Skip to content

how to launch ARM instead of C2FARM #11

@softgearko

Description

@softgearko

Hello.
I tried to run launch with ARM as a method instead of C2FARM.

python launch.py method=ARM rlbench.task=take_lid_off_saucepan rlbench.demo_path=/home/softgear/stepjam_ARM/my_save_dir framework.gpu=0
I met warnings and errors as following. How can I launch ARM ?


launch.py:332: UserWarning: 
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
  @hydra.main(config_name='config', config_path='conf')
/home/softgear/.local/lib/python3.8/site-packages/hydra/_internal/defaults_list.py:251: UserWarning: In 'config': Defaults list is missing `_self_`. See https://hydra.cc/docs/upgrades/1.0_to_1.1/default_composition_order for more information
  warnings.warn(msg, UserWarning)
/home/softgear/.local/lib/python3.8/site-packages/hydra/core/default_element.py:124: UserWarning: In 'method/ARM': Usage of deprecated keyword in package header '# @package _group_'.
See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/changes_to_package_header for more information
  deprecation_warning(
/home/softgear/.local/lib/python3.8/site-packages/hydra/_internal/hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default.
See https://hydra.cc/docs/next/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.
  ret = run_job(
[2022-11-01 11:38:44,226][root][INFO] - 
method:
  name: ARM
  activation: lrelu
  q_conf: true
  alpha: 0.05
  alpha_lr: 0.0001
  alpha_auto_tune: false
  next_best_pose_critic_lr: 0.0025
  next_best_pose_actor_lr: 0.001
  next_best_pose_critic_weight_decay: 1.0e-05
  next_best_pose_actor_weight_decay: 1.0e-05
  crop_shape:
  - 16
  - 16
  next_best_pose_tau: 0.005
  next_best_pose_critic_grad_clip: 5
  next_best_pose_actor_grad_clip: 5
  qattention_grad_clip: 5
  qattention_tau: 0.005
  qattention_lr: 0.0005
  qattention_weight_decay: 1.0e-05
  qattention_lambda_qreg: 1.0e-07
  demo_augmentation: true
  demo_augmentation_every_n: 10
rlbench:
  task: take_lid_off_saucepan
  demos: 10
  demo_path: /home/softgear/stepjam_ARM/my_save_dir
  episode_length: 10
  cameras:
  - front
  camera_resolution:
  - 128
  - 128
  scene_bounds:
  - -0.3
  - -0.5
  - 0.6
  - 0.7
  - 0.5
  - 1.6
replay:
  batch_size: 128
  timesteps: 1
  prioritisation: true
  use_disk: false
  path: /tmp/arm/replay
framework:
  log_freq: 100
  save_freq: 100
  train_envs: 1
  eval_envs: 1
  replay_ratio: 128
  transitions_before_train: 200
  tensorboard_logging: true
  csv_logging: true
  training_iterations: 40000
  gpu: 0
  env_gpu: 0
  logdir: /tmp/arm_test/
  seeds: 1

[2022-11-01 11:38:44,254][root][INFO] - Using training device cuda:0.
[2022-11-01 11:38:44,254][root][INFO] - Using env device cuda:0.
[2022-11-01 11:38:44,264][root][INFO] - CWD:/tmp/arm_test/take_lid_off_saucepan/ARM
[2022-11-01 11:38:44,264][root][INFO] - Starting seed 0.
[2022-11-01 11:38:44,265][root][INFO] - Creating a PrioritizedReplayBuffer replay memory with the following parameters:
[2022-11-01 11:38:44,265][root][INFO] - 	 timesteps: 1
[2022-11-01 11:38:44,265][root][INFO] - 	 replay_capacity: 100000
[2022-11-01 11:38:44,265][root][INFO] - 	 batch_size: 128
[2022-11-01 11:38:44,265][root][INFO] - 	 update_horizon: 1
[2022-11-01 11:38:44,265][root][INFO] - 	 gamma: 0.990000
[2022-11-01 11:38:44,265][root][INFO] - 	 saving to RAM
[2022-11-01 11:38:44,269][root][INFO] - Filling replay with demos...
[2022-11-01 11:38:45,682][root][INFO] - Replay filled with demos.
[2022-11-01 11:38:46,631][root][INFO] - # Q-attention Params: 86386
/home/softgear/stepjam_ARM/ARM/arm/arm/next_best_pose_agent.py:148: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at  ../torch/csrc/utils/tensor_new.cpp:201.)
  action_min_max = torch.tensor(self._action_min_max).to(device)
[2022-11-01 11:38:46,656][root][INFO] - # NBP Critic Params: 1085572
[2022-11-01 11:38:46,656][root][INFO] - # NBP Actor Params: 51152
/home/softgear/stepjam_ARM/ARM/launch.py:332: UserWarning: 
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
  @hydra.main(config_name='config', config_path='conf')
/home/softgear/stepjam_ARM/ARM/launch.py:332: UserWarning: 
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
  @hydra.main(config_name='config', config_path='conf')
/home/softgear/stepjam_ARM/ARM/launch.py:332: UserWarning: 
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
  @hydra.main(config_name='config', config_path='conf')
/home/softgear/stepjam_ARM/ARM/arm/arm/qattention_agent.py:35: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
  indices = torch.cat((m // t_shape[-1], m % t_shape[-1]), dim=1)
/home/softgear/stepjam_ARM/ARM/arm/arm/next_best_pose_agent.py:148: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at  ../torch/csrc/utils/tensor_new.cpp:201.)
  action_min_max = torch.tensor(self._action_min_max).to(device)
/home/softgear/stepjam_ARM/ARM/arm/arm/next_best_pose_agent.py:148: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at  ../torch/csrc/utils/tensor_new.cpp:201.)
  action_min_max = torch.tensor(self._action_min_max).to(device)
/home/softgear/stepjam_ARM/ARM/arm/arm/qattention_agent.py:35: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
  indices = torch.cat((m // t_shape[-1], m % t_shape[-1]), dim=1)
/home/softgear/stepjam_ARM/ARM/arm/arm/qattention_agent.py:35: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
  indices = torch.cat((m // t_shape[-1], m % t_shape[-1]), dim=1)
[CoppeliaSim:loadinfo]   done.
Process train_env0:
Traceback (most recent call last):
  File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
    self.run()
  File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/home/softgear/.local/lib/python3.8/site-packages/yarr/runners/_env_runner.py", line 169, in _run_env
    raise e
  File "/home/softgear/.local/lib/python3.8/site-packages/yarr/runners/_env_runner.py", line 143, in _run_env
    for replay_transition in generator:
  File "/home/softgear/.local/lib/python3.8/site-packages/yarr/utils/rollout_generator.py", line 30, in generator
    agent_obs_elems = {k: np.array(v) for k, v in
  File "/home/softgear/.local/lib/python3.8/site-packages/yarr/utils/rollout_generator.py", line 30, in <dictcomp>
    agent_obs_elems = {k: np.array(v) for k, v in
  File "/home/softgear/.local/lib/python3.8/site-packages/torch/_tensor.py", line 757, in __array__
    return self.numpy()
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
[2022-11-01 11:38:55,800][root][WARNING] - Env train_env0 failed (1 times <= 10). restarting
[CoppeliaSim:loadinfo]   done.
^C (SIGINT)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions