\omega t})
1537-
% \end{align*}
1538-
%}
1539-
%Similarly, $\sin(\omega t) = \frac{1}{2}(e^{j\omega t}-e^{-j\omega t})$
1540-
%\stepbystep{
1541-
% \begin{align*}
1542-
% e^{j\omega t}-e^{-j\omega t}=&\left[\cos(\omega t) + j \sin(\omega t)\right] - \left[\cos(\omega t) - j \sin(\omega t)\right] \\
1543-
% =&2j\sin(\omega t) \\
1544-
% \therefore \sin(\omega t) =& \frac{1}{2}(e^{j\omega t}-e^{-j\omega t})
1545-
% \end{align*}
1546-
%}
1547-
%}
1531+
15481532
\item Find expressions for the following as complex exponentials:
15491533
\begin{enumerate}
15501534
\item1
15511535
\item $j$
15521536
\item $1 + j$, $(1 + j\sqrt{3})/2$
15531537
\end{enumerate}
15541538

1555-
%\answer{
1556-
% \begin{align*}
1557-
% 1 =& e^{j 2\pi n } \text{, } n \in \mathbb{Z} \\
1558-
% j =& e^{j \pi/2 } \\
1559-
% (1+j) =& \sqrt{2} e^{j \pi /4} \\
1560-
% (1+j\sqrt{3})/2 =& e^{j \pi /3}
1561-
% \end{align*}
1562-
% }
1563-
15641539
\item Compute $[(1+j\sqrt{3})/2]^2$ and $(1+j)^4$ directly using:
15651540
\begin{enumerate}
15661541
\item Rectangular representations.
15671542
\item Complex exponentials.
15681543
\end{enumerate}
1569-
% \answer{
1570-
% \begin{align*}
1571-
% [(1+j\sqrt{3})/2]^2 &=(1+\sqrt{3}j-3)/4 \\
1572-
% &=-1/2+\sqrt{3}/4j \\
1573-
% \\
1574-
% (1+j)^4 &= (1+j)^2(1+j)^2 \\
1575-
% &= (1+2j-1)^2 \\
1576-
% &= 4j^2 = -4
1577-
% \end{align*}
1578-
% }
1579-
%
1580-
% \answer{
1581-
% \begin{align*}
1582-
% (1+j\sqrt{3})/2 =& e^{j \pi /3} \\
1583-
% \therefore [(1+j\sqrt{3})/2]^2 =& e^{j 2\pi /3} \\ \\
1584-
% (1+j) =& \sqrt{2} e^{j \pi /4} \\
1585-
% \therefore (1+j) ^4=& (\sqrt{2})^4 e^{j \pi} =-4
1586-
% \end{align*}
1587-
% }
1544+
15881545
\item Show that $(z_xz_y)^* = z_x^* z_y^*$.
15891546

1590-
% \answer{
1591-
% \begin{align*}
1592-
% (z_xz_y)^*&=(R_xe^{j\omega_x}R_ye^{j\omega_y})^* \\
1593-
% &=R_xR_y (e^{j\omega_x+j\omega_y})^* \\
1594-
% &=R_xR_y e^{-j(\omega_x+\omega_y)} \\ \\
1595-
% z_x^*z_y^*&=(R_xe^{j\omega_x})^*(R_ye^{j\omega_y})^* \\
1596-
% &=R_xe^{-j\omega_x}R_ye^{-j\omega_y} \\
1597-
% &=R_xR_y e^{-j(\omega_x+\omega_y)}
1598-
% \end{align*} }
15991547

16001548
\item Express $|z|^2$ as a function of $z$ and $z^*$.
1601-
%
1602-
% \answer{$|z|^2=zz^*$}
1549+
16031550

16041551
\item Given the following equations:
16051552
\begin{align*}
@@ -1611,58 +1558,15 @@ \section{Problems}
16111558

16121559
\begin{enumerate}
16131560
\item Using pencil and paper: Express $x_1(t)$ through $x_4(t)$ as complex exponentials.
1614-
% \answer{
1615-
% \begin{align*}
1616-
% x_1(t) &= \frac{5}{2}(e^{j400\pi t}e^{j 0.5\pi}+e^{-j400\pi t}e^{-j 0.5\pi}) \\
1617-
% x_2(t) &= \frac{5}{2}(e^{j400\pi t}e^{-j 0.25\pi}+e^{-j400\pi t}e^{j 0.25\pi}) \\
1618-
% x_3(t) &= \frac{5}{2}(e^{j400\pi t}e^{j 0.4\pi}+e^{-j400\pi t}e^{-j 0.4\pi}) \\
1619-
% x_4(t) &= \frac{5}{2}(e^{j400\pi t}e^{-j 0.9\pi}+e^{-j400\pi t}e^{j 0.9\pi})
1620-
% \end{align*}}
1561+
16211562
\item Create the sum sinusoid, $x_5(t)=x_1(t)+x_2(t)+x_3(t)+x_4(t)$. Express $x_5(t)$ as a sum of complex exponentials.
1622-
% \answer{
1623-
% It is easy to see that:
1624-
% \stepbystep{
1625-
% \begin{align*}
1626-
% x_5(t)=& x_1(t)+x_2(t)+x_3(t)+x_4(t)\\
1627-
% x_5(t)=& \frac{5}{2}(e^{j400\pi t}e^{j 0.5\pi}+e^{-j400\pi t}e^{-j 0.5\pi}) \\
1628-
% &+ \frac{5}{2}(e^{j400\pi t}e^{-j 0.25\pi}+e^{-j400\pi t}e^{j 0.25\pi}) \\
1629-
% &+ \frac{5}{2}(e^{j400\pi t}e^{j 0.4\pi}+e^{-j400\pi t}e^{-j 0.4\pi}) \\
1630-
% &+ \frac{5}{2}(e^{j400\pi t}e^{-j 0.9\pi}+e^{-j400\pi t}e^{j 0.9\pi}) \\
1631-
% &\text{factoring out the terms } 5/2 \text{ and }e^{\pm j400\pi t} \text{, }
1632-
% \end{align*}
1633-
% }
1634-
% \begin{align*}
1635-
% x_5(t)=& \frac{5}{2}\bigg(\left(e^{j 0.5\pi}+e^{-j 0.25\pi}+e^{j 0.4\pi}+e^{-j 0.9\pi}\right) e^{j400\pi t} + \\
1636-
% & \left(e^{-j 0.5\pi}+e^{j 0.25\pi}+e^{-j 0.4\pi}+e^{j 0.9\pi}\right) e^{-j400\pi t}\bigg)
1637-
% \end{align*}
1638-
% }
1563+
16391564
\item Using complex exponentials, express the amplitude and phase of $x_5(t)$ (use pencil and paper with the aide of a graphing calculator, spreadsheet, or MATLAB).
1640-
%\answer{
1641-
%\stepbystep{
1642-
%Because we are dealing with sums, each of the complex exponentials can be converted to rectangular form and summed, yielding:
1643-
%%exp(j*0.5*pi)+exp(-j*0.25*pi)+exp(j*0.4*pi)+exp(-j*0.9*pi) = 0.065067259266342 + 0.934932740733659j
1644-
%\begin{align*}
1645-
%x_5(t)=& \frac{5}{2} \bigg(\underbrace{\left(e^{j 0.5\pi}+e^{-j 0.25\pi}+e^{j 0.4\pi}+e^{-j 0.9\pi}\right) }_{(0.065 + 0.935 j)} e^{j400\pi t} + \\
1646-
% & \underbrace{\left(e^{-j 0.5\pi}+e^{j 0.25\pi}+e^{-j 0.4\pi}+e^{j 0.9\pi}\right)}_{(0.065 - 0.935 j)} e^{-j400\pi t}\bigg) \\
1647-
%x_5(t)=& \frac{5}{2}\bigg((0.065 + 0.935 j) e^{j400\pi t} +
1648-
%(0.065 - 0.935 j) e^{-j400\pi t}\bigg) \\
1649-
%x_5(t)=& \frac{5}{2}\bigg( \underbrace{0.937e^{j1.5}}_{polar form} e^{j400\pi t} +
1650-
%\underbrace{0.937e^{-j1.5}}_{polar form} e^{-j400\pi t}\bigg)\\
1651-
%x_5(t)=& \frac{4.686}{2}\bigg( e^{j1.5} e^{j400\pi t}+ e^{-j1.5} e^{-j400\pi t}\bigg) \\
1652-
%x_5(t)=& \underbrace{\frac{4.686}{2}}_{amplitude/2} \underbrace{\bigg( e^{j(400\pi t+1.5)}+ e^{-j(400\pi t+1.5)}\bigg)}_{cosine+ phase \text{ } shift} \\
1653-
%=&4.686 \cos(2\pi(200)t +1.5) \\
1654-
%\end{align*}}
1655-
%\begin{align*}
1656-
%\text{phase}=& 1.5 \text{ radians}\\
1657-
%\text{amplitude}=& 4.686
1658-
%\end{align*}
1659-
%}
1565+
16601566
\end{enumerate}
16611567

16621568
\item What is the period of $e^{-j\frac{\pi}{4}t}+e^{-j\frac{\pi}{2}t}$ ?
1663-
%\answer{The frequencies are integer multiples of one another, so the period is governed by the smallest frequency, $\omega_0=\frac{pi}{4}$. The period is therefore $T_0=8$ seconds.}
16641569
\item What is the period of $e^{-j \omega_0 t}+e^{-j 5\omega_0 t}$ ?
1665-
%\answer{The frequencies are integer multiples of one another, so the period is governed by the smallest frequency, $\omega_0$. The period is therefore $T_0=\frac{2\pi}{\omega_0}$ seconds.}
16661570
\item Implement a \texttt{Complex} class for representing
16671571
complex numbers in an object oriented programming language (C++, C\#, Java, python, etc.). Your class should include at least the following
16681572
methods:

0 commit comments

Comments
 (0)